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ABSTRACT

We derive a semidefinite relaxation of the satisfiability (SAT) problem and discuss its strength. We

give both the primal and dual formulation of the relaxation. The primal formulation is an eigenvalue

optimization problem, while the dual formulation is a semidefinite feasibility problem. It is shown that

using the relaxation, the notorious pigeon hole and mutilated chessboard problems are solved in polynomial

time. As a byproduct we find a new ‘sandwich’ theorem that is similar to Lovász’ famous ϑ-function.

Furthermore, using the semidefinite relaxation 2SAT problems are solved. By adding an objective function

to the dual formulation, a specific class of polynomially solvable 3SAT instances can be identified. We

conclude with discussing how the relaxation can be used to solve more general SAT problems and some

empirical observations.
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1. Introduction

The satisfiability problem of propositional logic (SAT) is the original NP complete prob-
lem [5]. Many algorithms for SAT have been developed, both complete and incomplete; see
for an overview [13]. Most of the incomplete algorithms are aimed at proving satisfiability;
using some hillclimb strategy a satisfying solution is sought, and if one is found the algo-
rithm terminates; if no solutions are found, no definite answers about the (un)satisfiability
of the formula can be given. In this paper we are primarily concerned with developing an
(incomplete) algorithm for detecting unsatisfiability. It is based on elliptic approximations
of propositional formulas. Elliptic approximations of propositional formulas were first intro-
duced by van Maaren [20, 19]. Since then they have been used to recognize polynomially
solvable instances of satisfiability [29] and to derive effective branching rules and relative
clause–weightings [21, 30]. Here they are used to derive sufficient conditions for unsatisfia-
bility of a formula. This condition can be expressed in terms of an eigenvalue optimization
problem, which in turn can be cast as a semidefinite program (see e.g. [28, 8]). Semidefinite
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programming is a generalization of linear programming, and can be solved in polynomial
time (to a given accuracy). Recently, much attention has been devoted to this field. Using
semidefinite programming, efficient approximation algorithms to various hard combinatorial
optimization problems have been developed, including the maximum–satisfiability problem
[12, 11, 26, 16]. Using duality theory, we show that the dual of our formulation is a semidef-
inite feasibility problem, which is related to the formulation used by Karloff and Zwick for
3SAT formulas [16]. However, it is our aim to use it for proving unsatisfiability rather than
finding approximate MAX–SAT solutions. We show that using the relaxation the notorious
pigeon hole problems are solved in polynomial time in a truly automated way; i.e. without
additional problem–specific tricks. As a byproduct, we obtain a new ‘sandwich theorem’ that
is similar to Lovász’ famous ϑ-function [18]. Furthermore, we show that it is complete for
2SAT formulas, and we indicate how it can be used to help solving 3SAT problems. In par-
ticular, a certain class of polynomially solvable 3SAT formulas can be recognized by adding
an objective function to the dual formulation [23, 29].

This paper is organized as follows. In the next section we discuss the preliminaries and no-
tation, and give a brief introduction to semidefinite programming. Subsequently, we derive a
semidefinite relaxation of the satisfiability problem, derive its dual formulation and mention
a number of properties. In Sections 4, 5 and 6 the strength of the relaxation is investigated
by considering several subclasses of satisfiability problems, namely 2SAT problems, a class of
covering problems (to which the pigeon hole and mutilated chess board problem belong) and
3SAT problems. We conclude with some empirical observations and suggestions for further
research.

2. Preliminaries and notation

2.1 The SAT problem
We consider the satisfiability problem in conjunctive normal form (CNF). A propositional
formula Φ in CNF is a conjunction of clauses, where each clause Ck is a disjunction of literals.
Each literal is an atomic proposition (or variable) or its negation (¬). Let m be the number of
clauses and n the number of atomic propositions. A clausal propositional formula is denoted
as Φ = C1 ∧C2 ∧ . . . ∧Cm, where each clause Ck is of the form

Ck =
∨
i∈Ik

pi ∨
∨
j∈Jk

¬pj,

with Ik, Jk ⊆ {1, . . . , n} disjoint. The satisfiability problem of propositional logic is to
determine whether or not an assignment of truth values to the variables exists such that each
clause evaluates to true (i.e. one of its literals is true) and thus the formula is true.

Associating a {−1, 1}–variable xi with each proposition letter pi, a clause Ck can be written
as a linear inequality in the following way.

Ck(x) =
∑
i∈Ik

xi −
∑
j∈Jk

xj ≥ 2− `(Ck), (2.1)

where `(Ck) denotes the length of clause k, i.e. `(Ck) = |Ik ∪ Jk|. Using matrix notation,
the integer linear programming formulation of the satisfiability problem can be stated as

(IPSAT ) find x ∈ {−1, 1}n such that Ax ≥ b.
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The matrix A ∈ IRm×n is called the clause–variable matrix. We have that aTk x = Ck(x),
where aTk denotes the kth row of A. Obviously, aki = 1 if i ∈ Ik, aki = −1 if i ∈ Jk, while
aki = 0 for any i /∈ Ik ∪ Jk. Furthermore, bk = 2− `(Ck).

