5 research outputs found

    Multidimensional embedded MEMS motion detectors for wearable mechanocardiography and 4D medical imaging

    Get PDF
    Background: Cardiovascular diseases are the number one cause of death. Of these deaths, almost 80% are due to coronary artery disease (CAD) and cerebrovascular disease. Multidimensional microelectromechanical systems (MEMS) sensors allow measuring the mechanical movement of the heart muscle offering an entirely new and innovative solution to evaluate cardiac rhythm and function. Recent advances in miniaturized motion sensors present an exciting opportunity to study novel device-driven and functional motion detection systems in the areas of both cardiac monitoring and biomedical imaging, for example, in computed tomography (CT) and positron emission tomography (PET). Methods: This Ph.D. work describes a new cardiac motion detection paradigm and measurement technology based on multimodal measuring tools — by tracking the heart’s kinetic activity using micro-sized MEMS sensors — and novel computational approaches — by deploying signal processing and machine learning techniques—for detecting cardiac pathological disorders. In particular, this study focuses on the capability of joint gyrocardiography (GCG) and seismocardiography (SCG) techniques that constitute the mechanocardiography (MCG) concept representing the mechanical characteristics of the cardiac precordial surface vibrations. Results: Experimental analyses showed that integrating multisource sensory data resulted in precise estimation of heart rate with an accuracy of 99% (healthy, n=29), detection of heart arrhythmia (n=435) with an accuracy of 95-97%, ischemic disease indication with approximately 75% accuracy (n=22), as well as significantly improved quality of four-dimensional (4D) cardiac PET images by eliminating motion related inaccuracies using MEMS dual gating approach. Tissue Doppler imaging (TDI) analysis of GCG (healthy, n=9) showed promising results for measuring the cardiac timing intervals and myocardial deformation changes. Conclusion: The findings of this study demonstrate clinical potential of MEMS motion sensors in cardiology that may facilitate in time diagnosis of cardiac abnormalities. Multidimensional MCG can effectively contribute to detecting atrial fibrillation (AFib), myocardial infarction (MI), and CAD. Additionally, MEMS motion sensing improves the reliability and quality of cardiac PET imaging.Moniulotteisten sulautettujen MEMS-liiketunnistimien käyttö sydänkardiografiassa sekä lääketieteellisessä 4D-kuvantamisessa Tausta: Sydän- ja verisuonitaudit ovat yleisin kuolinsyy. Näistä kuolemantapauksista lähes 80% johtuu sepelvaltimotaudista (CAD) ja aivoverenkierron häiriöistä. Moniulotteiset mikroelektromekaaniset järjestelmät (MEMS) mahdollistavat sydänlihaksen mekaanisen liikkeen mittaamisen, mikä puolestaan tarjoaa täysin uudenlaisen ja innovatiivisen ratkaisun sydämen rytmin ja toiminnan arvioimiseksi. Viimeaikaiset teknologiset edistysaskeleet mahdollistavat uusien pienikokoisten liiketunnistusjärjestelmien käyttämisen sydämen toiminnan tutkimuksessa sekä lääketieteellisen kuvantamisen, kuten esimerkiksi tietokonetomografian (CT) ja positroniemissiotomografian (PET), tarkkuuden parantamisessa. Menetelmät: Tämä väitöskirjatyö esittelee uuden sydämen kineettisen toiminnan mittaustekniikan, joka pohjautuu MEMS-anturien käyttöön. Uudet laskennalliset lähestymistavat, jotka perustuvat signaalinkäsittelyyn ja koneoppimiseen, mahdollistavat sydämen patologisten häiriöiden havaitsemisen MEMS-antureista saatavista signaaleista. Tässä tutkimuksessa keskitytään erityisesti mekanokardiografiaan (MCG), joihin kuuluvat gyrokardiografia (GCG) ja seismokardiografia (SCG). Näiden tekniikoiden avulla voidaan mitata kardiorespiratorisen järjestelmän mekaanisia ominaisuuksia. Tulokset: Kokeelliset analyysit osoittivat, että integroimalla usean sensorin dataa voidaan mitata syketiheyttä 99% (terveillä n=29) tarkkuudella, havaita sydämen rytmihäiriöt (n=435) 95-97%, tarkkuudella, sekä havaita iskeeminen sairaus noin 75% tarkkuudella (n=22). Lisäksi MEMS-kaksoistahdistuksen avulla voidaan parantaa sydämen 4D PET-kuvan laatua, kun liikeepätarkkuudet voidaan eliminoida paremmin. Doppler-kuvantamisessa (TDI, Tissue Doppler Imaging) GCG-analyysi (terveillä, n=9) osoitti lupaavia tuloksia sydänsykkeen ajoituksen ja intervallien sekä sydänlihasmuutosten mittaamisessa. Päätelmä: Tämän tutkimuksen tulokset osoittavat, että kardiologisilla MEMS-liikeantureilla on kliinistä potentiaalia sydämen toiminnallisten poikkeavuuksien diagnostisoinnissa. Moniuloitteinen MCG voi edistää eteisvärinän (AFib), sydäninfarktin (MI) ja CAD:n havaitsemista. Lisäksi MEMS-liiketunnistus parantaa sydämen PET-kuvantamisen luotettavuutta ja laatua

