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Abstract

We consider a non-isothermal modified Cahn–Hilliard equation which was previously ana-

lyzed by M. Grasselli et al. Such an equation is characterized by an inertial term and a

viscous term and it is coupled with a hyperbolic heat equation. The resulting system was

studied in the case of no-flux boundary conditions. Here we analyze the case in which the or-

der parameter is subject to a dynamic boundary condition. This assumption requires a more

refined strategy to extend the previous results to the present case. More precisely, we first

prove the well-posedness for solutions with bounded energy as well as for weak solutions.

Then we establish the existence of a global attractor. Finally, we prove the convergence

of any given weak solution to a single equilibrium by using a suitable  Lojasiewicz–Simon

inequality.

Keywords: Viscous Cahn–Hilliard equation, inertial term, Cattaneo’s law, existence and

uniqueness, dissipative estimates, global attractors, convergence to equilibrium.

MRS 2010: 35B40, 35B41, 37L99, 80A22.

1 Introduction

The Cahn–Hilliard equation is a cornerstone in Materials Science since it gives a fairly good

description of phase separation processes in binary alloys (see, e.g., [7, 40, 41] and references

therein). The early stage of such a phenomenon is called spinodal decomposition. A modifi-

cation of the Cahn–Hilliard equation has been proposed in [18] to account for rapid spinodal

decomposition in certain materials (see also [19,20]). This modified equation reads as follows

εχtt + χt − ∆µ = 0,

where ε > 0 is a relaxation time, χ represents the (relative) concentration of one component

and µ is the so-called chemical potential given by

µ = −∆χ+ αχt + f(χ).
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Here α > 0 is a viscosity parameter accounting for possible presence of microforces (see [39]) and

f is the derivative of a given double-well potential. We recall that the classical Cahn–Hilliard

equation corresponds to the case ε = α = 0. The case ǫ > 0 and α = 0 is a very challenging

equation (see [28–30, 44], cf. also [4, 21, 52, 53] for the 1D case) which becomes much nicer in

presence of viscosity (cf. [2, 3, 5, 22, 34]) In particular, in the latter case, solutions regularize

in finite time. Moreover, when (ε, α) tends to zero and α dominates ǫ, then the modified

viscous Cahn–Hilliard equation (MVCH) is very close to the standard one in a rigorous way

(see [3, 5, 22]). A non-isothermal version of MVCH equation has been proposed and analyzed

in [27] (cf. also [46, 9.1.5]), namely,

(θ + χ)t + ∇ · q = 0, in Ω × (0,∞), (1.1)

σqt + q = −∇θ, in Ω × (0,∞), (1.2)

εχtt + χt − ∆µ = 0, in Ω × (0,∞), (1.3)

µ = −∆χ+ αχt + f(χ) − θ, in Ω × (0,∞), (1.4)

where θ represents the (relative) temperature, q is the heat flux which is given by the Maxwell–

Cattaneo’s law (1.3), σ > 0 is a further relaxation time and Ω ⊂ R
d (d = 2, 3) is a bounded

domain with a smooth boundary Γ.

System (1.1)–(1.4) has been endowed in [27] with no-flux boundary conditions. Here we

want to consider the same system subject to the following boundary conditions

q · ν = ∂νµ = 0, on Γ × (0,∞), (1.5)

χt − ∆Γχ+ ∂νχ+ g(χ) = 0, on Γ × (0,∞), (1.6)

where ν stands for the outward normal unit vector on the boundary and ∆Γ stands for the

Laplace–Beltrami operator. The system is also subject to the initial conditions

θ(0) = θ0, q(0) = q0, χ(0) = χ0, χt(0) = χ1, in Ω. (1.7)

We recall that dynamic boundary conditions like (1.6) have been proposed by physicists to take

into account possible interactions between the binary alloy and the container walls (see, e.g., [10,

11,35]). From the mathematical viewpoint, the Cahn–Hilliard equation with dynamic boundary

conditions has been analyzed in a number of papers (cf., e.g., [8, 17,23,24,36,37,43,48,51], see

also [12, 13, 15, 16] for the non-isothermal case). However, the MVCH equation with dynamic

boundary conditions has only been considered in the isothermal case. In [6] the authors studied

a slightly more general equation with memory which reduces to the MVCH equation if the kernel

is a decreasing exponential. They proved well-posedness, regularity, and the existence of global

and exponential attractors. More recently, the construction of a family of exponential attractors

which is robust with respect to the relaxation time (say ε) has been established in [14].

Here we want to extend the results proven in [27], namely, well-posedness, existence of the

global attractor and convergence to a single equilibrium. More precisely, we first establish the

existence and the uniqueness of global (bounded) energy and weak solutions. We recall that

bounded energy solutions are more general than weak solutions (cf. Definition 2.1 below). In

addition, in the present case a regularizing effect for χ is missing due to the presence of the

dynamic boundary condition (1.6). This entails that the equation (1.3) must be understood in
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a more generalized way with respect to [27] (see Remark 2.4 below). In this case the application

of the  Lojasiewicz–Simon technique is also more complicated than in [27] and it seems necessary

to work with weak solutions (cf. (5.28) and (5.29) below).

The plan of the paper goes as follows. In the next section the main assumptions as well

as the notions of energy and weak solutions are introduced. In Section 3 some a priori energy

and higher-order uniform estimates are obtained. Then, existence and uniqueness of energy and

weak solutions are proven. Section 4 is devoted to establish the existence of the global attractor

for the semigroup acting on the energy phase space. Finally, in Section 5 the convergence of a

weak solution to a single equilibrium is analyzed. Among the open issues it is worth mentioning

the existence of a family of exponential attractors and its robustness with respect to σ, ε and α

(see [22] for the isothermal case).

2 Preliminaries

Due to the presence of the Laplace-Beltrami operator ∆Γ, in order to deal with system (1.1)-

(1.7), it is convenient to introduce the unknown function ξ := χ|Γ defined on the boundary Γ.

Setting ξ0 := χ0|Γ, we can rewrite the original system as

(θ + χ)t + ∇ · q = 0, in Ω × (0,∞), (2.1)

qt + q = −∇θ, in Ω × (0,∞), (2.2)

χtt + χt − ∆µ = 0, in Ω × (0,∞), (2.3)

µ = −∆χ+ αχt + f(χ) − θ, in Ω × (0,∞), (2.4)

q · ν = ∂νµ = 0, on Γ × (0,∞), (2.5)

ξt − ∆Γξ + ∂νχ + g(ξ) = 0, on Γ × (0,∞), (2.6)

θ(0) = θ0, q(0) = q0, χ(0) = χ0, ξ(0) = ξ0, χt(0) = χ1, in Ω. (2.7)

For the sake of simplicity, here and in the remaining part of the paper we assume ε = σ = 1.

Besides, we will consider only the viscous case α > 0 even though existence of an energy solution

can be proven also in the case α = 0.

Notations and functional spaces. We denote by |Ω| the Lebesgue measure of Ω and by

|Γ| the n− 1-dimensional measure of Γ. For a given real Banach space X, its norm is indicated

by ‖·‖X . The symbol (·, ·)X,X∗ stands for a duality pairing between the Banach space X and its

dual X∗. We denote by Lp(Ω) and Lp(Γ) (p ≥ 1) the standard Lebesgue spaces with respective

norms ‖ ·‖Lp(Ω) and ‖ ·‖Lp(Γ). For s > 0, Hs(Ω) and Hs(Γ) stand for the Sobolev spaces normed

by ‖ · ‖Hs(Ω) and ‖ · ‖Hs(Γ). Bold letters are used to denote the corresponding vector spaces, for

instance, L2(Ω) = (L2(Ω))d, H1(Ω) = (H1(Ω))d.

For the sake of brevity, the norm in L2(Ω) and L2(Ω) will be simply indicated by ‖ · ‖ and

the inner products in L2(Ω) and L2(Γ) will be denoted by (·, ·) and (·, ·)L2(Γ), respectively.

Besides, we set

H = L2(Ω), HΓ = L2(Γ), V = H1(Ω), VΓ = H1(Γ),

V0 = {v ∈ H1(Ω) : v · ν|Γ = 0},

H0 =

{
v ∈ H : 〈v〉 := |Ω|−1

∫

Ω
vdx = 0

}
,
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and we introduce the Hilbert space L2
div(Ω) and its inner product

L2
div(Ω) = {q ∈ L2(Ω) : ∇ · q ∈ L2(Ω)}, (q1,q1)

L2
div(Ω) = (q1,q2)L2(Ω) + (∇ · q1,∇ · q2)L2(Ω).

It is well known that if q ∈ L2
div(Ω) then q · ν ∈ H− 1

2 (Γ) (cf. [38]). Hence we introduce the

following closed subspace of L2
div(Ω)

W0 = {q ∈ L2
div(Ω) : q · ν|Γ = 0}.

We have W0 →֒ L2(Ω) →֒ (W0)∗ with dense and continuous embeddings.

The Laplace operator with Neumann boundary condition and its domain are denoted by

A = −∆ : D(A) ⊂ H → H0, D(A) = {v ∈ H2(Ω) : ∂νv = 0 on Γ},

and we indicate with A0 its restriction to H0. Note that A0 is a positive linear operator. Hence,

for any r ∈ R, we can define its powers Ar
0 and their domains D(A

r
2
0 ), setting

V r
0 = D(A

r
2
0 ), with inner product (v1, v2)V r

0
= (A

r
2
0 v1, A

r
2
0 v2).

Taking any u ∈ V ∗ with 〈u〉 = 0, then v = A−1
0 u is a solution to the generalized Neumann

problem for A with source u and the restriction 〈v〉 = 0. Hence, for any u,w ∈ V ∗ with

〈u〉 = 〈w〉 = 0, we have

(u,A−1
0 w)V ∗,V = (w,A−1

0 u)V ∗,V =

∫

Ω
(∇A−1

0 u) · (∇A−1
0 w)dx.

We endow V ∗ with the equivalent norm ‖v‖2V ∗ = ‖∇A−1
0 (v − 〈v〉)‖2 + |〈v〉|2, for any v ∈ V ∗.

Moreover, if u ∈ H1(0, T ;V ∗) with 〈u〉 = 0, then

(ut, A
−1
0 u)V ∗,V =

1

2

d

dt
‖u‖2V ∗ , a.e. t ∈ (0, T ).

Next, we introduce the product spaces

H = H ×HΓ, Hr(Ω) ×Hr(Γ)

and the subspaces of Hr(Ω) ×Hr(Γ)

H
r := {(χ, ξ) ∈ Hr(Ω) ×Hr(Γ) : ξ = χ|Γ}, ∀ r >

1

2
,

with the induced graph norm. We note that h = (u, v) ∈ H will be thought as a pair of

functions belonging, respectively, to H and to HΓ. If we do not have additional regularity, the

second component of h (i.e., v) is not necessary to be the trace of the first one (i.e. u). The

elements of Hr will be considered as pairs of functions (χ, χ|Γ) such that H
r is identified with a

(closed) subspace of the product space Hr(Ω)×Hr(Γ). For r1 > r2 >
1
2 , the dense and compact

embeddings H
r1 →֒ H

r2 hold. Finally, we introduce the closed subspaces of H and H
r as follows

H0 = {(u, v) ∈ H : 〈u〉 = 0}, H
r
0 = {(u, v) ∈ H

r : 〈u〉 = 0}, ∀ r >
1

2
.

According to the structure of system (2.1)–(2.7), we define the product spaces

X = H ×H×H
1 × V ∗, Y = V ×V0 ×H

3 × V,
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endowed with the following norms

‖(z1, z2, z3, z4, z5)‖2X = ‖z1‖
2 + ‖z2‖

2 + ‖(z3, z4)‖2
H1 + ‖z5‖

2
V ∗ , (2.8)

‖(z1, z2, z3, z4, z5)‖2Y = ‖z1‖
2
V + ‖z2‖

2
H1(Ω) + ‖(z3, z4)‖2

H3 + ‖z5‖
2
V .

It is easy to see that the continuous embedding Y →֒ X holds.

Assumptions on the nonlinearities. Let us now list our assumptions on f and g.

(H1) f, g ∈ C2(R),

(H2) Dissipative condition: lim inf
|s|→+∞

f ′(s) > 0, lim inf
|s|→+∞

g′(s) > 0,

(H3) Growth condition:

|f ′′(y)| ≤ cf (1 + |y|p), |g′′(y)| ≤ cg(1 + |y|q), ∀ y ∈ R,

for some generic positive constants cf , cg independent of y, with q ∈ [0,+∞) and p ∈ [0, 1]

when n = 3, while p ∈ [0,+∞) for n = 2.

Remark 2.1. Consider the potential functions F (y) =
∫ y

0 f(s)ds and G(y) =
∫ y

0 g(s)ds, y ∈ R.

It is easy to check that assumptions (H2)–(H3) yield the following properties (cf. e.g., [15]):

(1) there exist c0, c1 > 0 such that

f ′(y) ≥ −c0, F (y) ≥ −c1, ∀ y ∈ R,

(2) for any M0 ∈ R, there exist c2, c3 > 0 and a sufficiently large c4 > 0 such that

(y −M0)f(y) ≥ c2(y −M0)
2 + c3F (y) − c4, ∀ y ∈ R,

(3) ∀ ǫ > 0, there exists cǫ > 0 sufficiently large such that

|f(y)| ≤ ǫF (y) + cǫ, ∀ y ∈ R.

Similar results hold also for the potential G(y).

Remark 2.2. One can verify, for instance, that the classical double well potential F (y) =
1
4(y2 − 1)2 and the corresponding function f(y) = y3 − y satisfy (H1)–(H3) while g can be any

polynomial of odd degree with a positive leading coefficient.

We are ready to introduce the variational formulation of problem (2.1)–(2.7).