Note that in general it is not possible to solve integer linear programming problems in a
direct fashion. The most common approach is to relax the integrality constraints to linear
constraints (i.e. x ∈ {−1, 1} is relaxed to −1 ≤ x ≤ 1), and subsequently solve the resulting
LP relaxation. Unfortunately, the LP relaxation of (IPSAT ) is weak; it is easily checked that
the trivial all–zero solution is always feasible when no unit clauses are present. By introducing
some objective function the solution can be steered away from the trivial one, in the hope
that an incumbent solution may be found by rounding the solution to the LP relaxation. A
specific kind of roundable solutions is the so–called linear autarky; this is discussed in Section
4. For deciding unsatisfiability however, the above LP relaxation is virtually useless (note
that an alternative LP relaxation, namely the one based on polynomial representations of
SAT problems, is capable of proving unsatisfiability rather than satisfiability [31]).

2.2 Semidefinite programming
Recently much attention has been devoted to the field of semidefinite programming. It was
shown that efficient approximation algorithms for hard combinatorial optimization problems
can be obtained using semidefinite relaxations [12, 1], while there are also applications in
control theory [28]. Using interior point methods, semidefinite programs can be solved (to
a given accuracy) in polynomial time. For the reader that is unfamiliar with semidefinite
programming, we review some of the basic concepts.

The standard primal (P) and dual (D) semidefinite programming formulations can be denoted
by (see e.g. [8])

(P)

inf TrCX

s.t. TrAiX = bi, 1 ≤ i ≤ m

X � 0.

(D)

sup bT y

s.t
m∑
i=1

yiAi + S = C,

S � 0.

In the above programs, the Ai, C, X and S are symmetric real (n× n)–matrices and b and
y are m–vectors. The matrix X denotes the primal decision variables, while (S, y) are the
dual decision variables; the constraint X � 0 (resp. S � 0) indicates that X (resp. S) must
be positive semidefinite. Positive semidefiniteness of a matrix can be characterized in several
ways (see e.g. [24]). A symmetric real matrix A ∈ IRn×n is said to be positive semidefinite
if (i) xTAx ≥ 0 for all x ∈ IRn, (ii) all the eigenvalues of A are nonnegative, (iii) there
exists a matrix R of full column rank such that A = RTR. Furthermore, Tr denotes the
trace–operator. The trace of a matrix A is equal to the sum of its diagonal elements. A useful
easy–to–check property of the trace operator is TrAB = TrBA, where A and B are matrices
of appropriate sizes. Also, the trace of a matrix is equal to the sum of its eigenvalues.

For the pair (P,D) weak duality holds, i.e. bT y ≤ TrCX for any pair of feasible solutions.
Perfect duality (i.e. inf TrCX = sup bT y) holds if one of (P) and (D) is strictly feasible; (P)
(resp. (D)) is strictly feasible if a strictly interior solution X � 0 (resp. S � 0) exists. Then
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infeasibility of one implies unboundedness of the other and vice versa. Strong duality holds
when both (P) and (D) are strictly feasible; then the optimal solution (X,S) exists and is
complementary. As stated before, the primal–dual pair (P,D) can be solved in polynomial
time using an interior point algorithm.

3. A semidefinite relaxation of the SAT problem

3.1 Elliptic representations and approximations
In [19] elliptic approximations for satisfiability problems are introduced. Let us note that
each individual clause has its own elliptic representation, given by

Ek = {x ∈ IRn | (aTk x− 1)2 ≤ (`(Ck)− 1)2}. (3.1)

It is easy to check that any assignment x ∈ {−1, 1}n satisfying clause Ck lies in the interior
or on the boundary of Ek, since for such an assignment it holds that −`(Ck) + 2 ≤ aTk x ≤
`(Ck). On the other hand if x does not satisfy clause Ck it lies outside of Ek (since then
aTk x = −`(Ck)). Note that in the case that `(Ck) ≤ 2 the inequality in (3.1) may be replaced
by equality.

Thus, basically the satisfiability problem can be expressed as finding a {−1, 1} vector x lying
in the intersection of m ellipsoids, i.e.

x ∈
m⋂
k=1

Ek ∩ {−1, 1}n.

However, it is hard to characterize the intersection of two or more ellipsoid explicitly, so we
need to find another way to aggregate the information contained in the m separate ellipsoids.
It appears plausible to take the sum over all these ellipsoids; this again yields an ellipsoid.
Unfortunately, during summation the discriminative properties of the separate ellipsoids are
partly lost, therefore we speak of an approximation of a propositional formula. Associating a
nonnegative weight wk with each individual clause, we obtain the following ellipsoid.

E(w) = {x ∈ IRn | xTATWAx− 2wTAx ≤ rTw}, (3.2)

where w ∈ IRm, W = diag(w) and rk = `(Ck)(`(Ck)− 2).

Note that x ∈ E(w), for all w ≥ 0, is a necessary (but not sufficient) condition for any
x ∈ {−1, 1}n to be a satisfying assignment; for 2SAT it is also a sufficient condition. Let us
state this in a lemma.

Lemma 3.1 Let Φ be a CNF formula. If x ∈ {−1, 1}n is a satisfying assignment of Φ, then
x ∈ E(w) for any w ≥ 0.

3.2 A sufficient condition for unsatisfiability
Let us again consider (3.2). By Lemma 3.1, for any satisfying assignment x ∈ {−1, 1}n it
must hold that

xTATWAx− 2wTAx− rTw ≤ 0, (3.3)

for all w ≥ 0. Thus, we have a necessary condition for satisfiability. Reversing this argument
gives us a sufficient condition for unsatisfiability.
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Lemma 3.2 Let Φ be a CNF formula. If for some w ≥ 0 it holds that x /∈ E(w) for all
x ∈ {−1, 1}n, then Φ is unsatisfiable.

To illustrate the usefulness of this approach let us briefly consider an example.

