2 research outputs found

    Relay-Based Blockage and Antenna Misalignment Mitigation in THz Wireless Communications

    Full text link
    The proliferation of wireless devices in recent years has caused a spectrum shortage, which led the scientific community to explore the potential of using terahertz (THz) communications. However, THz systems suffer from severe path attenuation, blockage, and antenna misalignment. In this paper, we present a relay-based blockage and antenna misalignment mitigation approach. In more detail, two relay selection policies are employed, namely best and random relay selection. The system performance under both policies is evaluated and compared in terms of average throughput and the probability that throughput of a link is below the quality of service (QoS) threshold, using Monte Carlo simulations. It was observed that the effect of both blockage and misalignment can be mitigated using relays. Moreover, the gain of using relaying to mitigate blockage is much more significant.Comment: 4 page, 4 figures, 6G summi

    Performance Evaluation of Reconfigurable Intelligent Surface Assisted D-band Wireless Communication

    Full text link
    In the recent years, the proliferation of wireless data traffic has led the scientific community to explore the use of higher unallocated frequency bands, such as the millimeter wave and terahertz (0.1-10 THz) bands. However, they are prone to blockages from obstacles laid in the transceiver path. To address this, in this work, the use of a reconfigurable-intelligent-surface (RIS) to restore the link between a transmitter (TX) and a receiver (RX), operating in the D-band (110-170 GHz) is investigated. The system performance is evaluated in terms of pathgain and capacity considering the RIS design parameters, the TX/RX-RIS distance and the elevation angles from the center of the RIS to the transceivers.Comment: 6 pages, 5 figures, accepted for presentation in IEEE 5G World Forum 202
    corecore