Definition 2.1. Let T ∈ (0,+∞). The set of functions (θ,q, χ, ξ, χt) satisfying

(θ,q, χ, ξ, χt) ∈ L∞(0, T ;X), (2.9)

θt ∈ L∞(0, T ;V ∗), qt ∈ L2(0, T ; (V0)∗), (2.10)

χt ∈ L2(0, T ;V ∗), α
1
2χt ∈ L

2(0, T ;H), ξt ∈ L2(0, T ;HΓ), (2.11)

χtt + χt ∈ L∞(0, T ;D(A
− 3

2
0 )), (2.12)

is an energy solution to problem (2.1)–(2.5) with initial datum (θ0,q0, χ0, ξ0, χ1) ∈ X, if the

following identities hold, for a.e. t ∈ (0, T ),

((θ + χ)t, w)V ∗,V − (q,∇w) = 0, (2.13)
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(qt + q,v)V∗
0 ,V0 − (θ,∇ · v) = 0, (2.14)

(A−1
0 (χtt + χt), φ)V ∗,V + (µ, φ)V ∗,V = 0, (2.15)

(µ,φ)V ∗,V = (∇χ,∇φ) + (∇Γξ,∇Γv)L2(Γ) + α(χt, φ) + (ξt, v)L2(Γ)

+(f(χ), φ) + (g(ξ), v)L2(Γ) − (θ, φ), (2.16)

for any w ∈ V , v ∈ V0 and (φ, v) ∈ H
1 with v = φ|Γ.

If, in addition, (θ0,q0, χ0, ξ0, χ1) ∈ Y and

(θ,q, χ, ξ, χt) ∈ L∞(0, T ;Y), (2.17)

θt ∈ L∞(0, T ;H), qt ∈ L2(0, T ;L2(Ω)), (2.18)

χtt ∈ L2(0, T ;V ∗), α
1
2χtt ∈ L2(0, T ;H), ξtt ∈ L

2(0, T ;HΓ), (2.19)

χtt + χt ∈ L∞(0, T ;D(A
− 1

2
0 )), (2.20)

then (θ,q, χ, ξ, χt) is a weak solution to problem (2.1)–(2.5).

Remark 2.3. We note that, due to the regularities (2.9)–(2.12), an energy solution belongs to

the class Cw([0, T ];X), where the space Cw([0, T ];X) (X being a real Banach space) is defined

as

Cw([0, T ];X) := {v ∈ L∞(0, T ;X) : (φ, v(·))X∗ ,X ∈ C0([0, T ]), ∀φ ∈ X∗}.

Therefore, any energy solution can be evaluated point-wisely in time and initial conditions have

a well-defined meaning. The same property holds for weak solutions.

Remark 2.4. Note that in case of homogeneous Neumann boundary conditions we can recover

the additional regularity χ ∈ L2(0, T ;H2(Ω)) for an energy solution (see [27, (2.18)]). Thus

equation (2.15) can be written in the standard weak form (see [27, (2.6)]). However, in the

present case, it seems that this regularity does not hold. On the other hand, such a property

is crucial to prove that solutions to the isothermal MVCH regularize in finite time (see [2], cf.

also [27] for the non-isothermal case with Fourier heat conduction). We also point out that the

present notion of weak solution is a quasi-strong solution in the terminology introduced in [30].

3 Well-posedness

3.1 A priori estimates

Conserved quantities. Integrating (2.1) and (2.3) over Ω, we deduce from the no-flux bound-

ary condition (2.5) that the following relations hold

∫

Ω
(θ(t) + χ(t))dx =

∫

Ω
(θ0 + χ0)dx, ∀ t ≥ 0, (3.1)

∫

Ω
(χt(t) + χ(t))dx =

∫

Ω
(χ1 + χ0)dx, ∀ t ≥ 0. (3.2)

The second relation (3.2) is an ODE for 〈χ(t)〉, then we have

〈χ(t)〉 = 〈χ0〉 + 〈χ1〉 − e−t〈χ1〉, 〈χt(t)〉 = e−t〈χ1〉. (3.3)
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It is easy to see that if 〈χ1〉 = 0, then the so-called mass conservation relation holds

∫

Ω
χ(t)dx =

∫

Ω
χ0dx.

Based on the above observations, in order to obtain dissipative estimates of the solutions to

problem (2.1)–(2.7), it is convenient to introduce the new variables

θ̃ = θ − 〈θ〉, χ̃ = χ− 〈χ〉, ξ̃ = χ̃|Γ = ξ − 〈χ〉, (3.4)

which imply that

χ̃t(t) = χt(t) − 〈χt(t)〉 = χt(t) −Q1(t),

χ̃tt(t) = χtt(t) − 〈χtt(t)〉 = χtt(t) +Q1(t),

with the function Q1 given by

Q1(t) = 〈χ1〉e
−t.

Then, system (2.1)–(2.7) can be rewritten as

(θ̃ + χ̃)t + ∇ · q = 0, in Ω × (0,∞), (3.5)

qt + q = −∇θ̃, in Ω × (0,∞), (3.6)

χ̃tt + χ̃t − ∆µ̃ = 0, in Ω × (0,∞), (3.7)

µ̃ = −∆χ̃+ αχ̃t + f(χ) − θ̃, in Ω × (0,∞), (3.8)

ξ̃t − ∆Γξ̃ + g(ξ) + ∂νχ̃+Q1(t) = 0, on Γ × (0,∞), (3.9)

q · ν = ∂ν µ̃ = 0, on Γ × (0,∞), (3.10)

θ̃(0) = θ0 − 〈θ0〉, q(0) = q0, (3.11)

χ̃(0) = χ0 − 〈χ0〉, in Ω, ξ̃(0) = ξ0 − 〈χ0〉, χ̃t(0) = χ1 − 〈χ1〉, in Ω. (3.12)

Dissipative estimates. In what follows, we will derive some uniform estimates on the solu-

tions of problem (2.1)–(2.7) which are necessary for studying the well-posedness and long-time

behavior of the system. The following calculations have a formal character but they can be

justified by working within a proper Faedo–Galerkin approximation scheme (see [23] and [24]).

Lemma 3.1 (Dissipative estimate in X). Let the assumptions (H1)–(H3) be satisfied. Suppose

(θ(t),q(t), χ(t), ξ(t), χt(t)) is a regular solution of system (2.1)–(2.7). Then there exists a positive

nondecreasing function Q such that

‖(θ(t),q(t), χ(t), ξ(t), χt(t))‖
2
X

+

∫ t+1

t

(α‖χt(τ)‖2 + ‖ξt(τ)‖2HΓ
+ ‖(θ(τ),q(τ), χ(τ), ξ(τ), χt(τ))‖2X)dτ

≤ Q(‖(θ0,q0, χ0, ξ0, χ1)‖X)e−ρ1t + ρ2, ∀ t ≥ 0, (3.13)

where the positive constants ρ1, ρ2 may depend on 〈θ0〉, 〈χ0〉, 〈χ1〉, |Ω|, |Γ|, but are independent

of t. In particular, the constants ρ1, ρ2 are independent of ‖(θ0,q0, χ0, ξ0, χ1)‖X.
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Proof. Multiplying (3.5) and (3.6) by θ̃ and q, respectively, and integrating over Ω, we obtain

1

2

d

dt
‖θ̃‖2 −

∫

Ω
q · ∇θ̃dx = −

∫

Ω
χ̃tθ̃dx, (3.14)

1

2

d

dt
‖q‖2 + ‖q‖2 +

∫

Ω
q · ∇θ̃dx = 0. (3.15)

Multiplying (3.7) by A−1
0 χ̃t and integrating over Ω, we have

d

dt

[
1

2
‖A

− 1
2

0 χ̃t‖
2 +

1

2
‖∇χ̃‖2 +

∫

Ω
F (χ)dx+

1

2
‖∇Γξ̃‖

2
HΓ

+

∫

Γ
G(ξ)dS

]

+‖A
− 1

2
0 χ̃t‖

2 + α‖χ̃t‖
2 + ‖ξ̃t‖

2
HΓ

=

∫

Ω
θ̃χ̃tdx+Q1

(∫

Ω
f(χ)dx+

∫

Γ
g(ξ)dS

)
−Q1

∫

Γ
ξ̃tdS. (3.16)

In a similar manner, multiplying (3.7) by A−1
0 χ̃ and integrating over Ω, we get

d

dt

(∫

Ω
A

− 1
2

0 χ̃tA
− 1

2
0 χ̃dx+

1

2
‖A

− 1
2

0 χ̃‖2 +
α

2
‖χ̃‖2 +

1

2
‖ξ̃‖2HΓ

)

−‖A
− 1

2
0 χ̃t‖

2 + ‖∇χ̃‖2 + ‖∇Γξ̃‖
2
HΓ

+

∫

Ω
f(χ)χ̃dx+

∫

Γ
g(ξ)ξ̃dx

=

∫

Ω
θ̃χ̃dx−Q1

∫

Γ
ξ̃dS. (3.17)

Besides, using the equation (3.5) and (3.6), we deduce the identity

d

dt

∫

Ω
q · ∇A−1

0 θ̃dx+ ‖θ̃‖2

=

∫

Ω
qt · ∇A

−1
0 θ̃dx+

∫

Ω
q · ∇A−1

0 θ̃tdx+ ‖θ̃‖2

= −

∫

Ω
q · ∇A−1

0 θ̃dx−

∫

Ω
q · ∇A−1

0 χ̃tdx+ ‖A
− 1

2
0 ∇ · q‖2. (3.18)

Multiplying (3.17) and (3.18) by some small constants κ1, κ2 > 0 (to be chosen later), respec-

tively, and adding the resulting equations with (3.14)–(3.16), one deduces that

d

dt

(
1

2
‖θ̃‖2 +

1

2
‖q‖2 +

1

2
‖A

− 1
2

0 χ̃t‖
2 +

1

2
‖∇χ̃‖2 +

∫

Ω
F (χ)dx

+
1

2
‖∇Γξ̃‖

2
HΓ

+
κ1

2
‖ξ̃‖2HΓ

+

∫

Γ
G(ξ)dS + κ1

∫

Ω
A

− 1
2

0 χ̃tA
− 1

2
0 χ̃dx

+
κ1

2
‖A

− 1
2

0 χ̃‖2 +
κ1α

2
‖χ̃‖2 + κ2

∫

Ω
q · ∇A−1

0 θ̃dx

)

+‖q‖2 + (1 − κ1)‖A
− 1

2
0 χ̃t‖

2 + α‖χ̃t‖
2 + ‖ξ̃t‖

2
HΓ

+ κ1‖∇χ̃‖
2

+κ1‖∇Γξ̃‖
2
HΓ

+ κ1

(∫

Ω
f(χ)χ̃dx+

∫

Γ
g(ξ)ξ̃dS

)
+ κ2‖θ̃‖

2

= Q1

(∫

Ω
f(χ)dx+

∫

Γ
g(ξ)dS

)
−Q1

∫

Γ
ξ̃tdS + κ1

∫

Ω
θ̃χ̃dx− κ1Q1

∫

Γ
ξ̃dS

−κ2

∫

Ω
q · ∇A−1

0 θ̃dx− κ2

∫

Ω
q · ∇A−1

0 χ̃tdx+ κ2‖A
− 1

2
0 ∇ · q‖2.
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From Remark 2.1(2), taking M0 = 〈χ〉, then we have

∫

Ω
f(χ)χ̃dx ≥ K1

∫

Ω
F (χ)dx+K2‖χ̃‖

2 −K3,

∫

Γ
g(ξ)ξ̃dS ≥ K ′

1

∫

Γ
G(ξ)dS +K ′

2‖ξ̃‖HΓ
−K ′

3,

where Ki > 0,K ′
i > 0 (i = 1, 2, 3) are independent of χ, ξ. Besides, from Remark 2.1(3) it

follows

Q1

(∫

Ω
f(χ)dx+

∫

Γ
g(ξ)dS

)
≤
κ1K1

2

∫

Ω
F (χ)dx+

κ1K
′
1

2

∫

Γ
G(ξ)dS +K4|Q1|,

where K4 depends on K1,K
′
1, κ1. By the Poincaré inequality, there exists CP > 0 depending on

Ω such that

−Q1

∫

Γ
ξ̃tdS + κ1

∫

Ω
θ̃χ̃dx− κ1Q1

∫

Γ
ξ̃dS

≤ |Q1||Γ|
1
2 ‖ξ̃t‖HΓ

+ κ1CP ‖θ̃‖‖∇χ̃‖ + κ1|Q1||Γ|
1
2 ‖ξ̃‖HΓ

≤
1

2
‖ξ̃t‖

2
HΓ

+
κ1K

′
2

2
‖ξ̃‖2HΓ

+
κ1

2
‖∇χ̃‖2 +

κ1C
2
P

2
‖θ̃‖2 +K5|Q1|

2,

where K5 depends on 〈χ1〉, |Γ| and κ1. Next, there exists some CΩ > 0 depending on Ω such

that

−κ2

∫

Ω
q · ∇A−1

0 θ̃dx− κ2

∫

Ω
q · ∇A−1

0 χ̃tdx+ κ2‖A
− 1

2
0 ∇ · q‖2

≤ κ2CΩ(‖q‖‖θ̃‖ + ‖q‖‖A
− 1

2
0 χ̃t‖ + ‖q‖2)

≤
κ2

2
‖θ̃‖2 +

κ2CΩ

2
‖A

− 1
2

0 χ̃t‖ +
κ2

2
CΩ(CΩ + 3)‖q‖2. (3.19)

We now choose κ1, κ2 > 0 sufficiently small so that

κ1 ≤
1

4
, κ2CΩ ≤

1

2
, κ1 +

κ2CΩ

2
≤

1

2
,

κ2

2
CΩ(CΩ + 3) ≤

1

2
,

κ1C
2
P

2
≤
κ2

4
.