Example We consider the well known pigeon hole formulas, which can be stated as follows:

Given h + 1 pigeons and h holes, decide whether it is possible to put each pigeon in at least
one hole, while no two pigeons may be put in the same hole.

For more details on this problem and its SAT encoding see Section 5. The set of clauses in
such a formula can be divided into a set of long clauses and a set of short clauses. It can
be shown that for the instance with h holes and h + 1 pigeons, when all long clauses are
given a weight of one, and all short clauses a weight of h − 1 + 2

h+1 , the minimal value of
(3.3) over the sphere xTx = n (this is a relaxation of the integrality constraints) is equal to
4(h−1+ 1

h+1) > 0. These values can be explicitly computed by using the specific structure of
the eigenspace of the matrix ATWA associated with the pigeon hole formulas. Thus, even us-
ing a low dimensional weight vector, pigeon hole formulas can be shown to be contradictory.2

Now it must be our aim to try to formulate an optimization problem for finding a set of weights
with the desired property in an automated way. To this end we rewrite (3.3). Introducing
an additional Boolean variable xn+1 ∈ {−1, 1} we obtain the inequality

xTATWAx− 2xn+1w
TAx− rTw ≤ 0. (3.4)

Once again, if Φ is satisfiable then inequality (3.4) is satisfied by some {x1, . . . , xn+1} ∈
{−1, 1}n+1 for all w ≥ 0.

We can rewrite condition (3.4) as x̃TQ(w)x̃ ≤ 0, where x̃ := [x1, . . . , xn, xn+1] and Q(w) is
the (n+ 1)× (n+ 1) matrix:

Q(w) :=

 ATWA− rTw
n I −ATw

−wTA 0

 .
We can further add a so-called correcting vector u ∈ IRn to Q to obtain

Q̃(w, u) :=

 ATWA− rTw
n I − diag (u) −ATw

−wTA eTu

 .
Note that x̃TQ(w)x̃ = x̃T Q̃(w, u)x̃ because x̃ ∈ {−1, 1}n+1.

Following Lemma 3.2 we are interested in minimizing xT Q̃(w, u)x over the n+1–dimensional
{−1, 1}–vectors. In particular, if the optimal value to this problem is positive for some w ≥ 0
and u then Φ cannot be satisfiable; so we want to maximize it over u and w. Relaxing the
integrality constraint to a single spherical constraint xTx = n + 1, a lower bound of this
problem is given by the minimal eigenvalue of Q̃(w, u) multiplied by the squared norm of x.
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So we are facing the problem of maximizing the minimal eigenvalue of Q̃(w, u). This can be
expressed as a semidefinite programming problem:

(P)

sup (n+ 1)λ

s.t. Q̃(w, u) � λI,

w ≥ 0.

We call the optimal value of this optimization problem the gap of formula Φ.

Definition 3.1 The gap of a formula Φ is defined as the optimal value of the optimization
problem (P).

gap(Φ) := sup
w≥0,u

(n+ 1)λmin

(
Q̃(w, u)

)
.

Thus, by Lemma 3.2, we have the following corollary.

Corollary 3.1 If a formula Φ has a positive gap, it is unsatisfiable.

We will show that the converse is also true if Φ is a 2–SAT formula. Furthermore, the
formulas corresponding to a specific type of covering problems, which include the notorious
pigeon hole problems and mutilated chess boards, have a positive gap.

3.3 The dual relaxation
The Lagrangian dual of the optimization problem (P) can be simplified to the following
semidefinite feasibility problem:

(D)

find Y ∈ IRn×n, y ∈ IRn

s.t. aTk Y ak − 2aTk y ≤ rk, 1 ≤ k ≤ m,

diag(Y ) = e,

Y � yyT .

To see that (D) is indeed the dual of (P), note that the constraint on the diagonal of Y is
follows by dualizing the correcting vector, while the first set of constraints is obtained by
rewriting the condition

Tr

 aka
T
k −

rk
n I −ak

−aTk 0

 Y y

yT 1

 ≤ 0,

and using that diag(Y ) = e. The semidefinite constraint follows using the Schur complement
reformulation:  Y y

yT 1

 � 0⇔ Y − yyT � 0.
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Note that (D) can be derived from the elliptic approximations of clauses in a more direct
way; in fact it can be seen to be the ‘standard’ SDP relaxation of the conditions (3.1) as
follows. Expanding (3.1), we obtain aTk xx

Tak − 2aTk x ≤ rk. This equation can be linearized
by replacing the variables xi by vectors vi ∈ IRn+1 with the additional requirement that
‖vi‖ = 1, adding a homogenizing vector v0, and letting Y = V TV and y = V T v0 (here V
is the matrix with the vectors vi as columns). The constraint on the diagonal of Y follows
immediately, and the semidefinite constraint follows using that [V v0]T [V v0] � 0 and the
Schur complement.

Furthermore, note that (D) is closely related to MAX3SAT relaxation proposed by Karloff
and Zwick [16]. It appears to be slightly weaker, since in their formulation the constraints
are further disaggregated; see also Section 7. In addition, we are only interested in proving
unsatisfiability, rather than in MAX–SAT solutions.

3.4 Some properties of the gap
Let us now consider (P) and (D) to derive some easy properties of the gap. If (D) is infeasible,
then the associated formula Φ must be unsatisfiable. This observation also follows from the
perfect duality relation which holds for (P) and (D): if (D) is infeasible then the primal (P)
is unbounded (gap(Φ) =∞ > 0) which implies that Φ is unsatisfiable. It may be noted that
perfect duality holds for (P) and (D) because (P) is always strictly feasible. Let us state this
in a lemma.

