101,885 research outputs found

    New Bounds for the Dichromatic Number of a Digraph

    Full text link
    The chromatic number of a graph GG, denoted by χ(G)\chi(G), is the minimum kk such that GG admits a kk-coloring of its vertex set in such a way that each color class is an independent set (a set of pairwise non-adjacent vertices). The dichromatic number of a digraph DD, denoted by χA(D)\chi_A(D), is the minimum kk such that DD admits a kk-coloring of its vertex set in such a way that each color class is acyclic. In 1976, Bondy proved that the chromatic number of a digraph DD is at most its circumference, the length of a longest cycle. Given a digraph DD, we will construct three different graphs whose chromatic numbers bound χA(D)\chi_A(D). Moreover, we prove: i) for integers k≥2k\geq 2, s≥1s\geq 1 and r1,…,rsr_1, \ldots, r_s with k≥ri≥0k\geq r_i\geq 0 and ri≠1r_i\neq 1 for each i∈[s]i\in[s], that if all cycles in DD have length rr modulo kk for some r∈{r1,…,rs}r\in\{r_1,\ldots,r_s\}, then χA(D)≤2s+1\chi_A(D)\leq 2s+1; ii) if DD has girth gg and there are integers kk and pp, with k≥g−1≥p≥1k\geq g-1\geq p\geq 1 such that DD contains no cycle of length rr modulo ⌈kp⌉p\lceil \frac{k}{p} \rceil p for each r∈{−p+2,…,0,…,p}r\in \{-p+2,\ldots,0,\ldots,p\}, then χA(D)≤⌈kp⌉\chi_A (D)\leq \lceil \frac{k}{p} \rceil; iii) if DD has girth gg, the length of a shortest cycle, and circumference cc, then χA(D)≤⌈c−1g−1⌉+1\chi_A(D)\leq \lceil \frac{c-1}{g-1} \rceil +1, which improves, substantially, the bound proposed by Bondy. Our results show that if we have more information about the lengths of cycles in a digraph, then we can improve the bounds for the dichromatic number known until now.Comment: 14 page

    A Dynamic Boundary Guarding Problem with Translating Targets

    Full text link
    We introduce a problem in which a service vehicle seeks to guard a deadline (boundary) from dynamically arriving mobile targets. The environment is a rectangle and the deadline is one of its edges. Targets arrive continuously over time on the edge opposite the deadline, and move towards the deadline at a fixed speed. The goal for the vehicle is to maximize the fraction of targets that are captured before reaching the deadline. We consider two cases; when the service vehicle is faster than the targets, and; when the service vehicle is slower than the targets. In the first case we develop a novel vehicle policy based on computing longest paths in a directed acyclic graph. We give a lower bound on the capture fraction of the policy and show that the policy is optimal when the distance between the target arrival edge and deadline becomes very large. We present numerical results which suggest near optimal performance away from this limiting regime. In the second case, when the targets are slower than the vehicle, we propose a policy based on servicing fractions of the translational minimum Hamiltonian path. In the limit of low target speed and high arrival rate, the capture fraction of this policy is within a small constant factor of the optimal.Comment: Extended version of paper for the joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conferenc

    Many Roads to Synchrony: Natural Time Scales and Their Algorithms

    Full text link
    We consider two important time scales---the Markov and cryptic orders---that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the epsilon-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the epsilon-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.Comment: 17 pages, 16 figures: http://cse.ucdavis.edu/~cmg/compmech/pubs/kro.htm. Santa Fe Institute Working Paper 10-11-02

    Sizing the length of complex networks

    Full text link
    Among all characteristics exhibited by natural and man-made networks the small-world phenomenon is surely the most relevant and popular. But despite its significance, a reliable and comparable quantification of the question `how small is a small-world network and how does it compare to others' has remained a difficult challenge to answer. Here we establish a new synoptic representation that allows for a complete and accurate interpretation of the pathlength (and efficiency) of complex networks. We frame every network individually, based on how its length deviates from the shortest and the longest values it could possibly take. For that, we first had to uncover the upper and the lower limits for the pathlength and efficiency, which indeed depend on the specific number of nodes and links. These limits are given by families of singular configurations that we name as ultra-short and ultra-long networks. The representation here introduced frees network comparison from the need to rely on the choice of reference graph models (e.g., random graphs and ring lattices), a common practice that is prone to yield biased interpretations as we show. Application to empirical examples of three categories (neural, social and transportation) evidences that, while most real networks display a pathlength comparable to that of random graphs, when contrasted against the absolute boundaries, only the cortical connectomes prove to be ultra-short
    • …
    corecore