From the above estimates we deduce the following inequality

d

dt
Y(t) + I(t) ≤ K6(1 + e−2t), ∀ t ≥ 0 (3.20)

where

Y =
1

2
‖θ̃‖2 +

1

2
‖q‖2 +

1

2
‖A

− 1
2

0 χ̃t‖
2 +

1

2
‖∇χ̃‖2 +

∫

Ω
F (χ)dx

+
1

2
‖∇Γξ̃‖

2
HΓ

+
κ1

2
‖ξ̃‖2HΓ

+

∫

Γ
G(ξ)dS + κ1

∫

Ω
A

− 1
2

0 χ̃tA
− 1

2
0 χ̃dx

+
κ1

2
‖A

− 1
2

0 χ̃‖2 +
κ1α

2
‖χ̃‖2 + κ2

∫

Ω
q · ∇A−1

0 θ̃dx (3.21)

and

I =
κ2

4
‖θ̃‖2 +

1

2
‖q‖2 +

1

2
‖A

− 1
2

0 χ̃t‖
2 + α‖χ̃t‖

2 +
1

2
‖ξ̃t‖

2
HΓ

+
κ1

2
‖∇χ̃‖2

+κ1‖∇Γξ̃‖
2
HΓ

+
κ1K

′
2

2
‖ξ̃‖2HΓ

+ κ1K1

∫

Ω
F (χ)dx+ κ1K

′
1

∫

Γ
G(ξ)dS.
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By comparison, it is easy to verify that

Y(t) ≤ K7I(t), ∀ t ≥ 0,

which, together with (3.20), implies

d

dt
Y(t) +K8Y(t) ≤ K6(1 + e−t) ≤ 2K6, ∀ t ≥ 0.

As a result,

Y(t) ≤ Y(0)e−K8t +
2K6

K8
, ∀ t ≥ 0. (3.22)

Since the quantities 〈θ〉, 〈χ〉 and 〈χt〉 are uniformly bounded in time, we can deduce that

Y +K9 ≥ K10

(
‖θ̃‖2 + ‖q‖2 + ‖∇χ̃‖2 + ‖χ̃‖2 + ‖∇Γξ̃‖

2
HΓ

+ ‖ξ̃‖2HΓ
+ ‖A

− 1
2

0 χ̃t‖
2

)
, (3.23)

where the constants K9,K10 > 0 may depend on Ω, 〈θ0〉, 〈χ0〉 and 〈χ1〉. Then, from (3.22) and

(3.23) one infers estimate (3.13). The proof is complete.

Higher-order estimates. In what follows, we derive the uniform-in-time estimate in the

higher-order space Y. For the sake of simplicity, from now on we shall indicate by C or Ci, i ∈ N,

a positive constant that may vary from line to line and also in the same line.

Lemma 3.2. Let the assumptions (H1)–(H3) be satisfied. Suppose (θ(t),q(t), χ(t), ξ(t), χt(t))

is a weak solution of system (2.1)–(2.7) with initial data (θ0,q0, χ0, ξ0, χ1) ∈ Y. Then we have

‖(θ(t),q(t), χ(t), ξ(t), χt(t))‖Y ≤ C(‖(θ0,q0, χ0, ξ0, χ1)‖Y, ∀ t ≥ 0. (3.24)

Proof. We (formally) differentiate (3.5)–(3.10) with respect to time and we get

(θ̃ + χ̃)tt + ∇ · qt = 0, in Ω × (0,∞), (3.25)

qtt + qt = −∇θ̃t, in Ω × (0,∞), (3.26)

χ̃ttt + χ̃tt − ∆µ̃t = 0, in Ω × (0,∞), (3.27)

µ̃t = −∆χ̃t + αχ̃tt + f ′(χ)χt − θ̃t, in Ω × (0,∞), (3.28)

ξ̃tt − ∆Γξ̃t + g′(ξ)ξt + ∂ν χ̃t −Q1(t) = 0, on Γ × (0,∞), (3.29)

qt · ν = ∂ν µ̃t = 0, on Γ × (0,∞), (3.30)

θ̃t(0) = −χ1 + 〈χ1〉 − ∇q0, qt(0) = −q0 −∇θ0, , in Ω, (3.31)

χ̃t(0) = χ1 − 〈χ1〉, χ̃tt(0) = −χ1 + 〈χ1〉 + ∆(−∆χ0 + αχ1 + f(χ0) − θ0) (3.32)

ξ̃t(0) = ∆Γξ0 − g(ξ0) − ∂νχ0 − 〈χ1〉, in Ω. (3.33)

It is easy to verify that the initial datum can be controlled as follows

‖(θ̃t(0),qt(0), χ̃t(0), ξ̃t(0), χ̃tt(0)‖X ≤ C‖(θ0,q0, χ0, ξ0, χ1)‖Y, (3.34)

where C is a constant depending on Ω and Γ.

Multiplying (3.25) and (3.26) by θ̃t and qt, respectively, and then integrating over Ω, we

obtain

1

2

d

dt
‖θ̃t‖

2 −

∫

Ω
qt · ∇θ̃tdx = −

∫

Ω
χ̃ttθ̃tdx, (3.35)
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1

2

d

dt
‖qt‖

2 + ‖qt‖
2 +

∫

Ω
qt · ∇θ̃tdx = 0, (3.36)

Multiplying (3.27) by A−1
0 χ̃tt and integrating over Ω, we have

1

2

d

dt

[
‖A

− 1
2

0 χ̃tt‖
2 + ‖∇χ̃t‖

2 +

∫

Ω
(f ′(χ) + L)χ̃2

t dx+ ‖∇Γξ̃t‖
2
HΓ

+

∫

Γ
(g′(ξ) + L)ξ̃2t dS

]

+‖A
− 1

2
0 χ̃tt‖

2 + α‖χ̃tt‖
2 + ‖ξ̃tt‖

2
HΓ

=

∫

Ω
θ̃tχ̃ttdx+

1

2

∫

Ω
f ′′(χ)χtχ̃

2
tdx−Q1

∫

Ω
f ′(χ)χ̃ttdx+

1

2

∫

Γ
g′′(ξ)ξtξ̃

2
t dS

−Q1

∫

Γ
g′(ξ)ξ̃ttdS + L

∫

Ω
χ̃tχ̃tt + L

∫

Γ
ξ̃tξ̃ttdS +Q1

∫

Γ
ξ̃ttdS, (3.37)

where we have used the identities
∫

Ω
f ′(χ)χtχ̃ttdx =

1

2

d

dt

∫

Ω
f ′(χ)χ̃2

t dx−
1

2

∫

Ω
f ′′(χ)χtχ̃

2
tdx+Q1

∫

Ω
f ′(χ)χ̃ttdx,

∫

Γ
g′(ξ)ξtξ̃ttdS =

1

2

d

dt

∫

Γ
g′(ξ)ξ̃2t dS −

1

2

∫

Γ
g′′(ξ)ξtξ̃

2
t dS +Q1

∫

Γ
g′(ξ)ξ̃ttdS.

Here L ≥ c0 + 1 is a positive constant such that f ′(y) + L ≥ 1 and g′(y) + L ≥ 1 (cf. Remark

2.1). On the other hand, multiplying (3.27) by A−1
0 χ̃t and integrating over Ω, we get

d

dt

(∫

Ω
A

− 1
2

0 χ̃ttA
− 1

2
0 χ̃tdx+

1

2
‖A

− 1
2

0 χ̃t‖
2 +

α

2
‖χ̃t‖

2 +
1

2
‖ξ̃t‖

2
HΓ

)

−‖A
− 1

2
0 χ̃tt‖

2 + ‖∇χ̃t‖
2 + ‖∇Γξ̃t‖

2
HΓ

+

∫

Ω
(f ′(χ) + L)χ̃2

tdx+

∫

Γ
(g′(ξ) + L)ξ̃2t dS

= −Q1

∫

Ω
f ′(χ)χ̃tdx−Q1

∫

Γ
g′(ξ)ξ̃tdS +

∫

Ω
θ̃tχ̃tdx+Q1

∫

Γ
ξ̃tdS

+L(‖χ̃t‖
2 + ‖ξ̃t‖

2
HΓ

). (3.38)

Finally, using the equations (3.5) and (3.6) we obtain

d

dt

∫

Ω
qt · ∇A

−1
0 θ̃tdx+ ‖θ̃t‖

2

=

∫

Ω
qtt · ∇A

−1
0 θ̃tdx+

∫

Ω
qt · ∇A

−1
0 θ̃ttdx+ ‖θ̃t‖

2

= −

∫

Ω
qt · ∇A

−1
0 θ̃tdx−

∫

Ω
qt · ∇A

−1
0 χ̃ttdx+ ‖A

− 1
2

0 ∇ · qt‖
2. (3.39)

Multiplying (3.38), (3.39) by some small constants κ3, κ4 > 0 (to be chosen later), respectively,

and adding the resultants with (3.35)–(3.37), one deduces that

d

dt
Y1(t) + I1(t) ≤ R1(t), ∀ t ≥ 0, (3.40)

where

Y1 =
1

2
‖θ̃t‖

2 +
1

2
‖qt‖

2 +
1

2
‖A

− 1
2

0 χ̃tt‖
2 +

1

2
‖∇χ̃t‖

2 +
1

2
‖∇Γξ̃t‖

2
HΓ

+
1

2

∫

Ω
(f ′(χ) + L)χ̃2

t dx+
1

2

∫

Γ
(g′(ξ) + L)ξ̃2t dS − κ3

∫

Ω
A

− 1
2

0 χ̃ttA
− 1

2
0 χ̃tdx
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+
κ3

2
‖A

− 1
2

0 χ̃t‖
2 +

κ3α

2
‖χ̃t‖

2 +
κ3

2
‖ξ̃t‖

2
HΓ

+κ4

∫

Ω
qt · ∇A

−1
0 θ̃tdx, (3.41)

I1 = ‖qt‖
2 + (1 − κ3)‖A

− 1
2

0 χ̃tt‖
2 + α‖χ̃tt‖

2 + ‖ξ̃tt‖
2
HΓ

+κ3‖∇χ̃t‖
2 + κ3‖∇Γξ̃t‖

2
HΓ

+ κ3

∫

Ω
(f ′(χ) + L)χ̃2

tdx

+κ3

∫

Γ
(g′(ξ) + L)ξ̃2t dS + κ4‖θ̃t‖

2 + κ4

∫

Ω
qt · ∇A

−1
0 θ̃tdx

+κ4

∫

Ω
qt · ∇A

−1
0 χ̃ttdx− κ4‖A

− 1
2

0 ∇ · qt‖
2 (3.42)

and

R1 =
1

2

∫

Ω
f ′′(χ)χtχ̃

2
tdx−Q1

∫

Ω
f ′(χ)χ̃ttdx+

1

2

∫

Γ
g′′(ξ)ξtξ̃

2
t dS

−Q1

∫

Γ
g′(ξ)ξ̃ttdS + L

∫

Ω
χ̃tχ̃tt + L

∫

Γ
ξ̃tξ̃ttdS +Q1

∫

Γ
ξ̃ttdS

−κ3Q1

∫

Ω
f ′(χ)χ̃tdx− κ3Q1

∫

Γ
g′(ξ)ξ̃tdS + κ3

∫

Ω
θ̃tχ̃tdx

+κ3Q1

∫

Γ
ξ̃tdS + κ3L(‖χ̃t‖

2 + ‖ξ̃t‖
2
HΓ

). (3.43)

Using the Hölder inequality and choosing a suitable L, for κ3, κ4 sufficiently small, we find

Y1 ≥ C1‖(θ̃t,qt, χ̃t, ξ̃t, χ̃tt)‖
2
X, (3.44)

I1 ≥ C2Y1 + α‖χ̃tt‖
2 + ‖ξ̃tt‖

2
HΓ
, (3.45)

where the constant C1, C2 may depend on Ω, Γ, α, κ3, κ4 and L.

Next, we estimate the reminder term R1. From Hölder inequality, Young’s inequality, the

Sobolev embedding theorem and the growth assumptions (H3) on f and g, it follows

R1 ≤ ‖f ′′(χ)‖L6(Ω)‖χt‖‖χ̃t‖
2
L6(Ω) + |Q1|‖f

′(χ)‖‖χ̃tt‖ + ‖g′′(ξ)‖L6(Γ)‖ξt‖‖ξ̃t‖
2
L6(Γ)

+|Q1|‖g
′(ξ)‖‖ξ̃tt‖ + L(‖χ̃t‖‖χ̃tt‖ + ‖ξ̃t‖HΓ

‖ξ̃tt‖HΓ
) + |Q1||Γ|

1
2‖ξ̃tt‖HΓ

+κ3|Q1|(‖f
′(χ)‖‖χ̃t‖ + ‖g′(ξ)‖HΓ

‖ξ̃t‖HΓ
) + κ3‖θ̃t‖‖χ̃t‖

+κ3|Q1||Γ|
1
2‖ξ̃t‖HΓ

+ κ3L(‖χ̃t‖
2 + ‖ξ̃t‖

2
HΓ

)

≤ ǫ(‖χ̃t‖
2
V + ‖ξ̃t‖

2
VΓ

+ ‖χ̃tt‖
2 + ‖ξ̃tt‖

2
HΓ

+ ‖θ̃t‖
2)

+Q1(‖(χ, ξ)‖H1)(‖χt‖
2‖χ̃t‖

2
V + ‖ξt‖

2‖ξ̃t‖
2
VΓ

)

+Q2(‖(χ, ξ)‖H1)|Q1|
2 + C(‖χ̃t‖

2 + ‖ξ̃t‖
2
HΓ

), (3.46)

where Q1,Q2 are certain monotone increasing functions. Taking ǫ sufficiently small, from the

above estimates (3.40)–(3.46) we infer

d

dt
Y1 + C3Y1 ≤ Q1(‖(χ, ξ)‖H1)(‖χt‖

2 + ‖ξt‖
2)Y1

+Q2(‖(χ, ξ)‖H1)|Q1|
2 + C(‖χ̃t‖

2 + ‖ξ̃t‖
2
HΓ

), (3.47)
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where C3 is a small constant that may depend on Ω, Γ, α, κ3, κ4 and L, but not on the solution.