Lemma 3.3 Given a formula Φ. It holds that gap (Φ) is either zero or infinity. If gap(Φ) =
∞, then Φ is unsatisfiable.

Furthermore, the gap is in a sense monotone.

Lemma 3.4 Let Φ be a CNF–formula and let Ψ ⊆ Φ. Then it holds that gap(Ψ) ≤ gap(Φ).

Proof: Consider (P). Add to (P) the constraints that wk = 0 for all clauses Ck which occur
only in Φ. Solving this modified version of (P), gap(Ψ) is obtained. Obviously, it is a more
restricted version of gap(Φ), so the lemma follows. 2

This leads immediately to the following easy corollary.

Corollary 3.2 The gap is monotone under unit resolution.

Proof: Unit resolution can be regarded as the addition of unit clauses to a formula. By the
previous lemma, the gap cannot decrease. 2

In the next sections the gap for some specific SAT problems is considered.

4. The gap for 2SAT problems

In this section we prove that gap(Φ) = ∞ if Φ is an unsatisfiable 2SAT formula. It is well
known that 2SAT problems are in fact solvable in linear time [2]. Furthermore, Goemans and
Williamson [12] and Feige and Goemans [11] gave approximation algorithms with performance
guarantee for the MAX2SAT problem, based on semidefinite programming. So it is not our
aim to improve on any of the above algorithms; we merely want to show some properties of
the gap approach. To this end we first characterize infeasibility of 2SAT formulas.
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Definition 4.1 (Autarky) [22, 17] Let Φ be any CNF formula. A vector z 6= 0 is called a
linear autarky of Φ if Az ≥ 0.

Lemma 4.1 An autarky z indicates a satisfiable subformula Ψ of Φ. The formula Φ\Ψ is
satisfiability equivalent to Φ.

Proof: For each linear inequality one of two possibilities is applicable:

1. All zi = 0, i ∈ Ik ∪ Jk (so aTk z = 0).

2. At least one zi 6= 0, i ∈ Ik ∪ Jk (so aTk z ≥ 0).

In the second case, aTk sgn(z) ≥ 2−|Ik∪Jk| = bk, implying that sgn(z) restricted to its nonzero
entries is a satisfying assignment for the subformula Ψ that is obtained by taking all clauses
of Φ associated with linear inequalities with property 2. The formula Φ\Ψ is satisfiability–
equivalent to the original formula (i.e. it is satisfiable if and only if Φ is satisfiable). 2

We also make use of the notion of minimal unsatisfiability.

Definition 4.2 (Minimal unsatisfiability) An unsatisfiable CNF formula Φ is called min-
imally unsatisfiable if a satisfiable formula is obtained by omitting any given clause from Φ.

By Lemma 3.4 we can restrict ourselves to the case that Φ is a minimally unsatisfiable formula.

Lemma 4.2 If a formula Φ is minimally unsatisfiable, then Az 6≥ 0 for all 0 6= z ∈ IRn.

Proof: If the condition in this lemma does not hold, the formula has an autarky, contradicting
the fact that it is minimally unsatisfiable. 2

Corollary 4.1 If Φ is minimally unsatisfiable, then A is of full rank.

Now we can prove the key lemma of this section.

Lemma 4.3 Let Φ be a minimally unsatisfiable 2SAT formula. Then gap(Φ) =∞.

Proof: From the semidefinite constraint we conclude that aTY a ≥ (aT y)2 for any vector a.
This implies that

(aTk y)2 − 2aTk y ≤ aTk Y ak − 2aTk y ≤ rk ≡ 0

since rk = 0 for 2SAT (for all k = 1, . . . ,m), from which it follows that 0 ≤ aTk y ≤ 2. The
minimal unsatisfiability of Φ implies that y = 0. So, aTk Y ak = 0 for all k = 1, . . . ,m. Since
Y � 0 the ak’s must lie in the nullspace of Y 1, and since A is of full rank (rank(A) = n)
this implies Y = 0, contradicting the condition diag (Y ) = e of (D). We conclude that (D) is
infeasible, implying that gap(Φ) =∞. 2

The main theorem of this section follows easily.
1Let Y = LLT , then 0 = aTk Y ak = ‖LT ak‖2, or LT ak = 0 which implies Y ak = 0.
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Theorem 4.1 Let Φ be any 2SAT formula. It holds

gap(Φ) =

 ∞ if Φ unsatisfiable;

0 if Φ satisfiable.

Proof: Let Φ be a unsatisfiable 2SAT formula and let Ψ be a minimally satisfiable subformula
of Φ. By Lemma 4.3, gap(Ψ) =∞, Lemma 3.4 implies that gap(Φ) =∞. Conversely, assume
now that Φ is a satisfiable 2SAT formula. Using any satisfying assignment x, a feasible
solution Y = xxT , y = x to (D) can be constructed, implying that gap(Φ) = 0. 2

If gap(Φ) = 0 we can use the dual solution (Y, y) to construct a satisfying assignment x.
First we set the entries of x corresponding to nonzero entries of y to x = sgn(y) from the
proof of Lemma 4.3 we know that y is an autarky. For all clauses that are not yet satisfied,
a satisfying assignment can be constructed by considering Y ∗, which denotes the matrix Y
restricted to the rows and columns corresponding to the zero entries of y. Note that aTk y = 0
implies that aTk Y ak = 0, so Yij = −akiakj where Ik ∪ Jk = {i, j}. So we can assume that
each of the rows and columns of Y ∗ contains an off-diagonal element that is equal to ±1.
Fixing all ±1 elements, such a matrix Y ∗ can be completed to a rank one {−1, 1} matrix
that is feasible in (D). From this matrix a {−1, 1} solution x can easily be deduced. This
construction is equivalent to the one given in [11].

