21,316 research outputs found

    Latency Bounds of Packet-Based Fronthaul for Cloud-RAN with Functionality Split

    Get PDF
    The emerging Cloud-RAN architecture within the fifth generation (5G) of wireless networks plays a vital role in enabling higher flexibility and granularity. On the other hand, Cloud-RAN architecture introduces an additional link between the central, cloudified unit and the distributed radio unit, namely fronthaul (FH). Therefore, the foreseen reliability and latency for 5G services should also be provisioned over the FH link. In this paper, focusing on Ethernet as FH, we present a reliable packet-based FH communication and demonstrate the upper and lower bounds of latency that can be offered. These bounds yield insights into the trade-off between reliability and latency, and enable the architecture design through choice of splitting point, focusing on high layer split between PDCP and RLC and low layer split between MAC and PHY, under different FH bandwidth and traffic properties. Presented model is then analyzed both numerically and through simulation, with two classes of 5G services that are ultra reliable low latency (URLL) and enhanced mobile broadband (eMBB).Comment: 6 pages, 7 figures, 3 tables, conference paper (ICC19

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Techniques for the Fast Simulation of Models of Highly dependable Systems

    Get PDF
    With the ever-increasing complexity and requirements of highly dependable systems, their evaluation during design and operation is becoming more crucial. Realistic models of such systems are often not amenable to analysis using conventional analytic or numerical methods. Therefore, analysts and designers turn to simulation to evaluate these models. However, accurate estimation of dependability measures of these models requires that the simulation frequently observes system failures, which are rare events in highly dependable systems. This renders ordinary Simulation impractical for evaluating such systems. To overcome this problem, simulation techniques based on importance sampling have been developed, and are very effective in certain settings. When importance sampling works well, simulation run lengths can be reduced by several orders of magnitude when estimating transient as well as steady-state dependability measures. This paper reviews some of the importance-sampling techniques that have been developed in recent years to estimate dependability measures efficiently in Markov and nonMarkov models of highly dependable system

    On the Reliability of LTE Random Access: Performance Bounds for Machine-to-Machine Burst Resolution Time

    Full text link
    Random Access Channel (RACH) has been identified as one of the major bottlenecks for accommodating massive number of machine-to-machine (M2M) users in LTE networks, especially for the case of burst arrival of connection requests. As a consequence, the burst resolution problem has sparked a large number of works in the area, analyzing and optimizing the average performance of RACH. However, the understanding of what are the probabilistic performance limits of RACH is still missing. To address this limitation, in the paper, we investigate the reliability of RACH with access class barring (ACB). We model RACH as a queuing system, and apply stochastic network calculus to derive probabilistic performance bounds for burst resolution time, i.e., the worst case time it takes to connect a burst of M2M devices to the base station. We illustrate the accuracy of the proposed methodology and its potential applications in performance assessment and system dimensioning.Comment: Presented at IEEE International Conference on Communications (ICC), 201

    Optimal Resource Allocation for Network Protection Against Spreading Processes

    Get PDF
    We study the problem of containing spreading processes in arbitrary directed networks by distributing protection resources throughout the nodes of the network. We consider two types of protection resources are available: (i) Preventive resources able to defend nodes against the spreading (such as vaccines in a viral infection process), and (ii) corrective resources able to neutralize the spreading after it has reached a node (such as antidotes). We assume that both preventive and corrective resources have an associated cost and study the problem of finding the cost-optimal distribution of resources throughout the nodes of the network. We analyze these questions in the context of viral spreading processes in directed networks. We study the following two problems: (i) Given a fixed budget, find the optimal allocation of preventive and corrective resources in the network to achieve the highest level of containment, and (ii) when a budget is not specified, find the minimum budget required to control the spreading process. We show that both resource allocation problems can be solved in polynomial time using Geometric Programming (GP) for arbitrary directed graphs of nonidentical nodes and a wide class of cost functions. Furthermore, our approach allows to optimize simultaneously over both preventive and corrective resources, even in the case of cost functions being node-dependent. We illustrate our approach by designing optimal protection strategies to contain an epidemic outbreak that propagates through an air transportation network
    corecore