4,168 research outputs found

    Distributed Self-Concatenated Coding for Cooperative Communication

    No full text
    In this paper, we propose a power-efficient distributed binary self-concatenated coding scheme using iterative decoding (DSECCC-ID) for cooperative communications. The DSECCC-ID scheme is designed with the aid of binary extrinsic information transfer (EXIT) charts. The source node transmits self-concatenated convolutional coded (SECCC) symbols to both the relay and destination nodes during the first transmission period. The relay performs SECCC-ID decoding, where it mayor may not encounter decoding errors. It then reencodes the information bits using a recursive systematic convolutional (RSC) code during the second transmission period. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel concatenated encoder. At the destination node, three-component DSECCC-ID decoding is performed. The EXIT chart gives us an insight into operation of the distributed coding scheme, which enables us to significantly reduce the transmit power by about 3.3 dB in signal-to-noise ratio (SNR) terms, as compared with a noncooperative SECCC-ID scheme at a bit error rate (BER) of 10-5. Finally, the proposed system is capable of performing within about 1.5 dB from the two-hop relay-aided network’s capacity at a BER of 10-5 , even if there may be decoding errors at the relay

    Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying

    Full text link
    We study the problem of channel pairing and power allocation in a multichannel multihop relay network to enhance the end-to-end data rate. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. Given fixed power allocation to the channels, we show that channel pairing over multiple hops can be decomposed into independent pairing problems at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal, where each relay pairs its incoming and outgoing channels by their SNR order. For the joint optimization of channel pairing and power allocation under both total and individual power constraints, we show that the problem can be decoupled into two subproblems solved separately. This separation principle is established by observing the equivalence between sorting SNRs and sorting channel gains in the jointly optimal solution. It significantly reduces the computational complexity in finding the jointly optimal solution. It follows that the channel pairing problem in joint optimization can be again decomposed into independent pairing problems at each relay based on sorted channel gains. The solution for optimizing power allocation for DF relaying is also provided, as well as an asymptotically optimal solution for AF relaying. Numerical results are provided to demonstrate substantial performance gain of the jointly optimal solution over some suboptimal alternatives. It is also observed that more gain is obtained from optimal channel pairing than optimal power allocation through judiciously exploiting the variation among multiple channels. Impact of the variation of channel gain, the number of channels, and the number of hops on the performance gain is also studied through numerical examples.Comment: 15 pages. IEEE Transactions on Signal Processin

    Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying

    Full text link
    We study the problem of channel pairing and power allocation in a multichannel multihop relay network to enhance the end-to-end data rate. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. Given fixed power allocation to the channels, we show that channel pairing over multiple hops can be decomposed into independent pairing problems at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal, where each relay pairs its incoming and outgoing channels by their SNR order. For the joint optimization of channel pairing and power allocation under both total and individual power constraints, we show that the problem can be decoupled into two subproblems solved separately. This separation principle is established by observing the equivalence between sorting SNRs and sorting channel gains in the jointly optimal solution. It significantly reduces the computational complexity in finding the jointly optimal solution. It follows that the channel pairing problem in joint optimization can be again decomposed into independent pairing problems at each relay based on sorted channel gains. The solution for optimizing power allocation for DF relaying is also provided, as well as an asymptotically optimal solution for AF relaying. Numerical results are provided to demonstrate substantial performance gain of the jointly optimal solution over some suboptimal alternatives. It is also observed that more gain is obtained from optimal channel pairing than optimal power allocation through judiciously exploiting the variation among multiple channels. Impact of the variation of channel gain, the number of channels, and the number of hops on the performance gain is also studied through numerical examples.Comment: 15 pages. IEEE Transactions on Signal Processin

    Jointly Optimal Channel and Power Assignment for Dual-Hop Multi-channel Multi-user Relaying

    Full text link
    We consider the problem of jointly optimizing channel pairing, channel-user assignment, and power allocation, to maximize the weighted sum-rate, in a single-relay cooperative system with multiple channels and multiple users. Common relaying strategies are considered, and transmission power constraints are imposed on both individual transmitters and the aggregate over all transmitters. The joint optimization problem naturally leads to a mixed-integer program. Despite the general expectation that such problems are intractable, we construct an efficient algorithm to find an optimal solution, which incurs computational complexity that is polynomial in the number of channels and the number of users. We further demonstrate through numerical experiments that the jointly optimal solution can significantly improve system performance over its suboptimal alternatives.Comment: This is the full version of a paper to appear in the IEEE Journal on Selected Areas in Communications, Special Issue on Cooperative Networking - Challenges and Applications (Part II), October 201