5. The gap for a class of covering problems

In this section we consider SAT encodings of a particular class of covering problems, and
show that these can be shown to be contradictory by our SDP approach.

5.1 A specific class of covering problems
Let V be a set of n propositional variables. Let S = {S1, . . . , SN} and T = {T1, . . . , TM} be
sets of subsets of V . Both S and T form a partition of V . Furthermore, let us assume that
M < N . Consider the following CNF formula ΦCP .∨

i∈Sk

pi, 1 ≤ k ≤ N (5.1)

¬pi ∨ ¬pj, i, j ∈ Tk, i 6= j, 1 ≤ k ≤M. (5.2)

Let us now verify that this problem is unsatisfiable (when M < N), using cutting planes (this
construction is well known, see e.g. [6]). To this end we introduce some more notation. By
eS (eij) we denote the vector with ones in the positions i ∈ S (i and j) and zeros elsewhere.
The integer linear feasibility formulation can be stated as

(IPCP )

find x ∈ {−1, 1}n

s.t. eTSkx ≥ 2− |Sk|, 1 ≤ k ≤ N

eTijx ≤ 0, i, j ∈ Tk, i 6= j 1 ≤ k ≤M.

Obviously, it is easy to find a solution of the linear relaxation of this problem (i.e. when the
integrality constraints are relaxed to −e ≤ x ≤ e), by setting all variables to 0. However,



10

using cutting planes it can be shown that for {−1, 1}–variables, the set of inequalities for a
set Tk implies that

eTTkx ≤ 2− |Tk|, 1 ≤ k ≤M. (5.3)

A cutting plane is obtained by taking nonnegative combinations of the constraints, and
subsequently adjusting the right hand side of the resulting equality, such that it is as sharp
as possible. To determine this right hand side, it is used that we are dealing with binary
variables [4].

For completeness, it is shown how to derive (5.3). Taking a subset U ⊆ Tk, |U | = 3, and
summing the (three) inequalities associated with this set, the inequality 2eTUx ≤ 0 is obtained.
Since for any {−1, 1} vector x it holds that eTUx is odd, the right hand side may be rounded
down to the largest odd integer smaller than zero, thus we find that eTUx ≤ −1. More generally,
suppose we are given a set U ⊂ Tk and an inequality eTUx ≤ 2−|U |. In addition let j ∈ Tk\U ,
and denote U = U ∪ {j}. Summing for all i ∈ U the inequalities eTijx ≤ 0 (with weight 1)
and the initial inequality with weight |U | − 1, we obtain that |U |eT

U
x ≤ (|U | − 1)(2 − |U |).

Dividing both sides by |U |, and rounding the right hand side down to the nearest integer
with same parity as |U | (thus the right hand side becomes 1 − |U |, which is valid, since
((|U | − 1)/|U |)(2 − |U |) < 3− |U |) we obtain

eT
U
x ≤ 1− |U | = 2− |U |.

We conclude that (5.3) is indeed implied by the inequalities in (IPCP ).

Summing all the inequalities (5.3), and using that T partitions V , we find that −n ≤ eTx ≤
2M − n. Similarly, taking the sum over the first set of inequalities in (IPCP ), we have
2N − n ≤ eTx ≤ n. Combining, we get

2N ≤ eTx+ n ≤ 2M, (5.4)

from which it follows that N ≤M , implying the infeasibility of (IPCP ) and thus the unsatis-
fiability of ΦCP when M < N . We conclude that using this cutting plane technique, formulas
of the form ΦCP are solved in polynomial time.

Surprisingly, other techniques often require large running times to solve formulas of this
type. Indeed, Haken [14] proved that resolution requires a running time that is exponential
in the size of the formula to solve the pigeon hole formulas, which fit the format ΦCP (as
is shown below). Note that to find the cutting plane proof in an efficient way, additional
problem–specific information is required. It is our aim to show in this section that using our
semidefinite programming approach formulas of the format ΦCP are proved contradictory in
polynomial time, while no additional problem–specific information whatsoever is required.
Before proving this, let us first give two examples of problems that fit in this format.

Pigeon hole formulas Let us state again the pigeon hole principle:

Given h + 1 pigeons and h holes, decide whether it is possible to put each pigeon in at least
one hole, while no two pigeons may be put in the same hole.

We now argue that the standard encoding of the pigeon hole problem fits the format ΦCP .
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For each pigeon–hole pair a proposition is introduced; thus, we obtain a total of h(h + 1)
variables in the set V . The long (positive) clauses (5.1) now express that each pigeon is put
in at least one hole; thus there are exactly N = h+ 1 of such clauses that all have length h.
The short (negative) clauses (5.2) model that no two pigeons may be put in the same hole
simultaneously; for each hole there is a set of short clauses, giving rise to M = h separate
sets Tk, each of size h+ 1. It is easy to see that each proposition occurs both exactly once in
the sets Sk and exactly once in the sets Tk, thus both S and T are a partition of V .

Mutilated chess boards The problem of the mutilated chess board can be expressed as
follows:

Given a chess board of size 2s × 2s squares. Two of its diagonally opposite vertices are
removed. Can the resulting ‘mutilated’ chess board be covered by rectangular dominoes of size
2 × 1 (i.e. a single domino covers exactly two adjacent squares), such that each square is
covered exactly once?

