911 research outputs found

    Relaxations of the satisfiability problem using semidefinite programming

    Get PDF
    We derive a semidefinite relaxation of the satisfiability (SAT) problem and discuss its strength. We give both the primal and dual formulation of the relaxation. The primal formulation is an eigenvalue optimization problem, while the dual formulation is a semidefinite feasibility problem. It is shown that using the relaxation, the notorious pigeon hole and mutilated chessboard problems are solved in polynomial time. As a byproduct we find a new `sandwich' theorem that is similar to Lov'asz' famous varthetavartheta-function. Furthermore, using the semidefinite relaxation 2SAT problems are solved. By adding an objective function to the dual formulation, a specific class of polynomially solvable 3SAT instances can be identified. We conclude with discussing how the relaxation can be used to solve more general SAT problems and some empirical observations

    Low-rank semidefinite programming for the MAX2SAT problem

    Full text link
    This paper proposes a new algorithm for solving MAX2SAT problems based on combining search methods with semidefinite programming approaches. Semidefinite programming techniques are well-known as a theoretical tool for approximating maximum satisfiability problems, but their application has traditionally been very limited by their speed and randomized nature. Our approach overcomes this difficult by using a recent approach to low-rank semidefinite programming, specialized to work in an incremental fashion suitable for use in an exact search algorithm. The method can be used both within complete or incomplete solver, and we demonstrate on a variety of problems from recent competitions. Our experiments show that the approach is faster (sometimes by orders of magnitude) than existing state-of-the-art complete and incomplete solvers, representing a substantial advance in search methods specialized for MAX2SAT problems.Comment: Accepted at AAAI'19. The code can be found at https://github.com/locuslab/mixsa

    A hybrid constraint programming and semidefinite programming approach for the stable set problem

    Full text link
    This work presents a hybrid approach to solve the maximum stable set problem, using constraint and semidefinite programming. The approach consists of two steps: subproblem generation and subproblem solution. First we rank the variable domain values, based on the solution of a semidefinite relaxation. Using this ranking, we generate the most promising subproblems first, by exploring a search tree using a limited discrepancy strategy. Then the subproblems are being solved using a constraint programming solver. To strengthen the semidefinite relaxation, we propose to infer additional constraints from the discrepancy structure. Computational results show that the semidefinite relaxation is very informative, since solutions of good quality are found in the first subproblems, or optimality is proven immediately.Comment: 14 page

    Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization

    Full text link
    The purpose of this note is to survey a methodology to solve systems of polynomial equations and inequalities. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions. We are particularly interested in problems arising in combinatorial optimization.Comment: 28 pages, survey pape
    • …
    corecore