Besides, from the integrability of estimate (5.18) (see Section 5) we easily see that

∫ ∞

0
‖χ̃t‖

2 + ‖ξ̃t‖
2
HΓ
dt < +∞. (3.48)

Using the dissipative estimate (3.13) (so that Q1(‖(χ, ξ)‖H1),Q2(‖(χ, ξ)‖H1) are uniformly bounded

for all time) and the Gronwall-type lemma (see e.g., [25, Lemma 2.2]), then from (3.47) we infer

Y1(t) ≤ C4Y1(0)e−
C3t
2 + C5, ∀ t ≥ 0,

where C4, C5 may depend on ‖(θ0,q0, χ0, ξ0, χ1)‖X. Then, by the definition of Y1 and (3.44), we

have

‖(θ̃t(t),qt(t), χ̃t(t), ξ̃t(t), χ̃tt(t))‖X ≤ C(‖(θ0,q0, χ0, ξ0, χ1)‖Y), ∀ t ≥ 0, (3.49)

which also easily yields that

‖(θt(t),qt(t), χt(t), ξt(t), χtt(t))‖X ≤ C(‖(θ0,q0, χ0, ξ0, χ1)‖Y), ∀ t ≥ 0. (3.50)

Using the estimate (3.49), from the equations (3.5)–(3.6) we deduce

‖∇θ(t)‖ ≤ ‖qt(t)‖ + ‖q(t)‖ ≤ C, ‖∇ · q(t)‖ ≤ ‖θ̃t(t)‖ + ‖χ̃t(t)‖ ≤ C. ∀ t ≥ 0,

Applying the curl operator to (3.6), we have

(∇× q)t(t) + (∇× q)(t) = 0, ∀ t ≥ 0

(∇× q)(0) = ∇× q0,

so that ‖(∇ × q)(t)‖ ≤ ‖∇ × q0‖, for all t ≥ 0. Combining the above estimates and (3.13), we

get

‖θ(t)‖V ≤ C, ‖q(t)‖H1(Ω) ≤ C, ∀ t ≥ 0.

It remains to prove the estimate of (χ, ξ) in H
3. To this purpose, we rewrite (2.4) and (2.6) as

follows

−∆χ = µ− f(χ) − αχt + θ := h1, (3.51)

−∆Γξ + ∂νχ+ βξ = −ξt − g(ξ) + βξ := h2, (3.52)

where β > 0 is a positive constant. Since µ satisfies (2.3) and (2.5), so that

− ∆µ = −(χtt + χt), in Ω × (0,∞), ∂νµ = 0, on Γ × (0,∞),

then from estimate (3.50) we infer

‖µ‖V ≤ C(‖χtt + χt‖V ∗ + |〈µ〉|

≤ C + |〈f(χ)〉| + α|〈χt〉| + |〈θ〉| +
1

|Ω|

(∣∣∣∣
∫

Γ
ξtdS

∣∣∣∣+

∣∣∣∣
∫

Γ
g(ξ)dS

∣∣∣∣
)

≤ C.

As a result, we have

‖h1(t)‖ ≤ C, ‖h2(t)‖HΓ
≤ C, ∀ t ≥ 0.
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Now we apply the regularity theorem [36, Lemma A.1] to the elliptic problem (4.25)–(4.26) (see

Section 4), obtaining

‖(χ(t), ξ(t))‖H2 ≤ C‖(h1(t), h2(t))‖H ≤ C, ∀ t ≥ 0.

Then, from the above estimate and Sobolev embedding theorem we infer

‖h1(t)‖V ≤ C, ‖h2(t)‖VΓ
≤ C, ∀ t ≥ 0.

An application of the higher-order regularity theorem [36, Corollary A.1] to the elliptic problem

(4.25)–(4.26) yields

‖(χ(t), ξ(t))‖H3 ≤ C‖(h1(t), h2(t))‖H1 ≤ C, ∀ t ≥ 0.

Collecting all the above estimates, we have shown that (θ(t),q(t), χ(t), ξ(t), χt) is uniformly

bounded in Y and the proof is complete.

3.2 Existence and uniqueness

Based on the uniform estimates obtained in the previous section, we are able to prove the

existence and uniqueness of suitable solutions to problem (2.1)–(2.7).

Theorem 3.1. Suppose that assumptions (H1)–(H3) are satisfied. Then we have

(i) For any initial datum (θ0,q0, χ0, ξ0, χ1) ∈ Y, problem (2.1)–(2.7) admits a unique weak

solution.

(ii) For any initial datum (θ0,q0, χ0, ξ0, χ1) ∈ X, problem (2.1)–(2.7) admits a unique energy

solution.

Proof. (i) Based on the uniform dissipative estimate (3.24), it is standard to prove the existence

of global weak solutions to problem (2.1)–(2.7) by using a Faedo–Galerkin scheme as in [23,24]

for the Cahn-Hilliard equation subject to dynamic boundary conditions. The details are omitted

here.

Concerning the uniqueness, it suffices to show the continuous dependence estimate for two

solutions (θ(i),q(i), χ(i), ξ(i), χ
(i)
t ) corresponding to the two sets of data (θ

(i)
0 ,q

(i)
0 , χ

(i)
0 , ξ

(i)
0 , χ

(i)
1 )

(i = 1, 2). For this purpose, we write down the system for

(θ̄, q̄, χ̄, ξ̄, χ̄t) = (θ̃(1),q(1), χ̃(1), ξ̃(1), χ̃
(1)
t ) − (θ̃(2),q(2), χ̃(2), ξ̃(2), χ̃

(2)
t ),

such that

(θ̄ + χ̄)t + ∇ · q̄ = 0, in Ω × (0,∞), (3.53)

q̄t + q̄ = −∇θ̄, in Ω × (0,∞), (3.54)

χ̄tt + χ̄t − ∆(µ̃(1) − µ̃(2)) = 0, in Ω × (0,∞), (3.55)

µ̃(1) − µ̃(2) = −∆χ̄+ αχ̄t + f(χ(1)) − f(χ(2)) − θ̄, in Ω × (0,∞), (3.56)

q̄ · ν = ∂ν µ̃
(i) = 0, i = 1, 2, on Γ × (0,∞), (3.57)

ξ̄t − ∆Γξ̄ + ∂ν χ̄+ g(ξ(1)) − g(ξ(2)) + Q̄1 = 0, on Γ × (0,∞), (3.58)

where Q̄1 = (〈χ
(1)
1 〉 − 〈χ

(2)
1 〉)e−t.
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The regularity of weak solutions allows us to multiply (3.53) by θ̄, (3.54) by q̄ and (3.55)

by A−1
0 χ̄t, respectively, and then integrate over Ω. Adding the resulting equations together, we

have

d

dt

(
1

2
‖θ̄‖2 +

1

2
‖q‖2 +

1

2
‖A

− 1
2

0 χ̄t‖
2 +

1

2
‖∇χ̄‖2 +

1

2
‖∇Γξ̄‖

2

)

+‖q̄‖2 + ‖A
− 1

2
0 χ̄t‖

2 + α‖χ̄t‖
2 + ‖ξ̄t‖

2
HΓ

= −Q̄1

∫

Γ
ūtdS −

∫

Ω
(f(χ(1)) − f(χ(2)))χ̄tdx−

∫

Γ
(g(ξ(1)) − g(ξ(2)))ξ̄tdS. (3.59)

Using the uniform estimates (3.13) for the two solutions, the growth assumption (H3) and

Sobolev embedding theorems, we infer

−

∫

Ω
(f(χ(1)) − f(χ(2)))χ̄tdx ≤ ‖f ′‖

L
2(p+2)

p (Ω)
‖χ̄‖Lp+2(Ω)‖χ̄t‖

≤
α

2
‖χ̄t‖

2 + C‖χ̄‖2V

≤
α

2
‖χ̄t‖

2 + C‖∇χ̄‖2.

Similarly, we have

−

∫

Γ
(g(ξ(1)) − g(ξ(2)))ξ̄tdS ≤

1

2
‖ξ̄t‖

2
HΓ

+ C‖ξ̄‖2VΓ

≤
1

2
‖ξ̄t‖

2
HΓ

+ C‖∇Γξ̄‖
2
HΓ

+ C‖∇χ̄‖2.

Moreover, by Hölder inequality and Young inequality, we obtain

− Q̄1

∫

Γ
ξ̄tdS ≤

1

2
‖ξ̄t‖

2
HΓ

+ C(Q̄1)
2.

Therefore, we find

d

dt

(
1

2
‖θ̄‖2 +

1

2
‖q‖2 +

1

2
‖A

− 1
2

0 χ̄t‖
2 +

1

2
‖∇χ̄‖2 +

1

2
‖∇Γξ̄‖

2

)

≤ C‖∇χ̄‖2 + C‖∇Γξ̄‖
2
HΓ

+ C(Q̄1)
2.

Then, by the Gronwall lemma and the conservation properties (3.1)–(3.2), we can deduce

‖((θ(1) − θ(2))(t), (q(1) − q(2))(t), (χ(1) − χ(2))(t), (ξ(1) − ξ(2))(t), (χ
(1)
t − χ

(2)
t )(t))‖X

≤ C1e
C2T ‖(θ

(1)
0 − θ

(2)
0 ,q

(1)
0 − q

(2)
0 , χ

(1)
0 − χ

(2)
0 , ξ

(1)
0 − ξ

(2)
0 , χ

(1)
1 − χ

(2)
1 )‖X, (3.60)

for any t ∈ [0, T ], where C1, C2 only depend on the X-norms of the initial data, α, |Ω| and |Γ|.

This completes the proof for uniqueness.

(ii) We note that in the continuous dependence estimate for weak solutions (3.60), the con-

stant C1, C2 only depend on the X-norms of the initial data. This fact enables us to prove

the existence and uniqueness of energy solutions to problem (2.1)–(2.7) by using the standard

density argument. The details are left to the interested reader.

A straightforward consequence of the above result yields
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Corollary 3.1. Suppose that assumptions (H1)–(H3) are satisfied.

(i) For any initial datum (θ0,q0, χ0, ξ0, χ1) ∈ Y, the unique global weak solution to problem

(2.1)–(2.7) defines a semigroup S1(t) : Y → Y such that

S1(t)(θ0,q0, χ0, ξ0, χ1) = (θ(t),q(t), χ(t), ξ(t), χt(t)), ∀ t ≥ 0.

(ii) For any initial datum (θ0,q0, χ0, ξ0, χ1) ∈ X, the unique global energy solution to problem

(2.1)–(2.7) defines a strongly continuous semigroup S2(t) : X → X such that

S2(t)(θ0,q0, χ0, ξ0, χ1) = (θ(t),q(t), χ(t), ξ(t), χt(t)), ∀ t ≥ 0.

Remark 3.1. The estimate (3.60) provides a continuous dependence result in the (lower) X-

norm. As a consequence, S1(t) turns out to be a closed semigroup in the sense of [42].

4 Global attractor for energy solutions

In this section, we study the associated infinite-dimensional dynamical system defined by the

semigroup S2(t) on X. More precisely, we will prove that S2(t) possesses the global attractor in

the phase space

XM,M ′ = {(z1, z2, z3, z4, z5) ∈ X : |〈z1 + z3〉| ≤M, |〈z3 + z5〉| ≤M, |z5| ≤M ′},

endowed with the metric induced by the norm on X. Here M,M ′ ≥ 0 are arbitrary constants.

We note that the choice of the phase space is due to the constraints (3.1), (3.2) and the decay

property (3.3).

We now state the main result of this section.

Theorem 4.1. Suppose that (H1)–(H3) are satisfied. The semigroup S2(t) defined by the global

energy solutions to problem (2.1)–(2.7) on XM,M ′ possesses a compact connected global attractor

A which is bounded in Y.

The proof of Theorem 4.1 consists of several steps. First, we show that the restriction of

S2(t) on XM,M ′ admits a bounded absorbing set.

Proposition 4.1. There exists R0 > 0 such that the ball B0 in XM,M ′ of radius R0 centered at

zero is absorbing for the semigroup S(t). Namely, for every bounded set B ⊂ XM,M ′, there exists

t0 = t0(B,M,M ′) such that

S2(t)B ⊂ B0, ∀ t ≥ t0.

Proof. For every bounded set B ⊂ XM,M ′, consider an initial datum (θ0,q0, χ0, ξ0, χ1) ∈ B ⊂

XM,M ′ . Then we have

‖(θ0,q0, χ0, ξ0, χ1)‖X ≤ R,

where R > 0 is a constant depending on B. Besides, we observe that

|〈θ0〉| ≤ 2M +M ′, |〈χ0〉| ≤M +M ′, |〈χ1〉| ≤M ′.

Thus, from the definition of Y (cf. (3.21)) we infer

Y(0) ≤ C(R,M,M ′).

16



It follows from (3.22) and (3.23) that there exists t0 = t0(R,M,M ′) > 0 such that

‖θ(t)‖2 + ‖q(t)‖2 + ‖χ(t)‖2V + ‖ξ(t)‖2VΓ
+ ‖χt(t)‖

2
V ∗ ≤ R0, ∀ t ≥ t0,

where R0 may depend on M and M ′ but is independent of R and t. The proof is complete.

Next, we study the precompactness of trajectories in X.

Proposition 4.2. Suppose that assumptions (H1)–(H3) are satisfied. Let (θ,q, χ, ξ, χt) be the

unique energy solution to problem (2.1)–(2.7) given by Theorem 3.1-(ii), with initial datum

(θ0,q0, χ0, ξ0, χ1) ∈ X. Then the orbit
⋃

t≥0

(θ,q, χ, ξ, χt)(t)

is precompact in X.