    Enhancing Physical Layer Security in AF Relay Assisted Multi-Carrier Wireless Transmission

    Full text link
    In this paper, we study the physical layer security (PLS) problem in the dual hop orthogonal frequency division multiplexing (OFDM) based wireless communication system. First, we consider a single user single relay system and study a joint power optimization problem at the source and relay subject to individual power constraint at the two nodes. The aim is to maximize the end to end secrecy rate with optimal power allocation over different sub-carriers. Later, we consider a more general multi-user multi-relay scenario. Under high SNR approximation for end to end secrecy rate, an optimization problem is formulated to jointly optimize power allocation at the BS, the relay selection, sub-carrier assignment to users and the power loading at each of the relaying node. The target is to maximize the overall security of the system subject to independent power budget limits at each transmitting node and the OFDMA based exclusive sub-carrier allocation constraints. A joint optimization solution is obtained through duality theory. Dual decomposition allows to exploit convex optimization techniques to find the power loading at the source and relay nodes. Further, an optimization for power loading at relaying nodes along with relay selection and sub carrier assignment for the fixed power allocation at the BS is also studied. Lastly, a sub-optimal scheme that explores joint power allocation at all transmitting nodes for the fixed subcarrier allocation and relay assignment is investigated. Finally, simulation results are presented to validate the performance of the proposed schemes.Comment: 10 pages, 7 figures, accepted in Transactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT

    Enhancing wireless security via optimal cooperative jamming

    Get PDF
    In this work, we analyze the secrecy rate in a cooperative network, where a source node is assisted by relay nodes via cooperative jamming for delivering a secret message to the destination in the presence of an eavesdropper node. We consider the availability of both full and partial channel state information (CSI), and we take into account average power limitation at the relays as we formulate the rate maximization problem as a primal-dual problem. We derive the closed form solution for the full CSI case, and we show that the optimal solution allows the transmission of only one relay. For the partial CSI case, we define the concept of secrecy outage, where some of packets are intercepted by the eavesdropper, and we derive the secrecy outage probability and throughput in terms of average channel statistics. Due to the high nonlinearity of the secrecy throughput term, we propose a gradient update algorithm for obtaining the optimal power solutions for the partial CSI case. Our simulations demonstrate the gains of cooperative jamming over direct transmission for both full and partial CSI cases, where it is shown that the secrecy rate of the direct transmission is increased significantly, by %20−%80, when CJ is employed with our optimal power assignment algorithm

    Joint Source-Channel Cooperative Transmission over Relay-Broadcast Networks

    Full text link
    Reliable transmission of a discrete memoryless source over a multiple-relay relay-broadcast network is considered. Motivated by sensor network applications, it is assumed that the relays and the destinations all have access to side information correlated with the underlying source signal. Joint source-channel cooperative transmission is studied in which the relays help the transmission of the source signal to the destinations by using both their overheard signals, as in the classical channel cooperation scenario, as well as the available correlated side information. Decode-and-forward (DF) based cooperative transmission is considered in a network of multiple relay terminals and two different achievability schemes are proposed: i) a regular encoding and sliding-window decoding scheme without explicit source binning at the encoder, and ii) a semi-regular encoding and backward decoding scheme with binning based on the side information statistics. It is shown that both of these schemes lead to the same source-channel code rate, which is shown to be the "source-channel capacity" in the case of i) a physically degraded relay network in which the side information signals are also degraded in the same order as the channel; and ii) a relay-broadcast network in which all the terminals want to reconstruct the source reliably, while at most one of them can act as a relay.Comment: Submitted to IEEE Transactions on Information Theory, 201

    Distributed Relay Selection for Heterogeneous UAV Communication Networks Using A Many-to-Many Matching Game Without Substitutability

    Full text link
    This paper proposes a distributed multiple relay selection scheme to maximize the satisfaction experiences of unmanned aerial vehicles (UAV) communication networks. The multi-radio and multi-channel (MRMC) UAV communication system is considered in this paper. One source UAV can select one or more relay radios, and each relay radio can be shared by multiple source UAVs equally. Without the center controller, source UAVs with heterogeneous requirements compete for channels dominated by relay radios. In order to optimize the global satisfaction performance, we model the UAV communication network as a many-to-many matching market without substitutability. We design a potential matching approach to address the optimization problem, in which the optimizing of local matching process will lead to the improvement of global matching results. Simulation results show that the proposed distributed matching approach yields good matching performance of satisfaction, which is close to the global optimum result. Moreover, the many-to-many potential matching approach outperforms existing schemes sufficiently in terms of global satisfaction within a reasonable convergence time.Comment: 6 pages, 4 figures, conferenc
    corecore