15 research outputs found

    DTB-MAC: Dynamic Token-Based MAC Protocol for reliable and efficient beacon broadcasting in VANETs

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Most applications developed for vehicular environments rely on broadcasting as the main mechanism to disseminate their messages. However, in IEEE 802.11p, which is the most widely accepted MAC protocol for vehicular communications, all transmissions remain unacknowledged if broadcasting is used. Furthermore, safety message transmission requires a strict delay limit and a high reliability, which is an issue for random access MAC protocols like IEEE 802.11p. Therefore, transmission reliability becomes the most important issue for broadcast-based services in vehicular environments. In this paper, we propose a hybrid MAC protocol, referred as Dynamic Token-Based MAC Protocol (DTB-MAC). DTB-MAC uses both a token passing mechanism and a random access MAC protocol to prevent channel contention as much as possible, and to improve the reliability of safety message transmissions. Our proposed protocol tries to select the best neighbouring node as the next transmitter, and when it is not possible, or when it causes a high overhead, the random access MAC protocol is used instead. Based on simulation experiments, we show that the DTB-MAC protocol can achieve better performance compared with IEEE802.11p in terms of channel utilization and beacon delivery ratio.This work was partially supported by the Ministerio de Ciencia e Innovación, Spain, under Grant TIN2011-27543-C03-01.Balador, A.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2015). DTB-MAC: Dynamic Token-Based MAC Protocol for reliable and efficient beacon broadcasting in VANETs. IEEE. https://doi.org/10.1109/CCNC.2015.7157955

    Providing Real-time Driver Advisories in Connected Vehicles: A Data-Driven Approach Supported by Field Experimentation

    Get PDF
    Approximately 94\% of the annual transportation crashes in the U.S. involve driver errors and violations contributing to the $1 Trillion losses in the economy. Recent V2X communication technologies enabled by Dedicated Short Range Communication (DSRC) and Cellular-V2X (C-V2X) can provide cost-effective solutions for many of these transportation safety applications and help reduce crashes up to 85%. This research aims towards two primary goals. First, understanding the feasibility of deploying V2V-based safety critical applications under the constraints of limited communication ranges and adverse roadway conditions. Second, to develop a prototype application for providing real-time advisories for hazardous driving behaviors and to notify neighboring vehicles using available wireless communication platform. Towards accomplishing the first goal, we have developed a mathematical model to quantify V2V communication parameters and constraints pertaining to a DSRC-based “Safe pass advisory” application and validated the theoretical model using field experiments by measuring the communication ranges between two oncoming vehicles. We also investigated the impacts of varying altitudes, vehicle-interior obstacles, and OBU placement on V2V communication reliability and its implications. Along the direction of the second goal, we derived a data-driven model to characterize the acceleration/deceleration profile of a regular passenger vehicle with respect to speed and throttle position. As a proof of concept demonstration, we implemented an IoT-based communication architecture for disseminating the hazardous driving alerts to vulnerable drivers through cellular and/or V2X communication infrastructure

    Analysis of hidden terminals effect on the performance of vehicular ad-hoc networks

    Get PDF
    Vehicular ad-hoc networks (VANETs) based on the IEEE 802.11p standard are receiving increasing attention for road safety provisioning. Hidden terminals, however, demonstrate a serious challenge in the performance of VANETs. In this paper, we investigate the effect of hidden terminals on the performance of one hop broadcast communication. The paper formulates an analytical model to analyze the effect of hidden terminals on the performance metrics such as packet reception probability (PRP), packet reception delay (PRD), and packet reception interval (PRI) for the 2-dimensional (2-D) VANET. To verify the accuracy of the proposed model, the analytical model-based results are compared with NS3 simulation results using 2-D highway scenarios. We also compare the analytical results with those from real vehicular network implemented using the commercial vehicle-to-everything (V2X) devices. The analytical results show high correlation with the results of both simulation and real network.This work was supported in part by IITP Grant through the Korean Government, under the development of wide area driving environment awareness and cooperative driving technology which are based on V2X wireless communication under grant R7117-19- 0164 and in part by the Center for Integrated Smart Sensors funded by the Ministry of Science, ICT & Future Planning as Global Frontier Project, South Korea (CISS-2019)
    corecore