1,730 research outputs found

    Bridging length and time scales in sheared demixing systems: from the Cahn-Hilliard to the Doi-Ohta model

    Full text link
    We develop a systematic coarse-graining procedure which establishes the connection between models of mixtures of immiscible fluids at different length and time scales. We start from the Cahn-Hilliard model of spinodal decomposition in a binary fluid mixture under flow from which we derive the coarse-grained description. The crucial step in this procedure is to identify the relevant coarse-grained variables and find the appropriate mapping which expresses them in terms of the more microscopic variables. In order to capture the physics of the Doi-Ohta level, we introduce the interfacial width as an additional variable at that level. In this way, we account for the stretching of the interface under flow and derive analytically the convective behavior of the relevant coarse-grained variables, which in the long wavelength limit recovers the familiar phenomenological Doi-Ohta model. In addition, we obtain the expression for the interfacial tension in terms of the Cahn-Hilliard parameters as a direct result of the developed coarse-graining procedure. Finally, by analyzing the numerical results obtained from the simulations on the Cahn-Hilliard level, we discuss that dissipative processes at the Doi-Ohta level are of the same origin as in the Cahn-Hilliard model. The way to estimate the interface relaxation times of the Doi-Ohta model from the underlying morphology dynamics simulated at the Cahn-Hilliard level is established.Comment: 29 pages, 2 figures, accepted for publication in Phys. Rev.

    Nonlinear dynamics of the viscoelastic Kolmogorov flow

    Full text link
    The weakly nonlinear regime of a viscoelastic Navier--Stokes fluid is investigated. For the purely hydrodynamic case, it is known that large-scale perturbations tend to the minima of a Ginzburg-Landau free-energy functional with a double-well (fourth-order) potential. The dynamics of the relaxation process is ruled by a one-dimensional Cahn--Hilliard equation that dictates the hyperbolic tangent profiles of kink-antikink structures and their mutual interactions. For the viscoelastic case, we found that the dynamics still admits a formulation in terms of a Ginzburg--Landau free-energy functional. For sufficiently small elasticities, the phenomenology is very similar to the purely hydrodynamic case: the free-energy functional is still a fourth-order potential and slightly perturbed kink-antikink structures hold. For sufficiently large elasticities, a critical point sets in: the fourth-order term changes sign and the next-order nonlinearity must be taken into account. Despite the double-well structure of the potential, the one-dimensional nature of the problem makes the dynamics sensitive to the details of the potential. We analysed the interactions among these generalized kink-antikink structures, demonstrating their role in a new, elastic instability. Finally, consequences for the problem of polymer drag reduction are presented.Comment: 26 pages, 17 figures, submitted to The Journal of Fluid Mechanic

    Non-isothermal viscous Cahn--Hilliard equation with inertial term and dynamic boundary conditions

    Get PDF
    We consider a non-isothermal modified Cahn--Hilliard equation which was previously analyzed by M. Grasselli et al. Such an equation is characterized by an inertial term and a viscous term and it is coupled with a hyperbolic heat equation. The resulting system was studied in the case of no-flux boundary conditions. Here we analyze the case in which the order parameter is subject to a dynamic boundary condition. This assumption requires a more refined strategy to extend the previous results to the present case. More precisely, we first prove the well-posedness for solutions with bounded energy as well as for weak solutions. Then we establish the existence of a global attractor. Finally, we prove the convergence of any given weak solution to a single equilibrium by using a suitable Lojasiewicz--Simon inequality

    On the Short-Time Compositional Stability of Periodic Multilayers

    Full text link
    The short-time stability of concentration profiles in coherent periodic multilayers consisting of two components with large miscibility gap is investigated by analysing stationary solutions of the Cahn-Hilliard diffusion equation. The limits of the existence and stability of periodic concentration profiles are discussed as a function of the average composition for given multilayer period length. The minimal average composition and the corresponding layer thickness below which artificially prepared layers dissolve at elevated temperatures are calculated as a function of the multilayer period length for a special model of the composition dependence of the Gibbs free energy. For period lengths exceeding a critical value, layered structures can exist as metastable states in a certain region of the average composition. The phase composition in very thin individual layers, comparable with the interphase boundary width, deviates from that of the corresponding bulk phase.Comment: 29 pages including 7 figures, to be published in Thin Solid Film
    • …
    corecore