The class of orthogonal relay channels in which the orthogonal channels
connecting the source terminal to the relay and the destination, and the relay
to the destination, depend on a state sequence, is considered. It is assumed
that the state sequence is fully known at the destination while it is not known
at the source or the relay. The capacity of this class of relay channels is
characterized, and shown to be achieved by the partial
decode-compress-and-forward (pDCF) scheme. Then the capacity of certain binary
and Gaussian state-dependent orthogonal relay channels are studied in detail,
and it is shown that the compress-and-forward (CF) and
partial-decode-and-forward (pDF) schemes are suboptimal in general. To the best
of our knowledge, this is the first single relay channel model for which the
capacity is achieved by pDCF, while pDF and CF schemes are both suboptimal.
Furthermore, it is shown that the capacity of the considered class of
state-dependent orthogonal relay channels is in general below the cut-set
bound. The conditions under which pDF or CF suffices to meet the cut-set bound,
and hence, achieve the capacity, are also derived.Comment: This paper has been accepted by IEEE Transactions on Information
Theor