Proof. Similar to [27], from the assumption (H2), Remark 2.1(1) and the Sobolev embedding

theorem, it follows that there exists a sufficient large constant γ0 > c0 such that

1

2
‖∇z‖2 + (γ0 − 2c0)‖z‖2 ≥

∫

Ω
f ′(ζ)z2dx, ∀ z, ζ ∈ V. (4.1)

Similarly, we can find a sufficient large constant γ1 > c1 such that

1

2
‖∇z‖2HΓ

+ (γ1 − 2c1)‖z‖2HΓ
≥

∫

Γ
g′(ζ)z2dS, ∀ z, ζ ∈ VΓ. (4.2)

We introduce

f̂(y) = f(y) + γ0y, ĝ(y) = g(y) + γ1y, y ∈ R. (4.3)

It is clear that f̂ , ĝ are monotone nondecreasing functions in R. Then we split the solution to

problem (2.1)–(2.7) as follows:

(θ,q, χ, ξ, χt)(t) = (θd,qd, χd, ξd, χd
t )(t) + (θc,qc, χc, ξc, χc

t)(t), (4.4)

where 



(θd + χd)t + ∇ · qd = 0, in Ω × (0,∞),

qd
t + qd + ∇θd = 0, in Ω × (0,∞),

χd
tt + χd

t +Aµd = 0, in Ω × (0,∞),

µd = Aχd + f̂(χ) − f̂(χc) + αχd
t − θd, in Ω × (0,∞),

qd · ν = ∂νµ
d = 0, on Γ × (0,∞),

ξdt − ∆Γξ
d + ∂νχ

d + ĝ(ξ) − ĝ(ξc) = 0, on Γ × (0,∞),

θd(0) = θ̃0, q
d(0) = q0, χ

d(0) = χ̃0, ξ
d(0) = ξ0, χ

d
t (0) = χ̃1, on Ω,

(4.5)

and 



(θc + χc)t + ∇ · qc = 0, in Ω × (0,∞),

qc
t + qc + ∇θc = 0, in Ω × (0,∞),

χc
tt + χc

t +Aµc = 0, in Ω × (0,∞),

µc = Aχc + f̂(χc) + αχc
t − θc − γ0χ, in Ω × (0,∞),

qc · ν = ∂νµ
c = 0, on Γ × (0,∞),

ξct − ∆Γξ
c + ∂νχ

c + ĝ(ξc) = γ1ξ, on Γ × (0,∞),

θc(0) = 〈θ0〉, q
c(0) = 0, χc(0) = 〈χ0〉, ξ

c(0) = 0, χc
t(0) = 〈χ1〉, on Ω.

(4.6)
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In (4.6), we consider (χ, ξ) ∈ L∞(0,∞;H1) as given. Then, in analogy to the proof of Lemma

3.1, we can prove that problem (4.6) admits a unique global solution such that

‖(θc,qc, χc, ξc, χc
t)(t)‖X ≤ C, ∀ t ≥ 0, (4.7)

∫ t+1

t

(α‖χc
t(τ)‖2 + ‖ξct (τ)‖2HΓ

+ ‖(θc,qc, χc, ξc, χc
t)(τ)‖2X)dτ ≤ C, ∀ t ≥ 0. (4.8)

Due to (3.13) and the decomposition (4.4), we obtain similar uniform estimates for the decay

part (θd,qd, χd, ξd, χd
t )(t).

Next, we show that ‖(θd,qd, χd, ξd, χd
t )(t)‖X indeed decays to zero exponentially fast as time

tends to infinity. Due to the choice of initial data, it is easy to verify that

〈θd(t)〉 = 〈χd(t)〉 = 〈χd
t (t)〉 = 0, ∀ t ≥ 0. (4.9)

As in the proof of Lemma 3.1, in (4.5) we multiply the first equation by θd, the second equation

by qd, the third equation by A−1
0 (χd

t + κ1χ
d) and we integrate over Ω. Then, summing up all

the resulting equations and adding the functional κ2(qd,∇A−1
0 θd) (κ1, κ2 are positive constants

to be determined later), we have

d

dt
Yd(t) + Id(t) ≤ Rd(t), ∀ t ≥ 0, (4.10)

where

Yd =
1

2
‖θd‖2 +

1

2
‖qd‖2 +

1

2
‖A

− 1
2

0 χd
t ‖

2 +
1

2
‖∇χd‖2 +

∫

Ω
(f̂(χ) − f̂(χc))χddx

−
1

2

∫

Ω
f̂ ′(χ)(χd)2dx+

1

2
‖∇Γξ

d‖2HΓ
+
κ1

2
‖ξd‖2HΓ

+

∫

Γ
(ĝ(ξ) − ĝ(ξc))ξddS −

1

2

∫

Γ
ĝ′(ξ)(ξd)2dS + κ1

∫

Ω
A

− 1
2

0 χd
tA

− 1
2

0 χddx

+
κ1

2
‖A

− 1
2

0 χd‖2 +
κ1α

2
‖χd‖2 + κ2

∫

Ω
q · ∇A−1

0 θddx,

Id = ‖qd‖2 + (1 − κ1)‖A
− 1

2
0 χd

t ‖
2 + α‖χd

t ‖
2 + ‖ξdt ‖

2
HΓ

+ κ1‖∇χ
d‖2

+κ1‖∇Γξ
d‖2HΓ

+ κ1

(∫

Ω
(f̂(χ) − f̂(χc))χddx+

∫

Γ
(ĝ(ξ) − ĝ(ξc))ξddS

)

+κ2‖θ
d‖2

and

Rd =

∫

Ω
(f̂ ′(χ) − f̂ ′(χc))χc

tχ
ddx−

∫

Ω
f̂ ′′(χ)χt(χ

d)2dx+

∫

Γ
(ĝ′(ξ) − ĝ′(ξc))ξct ξ

ddS

−

∫

Ω
ĝ′′(ξ)ξt(ξ

d)2dS − κ2

∫

Ω
qd · ∇A−1

0 θddx− κ2

∫

Ω
qd · ∇A−1

0 χd
t dx

+κ2‖A
− 1

2
0 ∇ · qd‖2.

We note that f̂ and ĝ are monotone nondecreasing functions. Moreover, if γ0, γ1 are sufficiently

large, we have
(∫

Ω
(f̂(χ) − f̂(χc))χddx+

∫

Γ
(ĝ(ξ) − ĝ(ξc))ξddS

)
≥ ‖χd‖2 + ‖ud‖2HΓ

, (4.11)
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which implies that

Id(t) ≥ C‖(θd,qd, χd, ξd, χd
t )‖2X.

We now estimate Rd(t). First, we observe that the last three terms can be evaluated exactly

as in (3.19). Using the uniform estimate (3.13), (4.7), (4.9), the Sobolev embedding inequality

and the Poincaré inequality, we deduce that, for the case d = 3, there holds (the case d = 2 is

similar)

∫

Ω
(f̂ ′(χ) − f̂ ′(χc))χc

tχ
ddx−

∫

Ω
f̂ ′′(χ)χt(χ

d)2dx

≤ C(1 + ‖f ′′‖L6(Ω))(‖χ
c
t‖ + ‖χt‖)‖χd‖2L6(Ω)

≤
κ1

2
‖∇χd‖2 + C(‖χc

t‖
2 + ‖χt‖

2)‖∇χd‖2.

Similarly, we have

∫

Γ
(ĝ′(ξ) − ĝ′(ξc))ξct ξ

ddS −

∫

Ω
ĝ′′(ξ)ξt(ξ

d)2dS

≤
κ1

2
(‖∇Γξ

d‖2HΓ
+ ‖ξd‖2HΓ

)

+C(‖ξct‖
2
HΓ

+ ‖ξt‖
2
HΓ

)(‖∇Γξ
d‖2HΓ

+ ‖ξd‖2HΓ
).

Due to (4.1) and (4.2), we get

∫

Ω
(f̂(χ) − f̂(χc))χddx−

1

2

∫

Ω
f̂ ′(χ)(χd)2dx

≥
1

2
(γ0 − 2c0)‖χd‖2 −

1

2

∫

Ω
f ′(χ)(χd)2dx

≥ −
1

4
‖∇χd‖2,

and ∫

Γ
(ĝ(ξ) − ĝ(ξc))ξddS −

1

2

∫

Γ
ĝ′(ξ)(ξd)2dS ≥ −

1

4
‖∇Γξ

d‖2HΓ
.

Then, taking κ1 and κ2 small enough, we can find η > 1 such that

η−1‖(θd,qd, χd, ξd, χd
t )‖2X ≤ Yd ≤ η‖(θd,qd, χd, ξd, χd

t )‖2X. (4.12)

Thus, from the above estimate and (4.10) we infer that there exist two positive constants K1,K2

such that the following estimate holds

d

dt
Yd +K1Y

d ≤ K2(‖χc
t‖

2 + ‖χt‖
2 + ‖ξct‖

2
HΓ

+ ‖ξt‖
2
HΓ

)Yd.

In (4.6), we take v = θ̃c in the first equation, v = qc in the second equation and w = A−1
0 χ̃c

t in

the third equation. Adding the results together, we obtain

d

dt

(
1

2
‖θ̃c‖2 +

1

2
‖qc‖2 +

1

2
‖A

− 1
2

0 χ̃c
t‖

2 +
1

2
‖∇χ̃c‖2 +

∫

Ω
F̂ (χc)dx

−γ0

∫

Ω
χχ̃cdx+

1

2
‖∇Γξ̃

c‖2HΓ
+

∫

Γ
Ĝ(ξc)dS − γ1

∫

Γ
ξξ̃cdS

)

+‖qc‖2 + ‖A
− 1

2
0 χ̃c

t‖
2 + α‖χ̃c

t‖
2 + ‖ξ̃ct‖

2
HΓ
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= 〈χc
t〉

∫

Ω
f̂(χc)dx− γ0

∫

Ω
χtχ̃

cdx+ 〈χc
t〉

∫

Γ
ĝ(ξc)dS − γ1

∫

Γ
utξ̃

cdS

−〈χc
t〉

∫

Γ
ξ̃ctdS. (4.13)

On account of the fact 〈χc
t(t)〉 = 〈χt(t)〉 = 〈χ1〉e

−t, for all t ≥ 0, and the uniform estimates

(3.13), (4.8), then, ∀ ǫ > 0, the right-hand side (4.13) can be evaluated as follows

〈χc
t(t)〉

∫
Ω f̂(χc)(t)dx− γ0

∫
Ω χt(t)χ̃

c(t)dx+ 〈χc
t(t)〉

∫
Γ ĝ(ξc)(t)dS

−γ1
∫
Γ ξt(t)ξ̃

c(t)dS − 〈χc
t(t)〉

∫
Γ ξ̃

c
t (t)dS

≤ |〈χ1〉|e
−t(‖f̂(χc)(t)‖L1(Ω) + ‖ĝ(ξc)(t)‖L1(Γ) + ‖ξ̃ct (t)‖L1(Γ))

+C‖χt(t)‖‖χ̃
c(t)‖ + C‖ξt(t)‖HΓ

‖ξ̃c(t)‖HΓ

≤ 1
2‖ξ̃

c
t (t)‖

2
HΓ

+ ǫ + C
ǫ

(‖χt(t)‖
2 + ‖ξt(t)‖

2
HΓ

) + C(e−t + e−2t), ∀ t ≥ 0. (4.14)

As a result, for any ǫ > 0, we deduce from (4.13), (4.14) and (3.48) that
∫ t

s

α‖χ̃c
t(τ)‖2 + ‖ξ̃ct (τ)‖2HΓ

dτ ≤ ǫ(t− s) + Cǫ, ∀ t > s > 0,

from which, combining with estimate (3.48), we infer, for any ǫ > 0,
∫ t

s

K2(‖χ
c
t‖

2 + ‖χt‖
2 + ‖ξct‖

2
HΓ

+ ‖ξt‖
2
HΓ

)dτ

≤ ǫ(t− s) + Cǫ, ∀ t > s > 0. (4.15)

Then, an application of the Gronwall-type lemma (see e.g., [25, Lemma 2.2]) allows to conclude

that

Yd(t) ≤ CY(0)e−
K1
2

t, ∀ t ≥ 0, (4.16)

which, together with (4.12), yields the exponential decay of (θd,qd, χd, ξd, χd
t )(t) in X.

Finally, we prove that (θc,qc, χc, ξc, χc
t)(t) is bounded in a space that can be compactly

embedded into X. To this aim, we (formally) differentiate (4.6) with respect to time to get




(θct + χc
t)t + ∇ · qc

t = 0, in Ω × (0,∞),

qc
tt + qc

t + ∇θct = 0, in Ω × (0,∞),

χc
ttt + χc

tt +Aµct = 0, in Ω × (0,∞),

µct = Aχc
t + f̂ ′(χc)χc

t + αχc
tt − θct − γ0χt, in Ω × (0,∞),

qc
t · ν = ∂νµ

c
t = 0, on Γ × (0,∞),

ξctt − ∆Γξ
c
t + ∂νχ

c
t + ĝ′(ξc)ξct = γ1ξt, on Γ × (0,∞),

θct (0) = 0, qc
t(0) = 0, χc

t(0) = 〈χ1〉, in Ω,

ξct (0) = −ĝ(0) + γ1u0, χ
c
tt(0) = 〈χ1〉 + γ0Aχ0, in Ω.