The standard satisfiability coding for this problem is obtained by introducing a proposition
for each pair of adjacent squares; thus we need 4(2s2 − s − 1) variables. For each square
there is a positive clause (of length 2, 3 or 4) expressing that it must be covered at least
once, and a set of negative (2–)clauses expressing that it may be covered at most once. It
is strongly conjectured that resolution requires exponential running time on this problem
as well (despite the absence of ‘long’ clauses) [27]. Taking a subset of this set of clauses, a
formula of the form ΦCP is obtained. For all the black squares we keep the positive clauses,
while for all the white squares we only use the negative clauses. The first set corresponds
to (5.1) and the second set to (5.2). See also the graph in Figure 1; the nodes correspond
to individual variables, the drawn edges indicate the positive clauses (all cliques with drawn
edges constitute one positive clause) and the dotted edges the negative clauses (each pair of
nodes connected by a dotted edge corresponds to a negative clause). Again, it is easy to see
that each variable occurs in exactly one of the N = 2s2 positive clauses, and in exactly one
of the M = 2s2 − 2 sets of negative clauses.

Figure 1: The mutilated chess board for s = 2.
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Let us now consider the semidefinite relaxation of ΦCP . The SDP relaxation can be denoted
as (see also (D))

(SDCP )

find Y ∈ IRn×n, y ∈ IRn

s.t. eTSkY eSk − 2eTSky ≤ |Sk|(|Sk| − 2), 1 ≤ k ≤ N

eTijY eij + 2eTijy ≤ 0, i, j, i 6= j ∈ Tk, 1 ≤ k ≤M

diag(Y ) = e,

Y � yyT .

We prove the following Theorem.

Theorem 5.1 The semidefinite relaxation (SDCP ) of ΦCP is infeasible (if M < N). Equiv-
alently, gap(ΦCP ) =∞.

Proof: Note that from the semidefinite constraint it follows that aTY a ≥ (aT y)2 for any
n–vector a. Thus it follows that

(eTSky)2 − 2eTSky ≤ e
T
Sk
Y eSk − 2eTSky ≤ |Sk|(|Sk| − 2),

implying that

2− |Sk| ≤ eTSky ≤ |Sk|, 1 ≤ k ≤ N. (5.5)

Now we consider the inequalities corresponding to the sets Tk. Taking the sum over all the
inequalities corresponding to set Tk, k fixed, we find that

eTTkY eTk + (|Tk| − 2)eTTkdiag(Y ) + 2(|Tk| − 1)eTTky ≤ 0.

To verify this, note that each diagonal element Yii, i ∈ Tk, occurs in exactly |Tk| − 1 inequal-
ities; similarly, each linear term yi, i ∈ Tk, occurs in exactly |Tk| − 1 inequalities as well.
Simplifying this expression using that diag(Y ) = e, we obtain

eTTkY eTk + 2(|Tk| − 1)eTTky ≤ −|Tk|(|Tk| − 2).

Using the semidefinite constraint again, we conclude that

(eTTky)2 + 2(|Tk| − 1)eTTky ≤ e
T
Tk
Y eTk + 2(|Tk| − 1)eTTky ≤ −|Tk|(|Tk| − 2),

implying that
−|Tk| ≤ eTTky ≤ 2− |Tk|, 1 ≤ k ≤M.

Summing these inequalities we find that −n ≤ eT y ≤ 2M − n while from (5.5) we have that
2N − n ≤ eT y ≤ n, implying that 2N ≤ eT y + n ≤ 2M (note that this is equivalent to what
we obtained using cutting planes, see (5.4)). Thus we conclude that (SDCP ) is infeasible
when N > M . 2

Thus we have the following corollary.

Corollary 5.1 Pigeon hole formulas and the mutilated chess board problem have infinite gap,
and thus are proven to be contradictory in polynomial time.

It may be noted that the proof of Theorem 5.1 and the cutting plane refutation of ΦCP are
essentially very similar. Indeed, the cutting planes (5.3) are automatically implied in (SDCP ).
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5.2 Application to graph coloring
A famous result by Lovász is his ‘sandwich’ theorem [18], which states that for an undirected
graph G = (V,E) in polynomial time (using semidefinite programming), a number ϑ(G)
can be computed which is bounded from above by the graph’s coloring number γ(G) (i.e. the
minimal number of colors required to color the vertices of the graph such that no two adjacent
vertices have the same color), and from below by its clique number ω(G) (i.e. the maximal
complete subgraph of G). Applying our result from the previous section to the graph coloring
problem (GCP) we obtain a similar result.

Suppose we are given a graph G = (V,E) and a set of colors C. We introduce a proposition
for each vertex–color combination. Then the GCP can be modelled as a formula ΦGCP

containing a set of |V | long clauses, expressing that each vertex should be colored by at least
one color, and a set of short clauses expressing that no two vertices may get the same color.
We can construct the semidefinite relaxation of ΦGCP in the usual way; we refer to it as
(SDGCP ). Now let C∗ be the smallest set of colors for which (SDGCP ) is feasible. Such a
set must exist, since for |C∗| ≥ |V | the GCP and thus its relaxation (SDGCP ) are trivially
feasible. We have the following Theorem.

Theorem 5.2 It holds that ω(G) ≤ |C∗| ≤ γ(G).

