27,154 research outputs found

    Capacity Results for Relay Channels with Confidential Messages

    Full text link
    We consider a communication system where a relay helps transmission of messages from {a} sender to {a} receiver. The relay is considered not only as a helper but as a wire-tapper who can obtain some knowledge about transmitted messages. In this paper we study a relay channel with confidential messages(RCC), where a sender attempts to transmit common information to both a receiver and a relay and also has private information intended for the receiver and confidential to the relay. The level of secrecy of private information confidential to the relay is measured by the equivocation rate, i.e., the entropy rate of private information conditioned on channel outputs at the relay. The performance measure of interest for the RCC is the rate triple that includes the common rate, the private rate, and the equivocation rate as components. The rate-equivocation region is defined by the set that consists of all these achievable rate triples. In this paper we give two definitions of the rate-equivocation region. We first define the rate-equivocation region in the case of deterministic encoder and call it the deterministic rate-equivocation region. Next, we define the rate-equivocation region in the case of stochastic encoder and call it the stochastic rate-equivocation region. We derive explicit inner and outer bounds for the above two regions. On the deterministic/stochastic rate-equivocation region we present two classes of relay channels where inner and outer bounds match. We also evaluate the deterministic and stochastic rate-equivocation regions of the Gaussian RCC.Comment: 31 pages, 8 figure

    On the Capacity Region of the Deterministic Y-Channel with Common and Private Messages

    Full text link
    In multi user Gaussian relay networks, it is desirable to transmit private information to each user as well as common information to all of them. However, the capacity region of such networks with both kinds of information is not easy to characterize. The prior art used simple linear deterministic models in order to approximate the capacities of these Gaussian networks. This paper discusses the capacity region of the deterministic Y-channel with private and common messages. In this channel, each user aims at delivering two private messages to the other two users in addition to a common message directed towards both of them. As there is no direct link between the users, all messages must pass through an intermediate relay. We present outer-bounds on the rate region using genie aided and cut-set bounds. Then, we develop a greedy scheme to define an achievable region and show that at a certain number of levels at the relay, our achievable region coincides with the upper bound. Finally, we argue that these bounds for this setup are not sufficient to characterize the capacity region.Comment: 4 figures, 7 page

    Using Network Coding to Achieve the Capacity of Deterministic Relay Networks with Relay Messages

    Full text link
    In this paper, we derive the capacity of the deterministic relay networks with relay messages. We consider a network which consists of five nodes, four of which can only communicate via the fifth one. However, the fifth node is not merely a relay as it may exchange private messages with the other network nodes. First, we develop an upper bound on the capacity region based on the notion of a single sided genie. In the course of the achievability proof, we also derive the deterministic capacity of a 4-user relay network (without private messages at the relay). The capacity achieving schemes use a combination of two network coding techniques: the Simple Ordering Scheme (SOS) and Detour Schemes (DS). In the SOS, we order the transmitted bits at each user such that the bi-directional messages will be received at the same channel level at the relay, while the basic idea behind the DS is that some parts of the message follow an indirect path to their respective destinations. This paper, therefore, serves to show that user cooperation and network coding can enhance throughput, even when the users are not directly connected to each other.Comment: 12 pages, 5 figures, submitted to IEEE JSAC Network codin

    The Deterministic Capacity of Relay Networks with Relay Private Messages

    Full text link
    We study the capacity region of a deterministic 4-node network, where 3 nodes can only communicate via the fourth one. However, the fourth node is not merely a relay since it can exchange private messages with all other nodes. This situation resembles the case where a base station relays messages between users and delivers messages between the backbone system and the users. We assume an asymmetric scenario where the channel between any two nodes is not reciprocal. First, an upper bound on the capacity region is obtained based on the notion of single sided genie. Subsequently, we construct an achievable scheme that achieves this upper bound using a superposition of broadcasting node 4 messages and an achievable "detour" scheme for a reduced 3-user relay network.Comment: 3 figures, accepted at ITW 201

    State-Dependent Relay Channel with Private Messages with Partial Causal and Non-Causal Channel State Information

    Full text link
    In this paper, we introduce a discrete memoryless State-Dependent Relay Channel with Private Messages (SD-RCPM) as a generalization of the state-dependent relay channel. We investigate two main cases: SD-RCPM with non-causal Channel State Information (CSI), and SD-RCPM with causal CSI. In each case, it is assumed that partial CSI is available at the source and relay. For non-causal case, we establish an achievable rate region using Gel'fand-Pinsker type coding scheme at the nodes informed of CSI, and Compress-and-Forward (CF) scheme at the relay. Using Shannon's strategy and CF scheme, an achievable rate region for causal case is obtained. As an example, the Gaussian version of SD-RCPM is considered, and an achievable rate region for Gaussian SD-RCPM with non-causal perfect CSI only at the source, is derived. Providing numerical examples, we illustrate the comparison between achievable rate regions derived using CF and Decode-and-Forward (DF) schemes.Comment: 5 pages, 2 figures, to be presented at the IEEE International Symposium on Information Theory (ISIT 2010), Austin, Texas, June 201

    Incremental Relaying for the Gaussian Interference Channel with a Degraded Broadcasting Relay

    Full text link
    This paper studies incremental relay strategies for a two-user Gaussian relay-interference channel with an in-band-reception and out-of-band-transmission relay, where the link between the relay and the two receivers is modelled as a degraded broadcast channel. It is shown that generalized hash-and-forward (GHF) can achieve the capacity region of this channel to within a constant number of bits in a certain weak relay regime, where the transmitter-to-relay link gains are not unboundedly stronger than the interference links between the transmitters and the receivers. The GHF relaying strategy is ideally suited for the broadcasting relay because it can be implemented in an incremental fashion, i.e., the relay message to one receiver is a degraded version of the message to the other receiver. A generalized-degree-of-freedom (GDoF) analysis in the high signal-to-noise ratio (SNR) regime reveals that in the symmetric channel setting, each common relay bit can improve the sum rate roughly by either one bit or two bits asymptotically depending on the operating regime, and the rate gain can be interpreted as coming solely from the improvement of the common message rates, or alternatively in the very weak interference regime as solely coming from the rate improvement of the private messages. Further, this paper studies an asymmetric case in which the relay has only a single single link to one of the destinations. It is shown that with only one relay-destination link, the approximate capacity region can be established for a larger regime of channel parameters. Further, from a GDoF point of view, the sum-capacity gain due to the relay can now be thought as coming from either signal relaying only, or interference forwarding only.Comment: To appear in IEEE Trans. on Inf. Theor

    Optimal Coding Functions for Pairwise Message Sharing on Finite-Field Multi-Way Relay Channels

    Full text link
    This paper considers the finite-field multi-way relay channel with pairwise message sharing, where multiple users exchange messages through a single relay and where the users may share parts of their source messages (meaning that some message parts are known/common to more than one user). In this paper, we design an optimal functional-decode-forward coding scheme that takes the shared messages into account. More specifically, we design an optimal function for the relay to decode (from the users on the uplink) and forward (back to the users on the downlink). We then show that this proposed function-decode-forward coding scheme can achieve the capacity region of the finite-field multi-way relay channel with pairwise message sharing. This paper generalizes our previous result for the case of three users to any number of users.Comment: Author's final version (accepted for presentation at the 2014 IEEE International Conference on Communications [ICC 2014]
    • …
    corecore