(4.17)

We recall that

〈χc
t(t)〉 = 〈χ1〉e

−t = Q1(t), 〈θct (t)〉 = 〈χc
tt(t)〉 = −〈χc

t(t)〉 = −Q1(t), t ≥ 0. (4.18)

In (4.17), we multiply the first equation by θ̃ct and the second equation by qc
t . Adding the

resulting equations together, we get

1

2

d

dt
(‖θ̃ct‖

2 + ‖qc
t‖

2) + ‖qc
t‖

2 = −

∫

Ω
χ̃c
ttθ̃

c
tdx. (4.19)

20



Multiplying the third equation of (4.6) by A−1
0 χ̃c

tt an integrating over Ω, we obtain

d

dt

(
1

2
‖A

− 1
2

0 χ̃c
tt‖

2 +
1

2
‖∇χ̃c

t‖
2 +

1

2
‖∇Γξ̃

c
t‖

2
HΓ

+
1

2

∫

Ω
f̂ ′(χc)(χ̃c

t)
2dx+

1

2

∫

Γ
ĝ′(ξc)(ξ̃ct )

2dS

)

+‖A
− 1

2
0 χ̃c

tt‖
2 + α‖χ̃c

tt‖
2 + ‖ξ̃ctt‖

2
HΓ

=
1

2

∫

Ω
f̂ ′′(χc)χc

t(χ̃
c
t)

2dx+
1

2

∫

Γ
ĝ′′(ξc)ξct (ξ̃

c
t )

2dS + γ0

∫

Ω
χ̃tχ̃

c
ttdx+ γ1

∫

Γ
ξtξ̃

c
ttdS

−Q1

∫

Ω
f̂ ′(χc)χ̃c

ttdx−Q1

∫

Γ
ĝ′(ξc)ξ̃cttdS +

∫

Ω
χ̃c
ttθ̃

c
tdx+Q1

∫

Γ
ξ̃cttdS. (4.20)

On the other hand, multiplying the third equation of (4.6) by A−1
0 χ̃c

t , after an integration by

parts we get

d

dt

(∫

Ω
A

− 1
2

0 χ̃c
ttA

− 1
2

0 χ̃c
tdx+

1

2
‖A

− 1
2

0 χ̃c
t‖

2 +
α

2
‖χ̃c

t‖
2 +

1

2
‖ξ̃ct‖

2
HΓ

)

−‖A
− 1

2
0 χ̃c

tt‖
2 + ‖∇χ̃c

t‖
2 +

∫

Ω
f̂ ′(χc)(χ̃c

t)
2dx+ ‖∇Γξ̃

c
t‖

2
HΓ

+

∫

Γ
ĝ′(ξc)(ξct )

2dS

= Q1

∫

Ω
f̂ ′(χc)χ̃c

tdx+

∫

Ω
θ̃ct χ̃

c
tdx+ γ0

∫

Ω
χ̃tχ̃

c
tdx

+Q1

∫

Γ
ĝ(ξc)ξ̃ctdS +Q1

∫

Γ
ξ̃ctdS + γ1

∫

Γ
ξtξ̃

c
tdS. (4.21)

On the other hand, we have

d

dt

∫

Ω
qc
t · ∇A

−1
0 θ̃ctdx+ ‖θ̃ct‖

2

=

∫

Ω
qc
tt · ∇A

−1
0 θ̃ctdx+

∫

Ω
qc
t · ∇A

−1
0 θ̃cttdx+ ‖θ̃ct‖

2

= −

∫

Ω
qc
t · ∇A

−1
0 θ̃ctdx−

∫

Ω
qc
t · ∇A

−1
0 χ̃c

ttdx+ ‖A
− 1

2
0 ∇ · qc

t‖
2. (4.22)

Multiplying (4.21) by κ1 > 0 and (4.22) by κ2 > 0, respectively, and adding the results with

(4.19) and (4.20), then we obtain, for any t ≥ 0,

d

dt
Yc(t) + Ic(t) ≤ Rc(t), (4.23)

where

Yc =
1

2
(‖θ̃ct‖

2 + ‖qc
t‖

2) +
1

2
‖A

− 1
2

0 χ̃c
tt‖

2 +
1

2
‖∇χ̃c

t‖
2 +

1

2
‖∇Γξ̃

c
t‖

2
HΓ

+
1

2

∫

Ω
f̂ ′(χc)(χ̃c

t)
2dx+

1

2

∫

Γ
ĝ′(ξc)(ξ̃ct )2dS + κ2

∫

Ω
qc
t · ∇A

−1
0 θ̃ctdx

+κ1

∫

Ω
A

− 1
2

0 χ̃c
ttA

− 1
2

0 χ̃c
tdx+

κ1

2
‖A

− 1
2

0 χ̃c
t‖

2 +
κ1α

2
‖χ̃c

t‖
2 +

κ1

2
‖ξ̃ct‖

2
HΓ
,

Ic = ‖qc
t‖

2 + (1 − κ1)‖A
− 1

2
0 χ̃c

tt‖
2 + α‖χ̃c

tt‖
2 + ‖ξ̃ctt‖

2
HΓ

+ κ1‖∇χ̃
c
t‖

2

+κ1

∫

Ω
f̂ ′(χc)(χ̃c

t)
2dx+ κ1‖∇Γξ̃

c
t‖

2
HΓ

+ κ1

∫

Γ
ĝ′(ξc)(ξct )

2dS + κ2‖θ̃
c
t‖

2

+κ2

∫

Ω
qc
t · ∇A

−1
0 θ̃ctdx+ κ2

∫

Ω
qc
t · ∇A

−1
0 χ̃c

ttdx− κ2‖A
− 1

2
0 ∇ · qc

t‖
2,
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and

Rc =
1

2

∫

Ω
f̂ ′′(χc)χc

t(χ̃
c
t)

2dx+
1

2

∫

Γ
ĝ′′(ξc)ξct (ξ̃

c
t )

2dS + γ0

∫

Ω
χ̃tχ̃

c
ttdx

+γ1

∫

Γ
ξtξ̃

c
ttdS −Q1

∫

Ω
f̂ ′(χc)χ̃c

ttdx−Q1

∫

Γ
ĝ′(ξc)ξ̃cttdS +Q1

∫

Γ
ξ̃cttdS

+κ1Q1

∫

Ω
f̂ ′(χc)χ̃c

tdx+ κ1

∫

Ω
θ̃ct χ̃

c
tdx+ κ1γ0

∫

Ω
χ̃tχ̃

c
tdx

+κ1Q1

∫

Γ
ĝ(ξc)ξ̃ctdS + κ1Q1

∫

Γ
ξ̃ctdS + κ1γ1

∫

Γ
ξtξ̃

c
tdS.

Since f̂ ′, ĝ′ ≥ 1, taking κ1, κ2 small enough, we still have

η−1
1 ‖(θ̃ct ,q

c
t , χ̃

c
t , ξ̃

c
t , χ̃

c
tt)‖

2
X ≤ Yc ≤ η1‖(θ̃ct ,q

c
t , χ̃

c
t , ξ̃

c
t , χ̃

c
tt)‖

2
X, (4.24)

and

Ic ≥ C1(‖(θ̃ct ,q
c
t , χ̃

c
t , ξ̃

c
t , χ̃

c
tt)‖

2
X) +

α

2
‖χ̃c

tt‖
2 +

1

2
‖ξ̃ctt‖

2
HΓ
.

Let us proceed to estimate Rc(t). Using the uniform bounds (3.13), (4.7) and (4.8), on account

of Hölder’s inequality and Young’s inequality, we infer

Rc ≤ C‖f̂ ′′(χc)‖L6(Ω)‖χ
c
t‖‖χ̃

c
t‖

2
L6(Ω) + C‖ĝ′′(ξc)‖L6(Γ)‖ξ

c
t‖HΓ

‖ξ̃ct‖
2
L6(Γ)

+γ0‖χ̃
c
tt‖‖χ̃t‖ + γ1‖ξ̃

c
tt‖HΓ

‖ξt‖HΓ

+Ce−t‖f̂ ′(χc)‖‖χ̃c
tt‖ + Ce−t‖ĝ′(ξc)‖HΓ

‖ξ̃ctt‖HΓ
+ Ce−t‖ξ̃ctt‖HΓ

+Cκ1e
−t‖f̂ ′(χc)‖‖χ̃c

t‖ + κ1‖θ̃
c
t‖‖χ̃

c
t‖ + κ1γ0‖χ̃t‖‖χ̃

c
t‖

+Cκ1e
−t‖ĝ(ξc)‖HΓ

‖ξ̃ct‖HΓ
+ Cκ1e

−t‖ξ̃ct‖HΓ
+ κ1γ1‖ξt‖HΓ

‖ξ̃ct‖HΓ
,

and then, for any t ≥ 0,

Rc(t) ≤
α

4
‖χ̃c

tt(t)‖
2 +

1

4
‖ξ̃ctt(t)‖

2
HΓ

+
κ2

2
‖θ̃ct (t)‖

2

+(λ+ Cλ−1‖χc
t(t)‖

2)‖χ̃c
t(t)‖

2
V + (λ+ Cλ−1‖ξct (t)‖

2
HΓ

)‖ξ̃ct (t)‖
2
VΓ

+C‖χ̃t(t)‖
2 + C‖χ̃c

t(t)‖
2 + C‖ξt(t)‖

2
HΓ

+C‖ξ̃ct (t)‖
2
HΓ

+ Ce−2t.

Taking λ > 0 small enough, from (4.23) we infer, for any t ≥ 0,

d

dt
Yc(t) +K1Y

c(t) ≤ K2(‖χ̃c
t(t)‖

2 + ‖ξ̃ct (t)‖
2
HΓ

)Yc(t) + Ce−2t

+C‖χ̃t(t)‖
2 + C‖χ̃c

t(t)‖
2 + C‖ξt(t)‖

2
HΓ

+ C‖ξ̃ct (t)‖
2
HΓ
.

Recalling (4.15), we can apply the Gronwall-type lemma (see e.g., [25, Lemma 2.2]) again to

conclude that

Yc(t) ≤ CYc(0)e−
K1
2

t + C, ∀ t ≥ 0,

which, together with (4.18) and (4.24), yields the uniform estimate of (θct ,q
c
t , χ

c
t , ξ

c
t , χ

c
tt)(t) in X.

Besides, on account of (4.7) we know that (θc,qc, χc, ξc, χc
t)(t) is also uniformly bounded in X.

We now use the same argument as in Lemma 3.2 to get higher-order estimate. From equation

(4.6) we deduce

‖∇θc‖ ≤ ‖qc
t‖ + ‖qc‖ ≤ C, ‖∇ · qc‖ ≤ ‖θct‖ + ‖χc

t‖ ≤ C.
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Since

(∇× qc)t(t) + (∇× qc)(t) = 0 for t > 0, ∇× qc(0) = 0,

we have (∇ × qc)(t) = 0 for all t ≥ 0. Thus, ‖qc‖H1(Ω) ≤ C. Next, we rewrite (4.6)(4) and

(4.6)(6) as follows

−∆χc = µc − f̂(χc) − αχc
t + θc + γ0χ := h1, (4.25)

−∆Γξ
c + ∂νχ

c + βξc = −ξct − ĝ(ξc) + βξc + γ1ξ := h2, (4.26)

where β > 0 is a positive constant. Since µc satisfies

− ∆µc = −(χc
tt + χc

t) in Ω × (0,∞), ∂νµ
c = 0 on Γ × (0,∞),

we see that

‖µc‖V ≤ C(‖χc
tt + χc

t‖V ∗ + |〈µc〉|

≤ C + |〈f̂(χc)〉| + α|〈χc
t〉| + |〈θc〉| + γ0|〈χ〉|

+
1

|Ω|

(∣∣∣∣
∫

Γ
ξctdS

∣∣∣∣+

∣∣∣∣
∫

Γ
ĝ(ξc)dS

∣∣∣∣+ γ1

∣∣∣∣
∫

Ω
ξdx

∣∣∣∣
)

≤ C.

Using estimate (4.7) and the same argument as in Lemma 3.2, we get

‖(χc(t), ξc(t))‖H3 ≤ C, ∀ t ≥ 0. (4.27)

Collecting the estimates above, we see that (θc,qc, χc, ξc, χc
t)(t) is uniformly bounded in Y, which

is compactly embedded into X.

In summary, we have proved that any trajectory starting from X can be decomposed into two

parts: one part decays exponentially fast to zero in X and the other part is uniformly bounded

in Y. Thus, the trajectory is precompact in X. The proof is complete.

Proof of Theorem 4.1. Proposition 4.1 implies that the semigroup S2(t) has a bounded

absorbing set in XM,M ′ . On the other hand, Proposition 4.2 yields the precompactness of

the trajectory and, in particular, the existence of a compact (exponentially) attracting set (cf.

(4.16) and (4.27)). Then the conclusion of Theorem 4.1 follows from a classical result in the

general theory of infinite dimensional dynamical systems (see, e.g., [1, Ch.2, Theorem 2.2] or [47,

Theorem I.1.1]).

Remark 4.1. Let us consider the closed semigroup S1(t) associated with weak solutions. The

existence of the global attractor can be established within the framework introduced in [42, The-

orem 2] by proving first the existence of an absorbing set in the phase space

YM,M ′ = {(z1, z2, z3, z4, z5) ∈ Y : |〈z1 + z3〉| ≤M, |〈z3 + z5〉| ≤M, |z5| ≤M ′}.

Then, thanks to decomposition (4.4), one can construct a positively invariant exponential at-

tracting set B which is bounded in YM,M ′. Using the same decomposition and taking the initial

data in B, it is possible to prove the asymptotic compactness of the semigroup in Y. The global

attractor coincides with the previous one, that is, we have a smoothness result for A. The details

are left to the interested reader.
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5 Convergence to equilibrium

In this section, we proceed to investigate the long-time behavior of single weak solution for any

given initial datum (θ0,q0, χ0, ξ0, χ1) ∈ Y.

5.1 Stationary problem and  Lojasiewicz–Simon inequality

First, we look at the corresponding stationary problem. The steady states (θ∞, χ∞, ξ∞) of

problem (2.1)–(2.7) satisfy the following elliptic boundary value problem





−∆θ∞ = 0, in Ω,

−∆(−∆χ∞ + f(χ∞) − θ∞) = 0, in Ω,

∂νθ∞ = 0, x ∈ Γ, in Ω,

∂ν(−∆χ∞ + f(χ∞)) = 0, on Γ,

−∆Γξ∞ + ∂νχ∞ + g(ξ∞) = 0, on Γ,

ξ∞ = χ∞|Γ,

with constraints dictated by the initial data on account of the boundary conditions

〈χ∞〉 = 〈χ0 + χ1〉, 〈θ∞〉 = 〈θ0〉 − 〈χ1〉.