Proof: First note for any set of color C with |C| < ω(G), ΦGCP has a subformula of the
form ΦCP , hence by Lemma 3.4 it has gap infinity. This subformula corresponds to the set
of clauses corresponding to a clique of size |C| + 1 or larger. Now consider set C∗. It holds
that |C∗| ≥ ω(G), since otherwise (SDGCP ) would be infeasible. Also, since removing one
color from C∗ implies infeasibility of (SDGCP ) (by assumption), it holds that |C∗| ≤ γ(G).
This proves the theorem. 2

So by applying a binary search on the size of C, a number similar to Lovász ϑ–number
can be computed. Obviously, ϑ(G) can be computed more efficiently. The dimension of
its associated semidefinite programming problem is |V |, where as the dimension of the gap
relaxation is |V ||C|. A relaxation of dimension n can be solved in O(

√
n) iterations, where

each iteration requires O(n3) operations, and its actual practical performance also depends
on the density of the graph under consideration. For graphs with relatively small coloring
number, say γ(G) = O(

√
n), the difference in computational efficiency might be acceptable.

Based on some experiments on random graphs, we can say that |C∗| and ϑ(G) give quite
different bounds on γ(G).

6. The gap for 3SAT problems

6.1 A modified formulation
So far we have seen that several classes of formulas can be solved by the gap approach. Let
us now turn our attention to the most general class of CNF formulas, the 3SAT problems.
First we have a negative result for pure 3SAT problems (the class of CNF formulas in which
all clauses have length 3).

Lemma 6.1 Suppose Φ is a pure 3SAT problem. It holds that gap (Φ) = 0.
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Proof: It is easy to verify that the solution Y = I, y = 0 is a feasible assignment of (D)
since aTk ak = 3 = rk for all clauses. By duality, gap(Φ) = 0. 2

So it is not possible to prove an unsatisfiable 3SAT formula to be contradictory straightaway.
Of course the gap can be computed in nodes of a branching tree; during the branching process
2–clauses are created, thus making it possible for the SDP approach to be successful in specific
cases. Note that (also) in this respect, the SDP approach is stronger than the LP approach (as
mentioned in Section 2.1). However, computing the gap is computationally rather expensive,
and especially in a DPLL–like branching algorithm (including unit resolution, although this
can be simulated by the semidefinite relaxation as well) [7] the overhead will be substantial
with the current state–of–the–art implementations. Several possibilities in this respect are
discussed in the next section.

For now, let us slightly reformulate our gap relaxation to be able to say a little more about
3SAT formulas. Consider again the elliptic representation Ek associated with a clause k (3.1).
By introducing a parity–variable, the inequality is turned into an equality constraint.

Epk = {x ∈ IRn, 0 ≤ sk ≤ 1 | (aTk x− 1)2 + 4sk = 4},

where for all feasible {−1, 1} assignments to x it holds that sk ∈ {0, 1}. The ellipsoid Epk has
the semidefinite relaxation

aTk Y ak − 2aTk y + 4sk = 3. (6.1)

Obviously, the trivial solution (Lemma 6.1), is still feasible when simply setting all sk to 0.
However, if we are now going to maximize the sum of the sk’s, an other solution than the
trivial solution may be obtained. Thus we define the parity gap. Consider the semidefinite
optimization problem (D’).

(D’)

max
m∑
k=1

sk

s.t. aTk Y ak − 2aTk y + 4sk = 3, 1 ≤ k ≤ m,

diag(Y ) = e,

Y � yyT ,

0 ≤ sk ≤ 1, 1 ≤ k ≤ m.

Definition 6.1 The optimal value of optimization problem (D’) is called the parity gap of a
formula Φ.

We then have the following lemma.

Lemma 6.2 If a formula Φ has parity gap zero it is polynomially solvable.

Proof: If the parity gap is zero, sk = 0 for all 1 ≤ k ≤ m. Suppose that a solution exists for
which at least one clause is satisfied in exactly two literals. Using this solution, a solution
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of (D’) can be constructed, with strictly positive objective value. If (D’) has objective value
zero, no such solution exists, so any satisfying assignment satisfies each clause in exactly one
or three literals; so the formula is equivalent to an XOR–SAT formula. Checking whether
such a solution exists can be done in polynomial time [23, 29]. 2

A specific class of formulas that appears to be a likely candidate to have parity gap zero, is
the class of doubly balanced formulas [19, 29]. By definition, for doubly balanced formulas it
holds that ATA is a diagonal matrix and AT e ≡ 0. Eliminating the sk variables from (D’) it
can be rewritten to

(D”)

min Tr

 ATA −AT e

−eTA 0

 Y y

yT 1


s.t. −1 ≤ aTk Y ak − 2aTk y ≤ 3, 1 ≤ k ≤ m,

diag(Y ) = e,

Y � yyT .

It holds that opt(D’) = 3
4m−

1
4opt(D”). Note that the objective function of (D”) is essentially

the same objective function as the one used by Goemans and Williamson in their MAX2SAT
algorithm, only we are presently considering 3SAT formulas. Using formulation (D”) it is
straightforward to prove the next lemma.

Lemma 6.3 A doubly balanced formula has parity gap zero.

Proof: By the definition of doubly balancedness and the constraint on the diagonal of Y the
objective function of (D”) reduces to the constant 3m, implying that the parity gap is equal
to zero. 2

We also have an autarky result.

Lemma 6.4 If all sk > 3
4 , x = sgn(y) is a satisfiable assignment of Φ.

Proof: Note that
(aTk y)2 − 2aTk y + (4sk − 3) ≤ 0.

This implies that
1− 2

√
1− sk ≤ aTk y ≤ 1 + 2

√
1− sk.