It is easy to see that the above system can be reduced to the following form:





θ∞ = 〈θ0〉 − 〈χ1〉,

−∆χ∞ + f(χ∞) = µ∞, in Ω,

−∆Γξ∞ + ∂νχ∞ + g(ξ∞) = 0, on Γ,

ξ∞ = χ∞|Γ,

〈χ∞〉 = 〈χ0 + χ1〉,

(5.1)

where µ∞ is a constant uniquely determined by

µ∞ = 〈f(χ∞)〉 +
1

|Ω|

∫

Γ
g(ξ∞)dS. (5.2)

We introduce the functional

Υ(u, v) =
1

2
‖∇u‖2 +

1

2
‖∇Γv‖

2
HΓ

+

∫

Ω
F̂ (u)dx+

∫

Γ
Ĝ(v)dS, (5.3)

for any (u, v) ∈ H
1
0 (see Section 2), where

F̂ (u) = F (u+ 〈χ0 + χ1〉), Ĝ(v) = G(v + 〈χ0 + χ1〉). (5.4)

For any (u, v), (w,wΓ) ∈ H
1
0, we define the operator

(M(u, v), (w,wΓ))(H1
0)

∗,H1
0

:= (∂Υ(u, v), (w,wΓ))(H1
0)

∗,H1
0

=

∫

Ω
(∇u · ∇w + f̂(u)w)dx +

∫

Γ
(∇Γv · ∇ΓwΓ + ĝ(v)wΓ)dS. (5.5)
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If we restrict the operator M on H
2
0, i.e., for (u, v) ∈ H

2
0, after integration by parts, from (5.5)

we infer

M(u, v) = A +

(
P0f̂(u) 0

0 ĝ(v)

)
. (5.6)

Here, we denote by P0 the projection operator P0 : H → H0 such that P0u = u − 〈u〉 for any

u ∈ H. The operator A is given by

A =

(
P0(−∆) 0

∂ν −∆Γ

)
. (5.7)

From the identities (5.5)–(5.7) it easily follows

Proposition 5.1. Suppose that (χ, ξ) := (u+〈χ0+χ1〉, v+〈χ0+χ1〉) ∈ H
1 with 〈u〉 = 0 is a weak

solution to problem (5.1). Then (u, v) is a critical point of the functional Υ ∈ H
1
0. Conversely,

if (u, v) is a critical point of the functional Υ ∈ H
1
0, then (χ, ξ) := (u+ 〈χ0 + χ1〉, v+ 〈χ0 + χ1〉)

is a weak solution to problem (5.1).

Furthermore, applying the method of minimizing sequence similar to the one used in [51],

we easily prove the following

Proposition 5.2. Under assumptions (H1)–(H3), the stationary problem (5.1) admits at least

one solution (χ∞, ξ∞) ∈ H
1 and θ∞ is given by θ∞ = 〈θ0〉 − 〈χ1〉 such that

Υ(χ∞ − 〈χ0 + χ1〉, ξ∞ − 〈χ0 + χ1〉) = inf
(u,v)∈H1

0

Υ(u, v).

Remark 5.1. By the elliptic estimate (cf. e.g., [36, Lemma A.1, Corollary A.1]), if (χ, ξ) ∈ H
1

is a weak solution to problem (5.1), then (χ, ξ) ∈ H
s (s ∈ N), provided that f, g are smooth

enough.

Next, we introduce a  Lojasiewicz–Simon type inequality which will be used to prove long-

time behavior of global solutions to problem (2.1)–(2.7).

Lemma 5.1. Assume that f, g are real analytic and (H2), (H3) are satisfied. Let (u∗, v∗) ∈ H
2
0

be a critical point of the functional Υ. Then there exist two constants ρ ∈ (0, 12 ) and β > 0,

depending on (u∗, v∗), such that, for any (u, v) ∈ H
1
0 with ‖(u, v) − (u∗, v∗)‖V1 < β, we have

‖M(u, v)‖(H1
0)

∗ ≥ |Υ(u, v) − Υ(u∗, v∗)|1−ρ. (5.8)

Proof. The proof follows from an argument similar to the one used in [45]. Here, we just point

out some differences. By the assumptions, Υ is twice Fréchet differentiable with respect to the

topology of H
2. Moreover, by the Sobolev embedding H2(Ω) →֒ L∞(Ω) (n ≤ 3), Υ is real

analytic. As in [43] and using the Poincaré inequality, we can easily show that A is a strictly

positive self-adjoint unbounded operator from D(A) = {(u, v) ∈ H
1
0 : A(u, v) ∈ H0} into H0.

Standard spectral theory allows us to define the power As (s ∈ R), and we infer that there exists

a complete orthonormal family {(φj , ψj)} ∈ D(A), (j ∈ N, s ∈ R), as well as a sequence of

eigenvalues 0 < λ1 ≤ λ2 ≤ ..., λj → ∞ as j tends to infinity, such that

A(φj , ψj)
T = λj(φj , ψj)

T , j ∈ N. (5.9)
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In particular, D(A
1
2 ) = H

1
0, D(A) = H

2
0. By a bootstrap argument, we get (φj , ψj) ∈ C∞(Ω),

for all j ∈ N. For any (u, v) ∈ H
1
0, we have

(A(u, v)T , (u, v)T )(H1
0)

∗,H1
0

=

∫

Ω
|∇u|2dx+

∫

Γ
|∇Γv|

2dS = ‖(u, v)‖2
H1

0
. (5.10)

Following the idea used in [31], we now introduce the orthogonal projector Pm in V0 onto

Km := span{(φ1, ψ1)..., (φm, ψm)} ⊂ C∞(Ω). As in [45], we have, for any (u, v) ∈ H
1
0,

(A(u, v)T + λmPm(u, v)T , (u, v)T )(H1
0)

∗,H1
0

≥
1

2
‖(u, v)‖2

H1
0

+
1

4
λm‖(u, v)‖2H0

. (5.11)

Next, we consider the following linearized operator on H
2
0

L(u, v) := ∂M(u, v) = A +

(
P0f̂

′(u) 0

0 ĝ′(v)

)
. (5.12)

In analogy to [51, Lemma 2.3], we can easily show that L(u, v) is self-adjoint on H0. We

associate with the operator L(u∗, v∗) the following bilinear form b((w1, w1Γ), (w2, w2Γ)) on H
1
0,

for any (w1, w1Γ), (w2, w2Γ) ∈ H
1
0,

b((w1, w1Γ), (w2, w2Γ))

=

∫

Ω
(∇w1 · ∇w2 + f̂ ′(u∗)w1w2)dx+

∫

Γ

(
∇Γw1Γ · ∇Γw2Γ + ĝ′(v∗)w1Γw2Γ

)
dS. (5.13)

Since (u∗, v∗) ∈ V2, then, by the Sobolev embedding theorems, we infer that L(u∗, v∗) + λmPm

is coercive in H
1
0, provided that λm is sufficiently large, e.g.,

λm > 4 max{‖f̂ ′(u∗)‖L∞(Ω), ‖ĝ
′(v∗)‖L∞(Γ)}.

After establishing the above framework, the proof of the extended  Lojasiewicz–Simon inequality

(5.8) can be reproduced taking advantage of the arguments used in [31] (see also [45, Theorem

3.1]) with minor modifications. The details are omitted here.

5.2 Convergence to a single equilibrium

The main result of this section is the following

Theorem 5.1. Assume (H1)–(H3). Then, for any initial datum (θ0,q0, χ0, ξ0, χ1) ∈ Y, the

unique global weak solution to problem (2.1)–(2.7) satisfies

lim
t→+∞

‖(θ,q, χ, ξ, χ)(t) − (θ∞,0, χ∞, ξ∞, 0)‖X = 0, (5.14)

where (θ∞, χ∞, ξ∞) solves the stationary problem (5.1).

Remark 5.2. Recalling Remark 4.1, it can be shown that the solution converges in Y−norm to

the single equilibrium.

The proof of Theorem 5.1 consists of several steps.

Step 1. Characterization of the ω-limit set. We define the ω-limit set in X by

ω(θ0,q0, χ0, ξ0, χ1)

= {(θ∗,q∗, χ∗
0, ξ

∗, χ∗
1) : ∃{tn} ր +∞, ‖(θ,q, χ, ξ, χt)(tn) − (θ∗,q∗, χ∗

0, ξ
∗, χ∗

1)‖X → 0}.

Then we have
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Proposition 5.3. Suppose that (H1)–(H3) are satisfied. For any (θ0,q0, χ0, ξ0, χ1) ∈ X, the set

ω(θ0,q0, χ0, ξ0, χ1) is non-empty, compact and connected in the strong topology of X. Moreover,

ω(θ0,q0, χ0, ξ0, χ1) = {(θ∞,0, χ∞, ξ∞, 0)}, (5.15)

where (θ∞, χ∞, ξ∞) is a solution to (5.1). Besides, the functional Υ (cf. (5.3)) is constant on

the ω-limit set.

Proof. Due to the uniform estimate (3.24) for the weak solution (θ(t),q(t), χ(t), ξ(t), χt(t)) in

Y (see Lemma 3.2), the first conclusion follows from the general results in the theory of infinite

dimensional dynamical systems (cf. [47]). Next, we prove (5.15). Introduce the functional

E(t) =
1

2
(‖θ̃(t)‖2 + ‖q(t)‖2 + ‖∇χ̃(t)‖2 + ‖∇Γξ̃(t)‖

2
HΓ

+ ‖χ̃t(t)‖
2
V ∗)

+

∫

Ω
F (χ̃(t) + 〈χ0 + χ1〉)dx+

∫

Γ
G(ξ̃(t) + 〈χ0 + χ1〉)dS

+κ1

∫

Ω
q(t) · ∇A−1

0 θ̃(t)dx

= Υ(χ̃(t), ξ̃(t)) +
1

2
(‖θ̃(t)‖2 + ‖q(t)‖2 + ‖χ̃t(t)‖

2
V ∗) + κ1

∫

Ω
q(t) · ∇A−1

0 θ̃(t)dx,

where κ1 is a sufficiently small positive constant. Similarly to the calculations performed in

Section 3, we deduce that

d

dt
E + ‖q‖2 + ‖χ̃t‖

2
V ∗ + α‖χ̃t‖

2 + ‖ξ̃t‖
2
HΓ

+ κ1‖θ̃‖
2

= −Q1

∫

Γ
ξ̃tdS +

∫

Ω
(f(χ̃+ 〈χ0 + χ1〉) − f(χ))χ̃tdx

+

∫

Γ
(g(ξ̃ + 〈χ0 + χ1〉) − g(ξ))ξ̃tdS

−κ1

∫

Ω
q · ∇A−1

0 θ̃dx− κ1

∫

Ω
q · ∇A−1

0 χ̃tdx+ κ1‖A
− 1

2
0 ∇ · q‖2. (5.16)

Recalling (3.3) and (3.4), on account of the growth assumption (H3), the uniform estimate (3.13)

in X and the Sobolev embedding theorems, then it follows

−Q1(t)

∫

Γ
ξ̃t(t)dS ≤

1

4
‖ξ̃t(t)‖

2
HΓ

+Ce−2t,

∫

Ω
(f(χ̃(t) + 〈χ0 + χ1〉) − f(χ)(t))χ̃t(t)dx ≤ C|Q1(t)|‖χ̃t(t)‖ ≤

α

2
‖χ̃t(t)‖

2 + Ce−2t,

∫

Γ
(g(ξ̃(t) + 〈χ0 + χ1〉) − g(ξ(t)))ξ̃t(t)dS ≤ C|Q1(t)|‖ξ̃t(t)‖HΓ

≤
1

4
‖ξ̃t(t)‖

2
HΓ

+Ce−2t.

The last three terms on the right-hand side of (5.16) can be estimated as in (3.19). Taking κ1

sufficiently small, we can find a constant C0, depending on the X-norm of the initial datum, α,

|Ω| and |Γ|, such that

d

dt
E(t)+

1

2
‖q(t)‖2+

1

2
‖χ̃t(t)‖

2
V ∗+

α

2
‖χ̃t(t)‖

2+
1

2
‖ξ̃t(t)‖

2
HΓ

+
κ1

2
‖θ̃(t)‖2 ≤ C0e

−2t, ∀ t ≥ 0. (5.17)
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Then, for any t′ ≤ t, we have

E(t′) +
1

2

∫ t′

t

‖q(s)‖2 + ‖χ̃t(s)‖
2
V ∗ + α‖χ̃t(s)‖

2 + ‖ξ̃t(s)‖
2
HΓ

+ κ1‖θ̃(s)‖
2ds

≤ E(t) + C0

∫ t′

t

e−2sds.

From Remark 2.1(1) it follows that E is continuous on X. Due to (H2), E is bounded from below

by a constant. As a consequence, for some constant E∞, it holds

lim
t→+∞

E(t) = E∞.

On the other hand, we infer from (5.17) that

∫ +∞

0

(
‖θ̃(t)‖2 + ‖q(t)‖2 + ‖χ̃t(t)‖

2
V ∗ + α‖χ̃t(t)‖

2 + ‖ξ̃t(t)‖
2
HΓ

)
dt < +∞. (5.18)

From the integral control (5.18), on account of (2.10), (2.12), (3.3), we easily deduce

lim
t→+∞

‖θ̃(t)‖ = 0, lim
t→+∞

‖q(t)‖ = 0, lim
t→+∞

‖χt(t)‖V ∗ = 0. (5.19)

Consequently, any point in ω(θ0,q0, χ0, ξ0, χ1) is of the form (θ∞,0, χ∞, ξ∞, 0) and we have

lim
t→+∞

Υ(χ̃(t), ξ̃(t)) = E∞. (5.20)

Let {tn} be an unbounded sequence such that tn+1 ≥ tn + 1 and

lim
tn→+∞

‖(θ,q, χ, ξ, χt)(tn) − (θ∞,0, χ∞, ξ∞, 0)‖X = 0.

We show that (θ∞, χ∞, ξ∞) is a solution to the stationary problem (5.1). From (5.19), (3.1)

and (3.3) it is easy to see that θ∞ = 〈θ0〉 − 〈χ1〉. Next, for any n, we denote (χn(s), ξn(s)) :=

(χ(tn + s), ξ(tn + s)). When tn → +∞, from (5.18) we deduce

∫ 1

0

(
‖∂sχ̃n(s)‖2V ∗ + ‖∂sξ̃n(s)‖2HΓ

)
ds < +∞.

As a result,

‖χ̃n(s1) − χ̃(s2)‖V ∗ → 0, ‖ξ̃n(s1) − ξ̃n(s2)‖HΓ
→ 0, uniformly for s1, s2 ∈ [0, 1].

Combining it with (3.3) and the precompactness of the trajectory (cf. Proposition 4.2), we infer

(χn(s), ξn(s)) → (χ∞, ξ∞), strongly in H
1,

which further yields

µn(s) := µ(χ(tn + s), θ(tn + s)) → µ(χ∞, θ∞), strongly in V ∗.

Then, for any φ ∈ D(A
1
2
0 ), we have

(µ(χ∞, θ∞), φ)V ∗,V
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=

∫ 1

0
(µ(χ∞, θ∞), φ)V ∗,V ds

= lim
n→+∞

∫ 1

0
(µn(s), φ)V ∗,V ds

= − lim
n→+∞

∫ 1

0
(A−1

0 (∂ssχn(s) + ∂sχn(s)), φ)V ∗,V ds

= − lim
n→+∞

∫ 1

0
(A−1

0 (∂sχn(s) − 〈∂sχn(s)〉), φ)V ∗,V ds

− lim
n→+∞

(A−1
0 (χt(tn + 1) − χt(tn) − 〈χt(tn + 1)〉 + 〈χt(tn)〉), φ)V ∗,V

= 0, (5.21)

which implies that there exists a constant µ̃∞ such that

µ(χ∞, θ∞) = µ̃∞. (5.22)

Next, for any (u, v) in H
1, we have

(µ̃∞, u)V ∗,V

= (µ(χ∞, θ∞), u)V ∗,V

= lim
n→+∞

∫ 1

0
(∇χn(s),∇u) + (∇Γξn(s),∇Γv)HΓ

+ α(∂sχn(s), u) + (∂sξn(s), v)HΓ
ds

+ lim
n→+∞

∫ 1

0
(f(χn(s)), u) + (g(ξn(s)), v)HΓ

− (θn(s), u)ds

= (∇χ∞,∇u) + (∇Γξ∞,∇Γv)HΓ
+ (f(χ∞), u) + (g(ξ∞), v)HΓ

− (θ∞, u)

+ lim
tn→+∞

α(χ(tn + 1) − χ(tn), u) + (ξ(tn + 1) − ξ(tn), v)HΓ

= (∇χ∞,∇u) + (∇Γξ∞,∇Γv)HΓ
+ (f(χ∞), u) + (g(ξ∞), v)HΓ

− (θ∞, u). (5.23)

Thus, we can see that (χ∞, ξ∞, θ∞) satisfies the stationary problem (5.1) (in the weak form).

Simply taking u = v = 1 in (5.23), we deduce that µ̃∞ + θ∞ = µ∞ and (5.2) holds. Finally,

(5.20) implies that the functional Υ is constant on the ω-limit set. The proof is complete.

Step 2. Convergence to equilibrium. In the spirit of [27, 31], we now consider the

functional

G = (A−1
0 χ̃t, A

−1
0 (P0(−∆χ̃+ f̂(χ̃))),

which, by the decay property (5.19) and the uniform estimate (3.13), satisfies

lim
t→+∞

G(t) = 0.

On the other hand, from (3.7) we deduce

A−1
0 χ̃tt +A−1

0 χ̃t + αχ̃t + P0(−∆χ̃+ f̂(χ̃)) = θ̃ + P0(f̂(χ̃) − f(χ)).

Then, using the above relation, we compute

d

dt
G = (A−1

0 χ̃tt, A
−1
0 (P0(−∆χ̃+ f̂(χ̃)))) + (A−1

0 χ̃t, A
−1
0 (P0(−∆χ̃t + f̂ ′(χ̃)χ̃t)))

= −(A−1
0 χ̃t, A

−1
0 (P0(−∆χ̃+ f̂(χ̃)))) − α(χ̃t, A

−1
0 (P0(−∆χ̃+ f̂(χ̃))))
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−‖A
− 1

2
0 (P0(−∆χ̃+ f̂(χ̃)))‖2 + (θ̃, A−1

0 (P0(−∆χ̃+ f̂(χ̃)))

+(P0(f̂(χ̃) − f(χ)), A−1
0 (P0(−∆χ̃+ f̂(χ̃)))) + ‖A

− 1
2

0 χ̃t‖
2)

+(A−1
0 χ̃t, A

−1
0 (P0(f̂ ′(χ̃)χ̃t)). (5.24)

From the uniform estimate (3.13) (cf. Lemma 3.1) and the Sobolev embedding theorem we infer

|(P0(f̂(χ̃)(t) − f(χ)(t)), A−1
0 (P0(−∆χ̃(t) + f̂(χ̃(t)))))|

≤
1

8
‖A

− 1
2

0 (P0(−∆χ̃(t) + f̂(χ̃(t))))‖2 + ‖A
− 1

2
0 P0(f̂(χ̃(t)) − f̂(χ̃(t) − 〈χ1〉e

−t))‖2

≤
1

8
‖A

− 1
2

0 (P0(−∆χ̃(t) + f̂(χ̃(t))))‖2 + Ce−2t,

and

|(A−1
0 χ̃t, A

−1
0 (P0(f̂ ′(χ̃)χ̃t)))| ≤ C‖A

− 1
2

0 χ̃t‖
2.

The remaining terms on the right-hand side of (5.24) are easy to handle. Then we have

d

dt
G(t) ≤ −

1

2
‖A

− 1
2

0 (P0(−∆χ̃(t) + f̂(χ̃(t))))‖2 + C‖A
− 1

2
0 χ̃t(t)‖

2 + C‖θ̃(t)‖2 + Ce−2t. (5.25)

Let κ2 > 0 be sufficiently small (and possibly depending on κ1). We define the functional

H(t) = E(t) + κ2G(t), t ≥ 0.

It is easy to see that

lim
t→+∞

H(t) = E∞.

We infer from (5.17) and (5.25) that

d

dt
H(t) + D(t) ≤ C1e

−2t, (5.26)

where

D(t) =
1

2
‖q(t)‖2 +

1

4
‖χ̃t(t)‖

2
V ∗ +

α

2
‖χ̃t(t)‖

2 +
1

2
‖ξ̃t(t)‖

2
HΓ

+
κ1

4
‖θ̃(t)‖2

+
κ2

2
‖A

− 1
2

0 (P0(−∆χ̃(t) + f̂(χ̃(t))))‖2 + e−2t. (5.27)

For every point (θ∞,0, χ∞, ξ∞, 0) belonging to the ω-limit set, we set χ∗
∞ = χ∞ − 〈χ∞〉,

ξ∗∞ = ξ∞ − 〈χ∞〉. We can associate to (χ∗
∞, ξ

∗
∞) the numbers ρ, β (depending on (χ∗

∞, ξ
∗
∞))

given by Lemma 5.1. Then we obtain the covering

ω(θ0,q0, χ0, ξ0, χ1) ⊂ {θ∞} × {0} ×
⋃

B((χ∞, ξ∞), β) × {0}.

Due to the precompactness of the trajectory in X, we can extract a finite subcovering of the

ω-limit set such that

ω(θ0,q0, χ0, ξ0, χ1) ⊂ {θ∞} × {0} ×

m⋃

i=1

B((χ(i)
∞ , ξ(i)∞ ), β(i)) × {0}.

Taking ρ = minm
i=1{ρ

(i)} ∈ (0, 12), we infer that the extended  Lojasiewicz–Simon inequality (5.8)

holds with the uniform constant ρ. From the definition of the ω-limit set, we know that there

exists a sufficient large t0 such that

(χ̃(t), ξ̃(t)) ∈ U :=

m⋃

i=1

B((χ(i)
∞ − 〈χ0 + χ1〉, ξ

(i)
∞ − 〈χ0 + χ1〉), β

(i)), ∀ t ≥ t0.
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As a result, from Lemma 5.1 and (5.20) we deduce, for all t ≥ t0,

‖M(χ̃(t), ξ̃(t))‖(H1
0)

∗ ≥ |Υ(χ̃(t), ξ̃(t)) − Υ∞|1−ρ. (5.28)

Here, we recall that Υ is constant on the ω-limit set and we denote it by Υ∞. On the other

hand, if (u, v) ∈ H
2, recalling (5.5) and (5.6), an integration by parts yields

(M(u, v), (w,wΓ))(H1
0)

∗,H1
0

=

∫

Ω
(∇u · ∇w + f̂(u)w)dx +

∫

Γ
(∇Γv · ∇ΓwΓ + ĝ(v)wΓ)dS

=

∫

Ω
(−∆u+ f̂(u))wdx +

∫

Γ
(−∆Γv + ∂νu+ ĝ(v))wΓdS,

which easily implies

‖M(u, v)‖(H1
0)

∗ ≤ C(‖P0(−∆u+ f̂(u))‖V ∗ + ‖ − ∆Γv + ∂νu+ ĝ(v)‖HΓ
). (5.29)

Recall that we are now dealing with the weak solution such that (χ, ξ) ∈ H
3 ⊂ H

2. Then we

have, for t ≥ t0,

C(‖P0(−∆χ̃(t) + f̂(χ̃(t)))‖V ∗ + ‖ − ∆Γξ̃(t) + ∂ν χ̃(t) + ĝ(ξ̃(t))‖HΓ
)

≥ |Υ(χ̃(t), ξ̃(t)) − Υ∞|1−ρ. (5.30)

We now integrate (5.26) over the interval [t,+∞), with t ≥ t0, obtaining

∫ +∞

t

D(s)ds = H(t) − E∞ + Ce−2t. (5.31)

On the other hand, using the  Lojasiewicz-Simon inequality (5.29), the uniform estimates (3.24)

and the fact 1
1−ρ

< 2, we deduce that, for all t ≥ t0,

|H(t) − E∞|

≤ |Υ(χ̃(t), ξ̃(t)) − Υ∞| +
1

2
(‖θ̃(t)‖2 + ‖q(t)‖2 + ‖χ̃t(t)‖

2
V ∗)

+κ1

∣∣∣∣
∫

Ω
q(t) · ∇A−1

0 θ̃(t)dx

∣∣∣∣+ κ2|G(t)|

≤ C(‖P0(−∆χ̃(t) + f̂(χ̃(t)))‖V ∗ + ‖ − ∆Γξ̃(t) + ∂νχ̃(t) + ĝ(ξ̃(t))‖HΓ
)

1
1−ρ

+C(‖θ̃(t)‖2 + ‖q(t)‖2 + ‖χ̃t(t)‖
2
V ∗ + ‖P0(−∆χ̃(t) + f̂(χ̃(t)))‖2V ∗)

≤ C‖θ̃(t)‖
1

1−ρ + ‖q(t)‖
1

1−ρ + C‖χ̃t(t)‖
1

1−ρ

V ∗

+C‖ − ∆Γξ̃(t) + ∂νχ̃(t) + ĝ(ξ̃(t))‖
1

1−ρ

HΓ
+C‖P0(−∆χ̃(t) + f̂(χ̃(t)))‖

1
1−ρ

V ∗ .

Using the dynamic boundary condition, we see that (cf. (3.13) and (4.3))

‖ − ∆Γξ̃(t) + ∂νχ̃(t) + ĝ(ξ̃(t))‖HΓ

≤ ‖ξ̃t(t)‖HΓ
+ ‖ĝ(ξ̃(t)) − g(ξ(t))‖HΓ

+ |Q1(t)|

≤ ‖ξ̃t(t)‖HΓ
+ C|Q1(t)| + |Q1(t)|

≤ ‖ξ̃t(t)‖HΓ
+ Ce−t.
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As a consequence, we find

|H(t) − E∞| ≤ C‖θ̃(t)‖
1

1−ρ + ‖q(t)‖
1

1−ρ + C‖χ̃t(t)‖
1

1−ρ

V ∗

+C‖ξ̃t(t)‖
1

1−ρ

HΓ
+ C‖P0(−∆χ̃(t) + f̂(χ̃(t)))‖

1
1−ρ

V ∗ + Ce
− 1

1−ρ
t

≤ C(D(t))
1

2(1−ρ) . (5.32)

It follows from (5.31) and (5.32) that

∫ +∞

t

D(s)ds ≤ C(D(t))
1

2(1−ρ) , ∀ t ≥ t0. (5.33)

Then, applying the abstract result [9, Lemma 7.1] (see also [33, Lemma 4.1]), we infer

∫ +∞

t0

√
D(t)dt < +∞,

which implies ∫ +∞

t0

(α
1
2‖χ̃t(t)‖ + ‖ξ̃t(t)‖HΓ

)dt < +∞.

Thus, from the definition of χ̃, ξ̃, we have

∫ +∞

t0

(α
1
2‖χt(t)‖ + ‖ξt(t)‖HΓ

)dt < +∞.

This entails the convergence of (χ(t), ξ(t)) in H. Due to the uniform estimate in Y (cf. (3.24))

and the compact embedding, we see that there exists a steady state (χ∞, ξ∞) such that

lim
t→+∞

‖(χ(t), ξ(t) − (χ∞, ξ∞)‖Hr = 0, 1 ≤ r < 3.

In summary, we have proved the conclusion of Theorem 5.1.

Using the energy differential inequality (5.26), the argument developed in [32] (cf. also

[49, 50]) and the energy method, one can proceed to show the estimate of decay rate. The

details are left to the interested readers. More precisely, the following result can be proven.

Corollary 5.1. Let the assumption of Theorem 5.1 be satisfied. Then we have

‖(θ,q, χ, ξ, χ)(t) − (θ∞,0, χ∞, ξ∞, 0)‖X ≤ C(1 + t)
− ρ

1−2ρ ,

for all t ≥ 0, where C is a constant depending on the X-norm of the initial datum and on the

coefficients of the system, while ρ ∈ (0, 12) may depend on (χ∞, ξ∞).
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