If sk > 3
4 , it holds that aTk y > 0. If all sk have this property, then y is a linear autarky. 2

Note that y might be a linear autarky while not all sk are larger than 3
4 . In this respect,

a slightly stronger formulation is obtained by using a single slack variable t for all clauses,
rather than a separate slack variable sk for each of the clauses. The objective then becomes
to maximize t; all sk’s must be replaced by t, and equality must be replaced by inequality.
A drawback of this approach is that an optimum of zero only implies that a polynomially
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solvable subformula is present. On the other hand, solving this subformula first, may speed
up solving the full formula [31].

While it appears that the semidefinite relaxation as developed in this paper is not quite strong
enough to completely solve 3SAT problems by itself, it can be used in various other ways.
Apart from including it in a complete algorithm (see next section), both its primal and dual
solution can be used for heuristic purposes. This is briefly discussed in Section 7.

6.2 Incorporating the gap approach in a complete algorithm
As mentioned in the previous section, the gap can be computed in each node of a branching
tree to detect unsatisfiability early, so as to reduce the size of the search tree. Even though at
present it appears that this might be computationally too expensive, there are several ways
to reduce computational cost. We mention two possibilities.

1. Instead of using a primal–dual algorithm, it is possible to use a dual scaling algorithm
to exploit sparsity of Q̃ to the full [3]. Computational experience with MAX2SAT
problems indicates that for small sized problems this approach is competitive with
other dedicated algorithms for the MAX2SAT problem [9].

2. For larger problems, spectral bundle methods can be used to solve the eigenvalue opti-
mization problem (P) [15]. These have been shown to be able to handle problems with
thousands of variables. Such methods solve only (P), so that the dual information is
lost.

7. Remarks and further research

7.1 Some empirical observations
Both the primal and dual solutions obtained by solving a semidefinite relaxations can be
used for heuristic purposes. The dual solution (Y, y) might be used to try to obtain good
approximate MAX–SAT solutions. To illustrate the quality of the solutions thus obtainable,
see Figure 2. We restricted ourselves to a set of random pure 3SAT formulas with 100
variables and a varying number of clauses, and used the dual formulation with a single slack
variable. The SDPs were solved using the public–domain solver SeDuMi [25]. Approximate
solutions are constructed by (i) taking the dual solution and rounding y (the drawn line), (ii)
by applying a Goemans–Williamson–like randomized rounding procedure (the dotted line).
For comparison we also included the solutions obtained by simply drawing random solutions;
note that this in fact corresponds to the Karloff–Zwick algorithm for approximating (pure)
MAX3SAT solutions. To obtain a good ad hoc lower bound on the optimal solution we
applied a greedy weighted local search procedure. Considering the results, it is clear that
the local search procedure gives the best results, but interestingly enough the drawn line
is consistently above the dotted line, implying that the deterministic one–step procedure of
rounding y gives better solutions than the randomized rounding procedure, which in turn is
better than just drawing random solutions.
Let us finish this section by mentioning that using the primal optimal solution w, it is possible
to identify hard subformulas. To this end, the sum of the weights is bounded (this corresponds
to using a single slack variable in the dual formulation). Removing the clauses with ‘small’
weights, a subformula is obtained that appears to be the ‘core’ of the original formula. This
yields a technique for finding approximately minimal unsatisfiable subformulas.
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Figure 2: Comparison of MAXSAT solutions.

7.2 More general clause models
So far we have considered a fixed quadratic clause–model based on an elliptic approximation.
Obviously there exist many other quadratic clause–models. Basically, all quadratic models
q(x) with the following property are valid.

Property 7.1 x is a satisfying assignment ⇒ q(x) =
n∑
i=1

n∑
j=1

qijxixj +
n∑
k=1

qkxk + q0 ≤ 0.

As an example, let us consider the clause C = p1 ∨ p2 ∨ p3. Substituting the satisfying
assignments of C in q(x), a set of 7 inequalities is obtained. These inequalities, which are
linear in the coefficients qij and qk, define a cone. The extreme rays of this cone give rise to
the following generic set of valid quadratic cuts (S).

x1x2 + x1x3 − x2 − x3 ≤ 0
x1x2 + x2x3 − x1 − x3 ≤ 0
x1x3 + x2x3 − x1 − x2 ≤ 0

−x1x2 − x1x3 − x2x3 − 1 ≤ 0
−x1x2 + x1 + x2 − 1 ≤ 0
−x1x3 + x1 + x3 − 1 ≤ 0
−x2x3 + x2 + x3 − 1 ≤ 0

An equivalent set is given by Karloff and Zwick [16]. So, each valid quadratic model of C
is a linear combination of this set of inequalities. In particular, the elliptic approximation is
obtained by taking the sum of the first three inequalities (see (3.1) and use that x2 = 1 for x ∈
{−1, 1}). Karloff and Zwick show that using the first three inequalities a 7/8 approximation
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algorithm for MAX3SAT problems can be obtained. Thus, our relaxation is an aggregated
version of the Karloff–Zwick relaxation.

Note that the SDP relaxations can be further strengthened by adding valid inequalities. An
example of such cuts are the triangle inequalities [11]; note that many of these are in fact
implied by (S) (namely those concerning variables that occur jointly in some clause). Another
possibility is using (see also (3.1))

(aTk x− 1)(aTl x− 1) ≤ (`(Ck)− 1)(`(Cl)− 1) (7.1)

for any pair of clauses Ck, Cl which share one or more variables. The cuts (7.1) are capable
of cutting off the trivial feasible solution. This is an example of a valid quadratic cut for
pairs of clauses. Similar to (S), all valid quadratic cuts may be derived for pairs of clauses.
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