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Dual gated PET/CT imaging of heart

    Get PDF
    Coronary artery disease (CAD) resulting from atherosclerotic arterial changes, plaques, is a progressive process, which can be asymptomatic for many years. Asymptomatic CAD can cause a heart attack that leads to sudden death if the vulnerable coronary plaque ruptures and causes artery occlusion. The plaque inflammation plays an important role in the rupture susceptibility. Reliable anticipation of rupture is still clinically impossible for a single patient. Detection of the vulnerable coronary plaques before clinical signs remains a significant scientific challenge where positron emission tomography (PET) can play an important role. The aim of this dissertation was to find out whether a small, coronary plaque size, heart structures could be detected by a clinically available positron emission tomography and computed tomography (PET/CT) hybrid camera in realistically moving cardiac phantoms, a minipig model, and patients with CAD. Due to cardiac motions accurate detection of small heart structures are known to be problematic in PET imaging. Due to absence of commercial application at the beginning of the study, new dual gating method for cardiac PET imaging was developed and programmed that takes into account both contraction and respiratory induced cardiac motions. Cardiac phantom PET studies showed that small, active and moving plaques can be distinguished from myocardium activity and the gating methods improved the detection sensitivity and resolution of the plaques. In minipig and CAD patient cardiac PET studies small structures of myocardium and coronary arteries was detected more sensitive and accurately when using dual gating method than manufacturer gating methods. In cardiac patient PET study respiratory induced cardiac motions were shown to be linearly dependent with spirometry-measured respiratory volumes. Standard 3-lead electrocardiogram (ECG) measurement can be filtered by anesthesia monitor to detect lung impedance signal. In cardiac patient PET study this lung impedance signal were applied for respiratory gating. In this study was observed that the 3-lead ECG derived impedance signal gating method detects respiratory induced cardiac motion in PET as well as other externally used respiratory gating methods. In summary, the dual gated cardiac PET method is more sensitive and accurate to detect small cardiac structures, as coronary vessel wall pathology, than the commercial methods used in the study.Sydämen kaksoisliiketahdistettu PET/CT kuvantaminen Ateroskleroottisten valtimomuutosten, plakkien, seurauksena asteittain kehittyvä sepelvaltimotauti voi olla vuosia oireeton. Oireeton sepelvaltimotauti voi aiheuttaa äkkikuolemaan johtavan sydäninfarktin, mikäli sepelvaltimon seinämäplakin repeytymisestä aiheutuu verisuonen tukkiva hyytymä. Tutkimuksissa on osoitettu, että plakin tulehduksella on merkittävä rooli repeytymisalttiudelle. Repeytymisen luotettava ennakointi on yksittäisen potilaan kohdalla edelleen kliinisesti mahdotonta. Tulehtuneiden ja repeytymisalttiiden sepelvaltimoplakkien toteaminen ennen kliinisiä oireita on edelleen merkittävä tieteellinen haaste, missä positroniemissiotomografia (PET) kuvantamisella voi olla merkittävä rooli. Väitöskirjan tavoitteena oli selvittää, voidaanko kliinisessä käytössä olevalla positroniemissiotomografia ja tietokonetomografia (PET/TT) yhdistelmäkameralla havaita pieniä, sepelvaltimoplakkien kokoisia, sydämen rakenteita koneellisesti toimivissa todenmukaisissa sydänmalleissa, eläinmallissa ja sepelvaltimotautia sairastavilla potilailla. Sydämen pienten rakenteiden tarkka havaitseminen PET/TTkameroilla on haasteellista sydämen liikkumisen vuoksi. Tutkimuksessa kehitettiin ja ohjelmoitiin uusi sydämen PET-kuvantamisen liiketahdistusmenetelmä, joka ottaa huomioon sekä sydämen supistusliikkeen että hengitysliikkeen vaikutuksen sydämen PET kuvantamissa. Koneellisilla sydänmalleilla osoitettiin, että PET on riittävän herkkä havaitsemaan pieniä ja liikkuvia radioaktiivisia ”sepelvaltimoplakkeja”, ja että liiketahdistusmenetelmät parantavat plakkien havaitsemisherkkyyttä ja tarkkuutta. Eläinmallissa ja sepelvaltimotautipotilailla kaksoisliiketahdistusmenetelmän herkkyys ja tarkkuus havaita pieniä sydänlihaksen ja sepelvaltimoiden rakenteita todettiin kaupallisia tahdistusmenetelmiä paremmaksi. Potilastutkimuksissa todettiin hengityksen aiheuttama sydämen liike PET-kuvissa lineaarisesti riippuvaiseksi spirometrialla mitattujen hengitystilavuuksien kanssa. Tavallisesta 3-johtoisesta sydänsähkökäyrästä voidaan anestesiamonitorin avulla suodattaa keuhkojen impedanssisignaalia. Hengitysliikkeen aiheuttama potilaiden sydämen liike PETkuvissa havaittiin yhtä hyvin käyttämällä tätä keuhkojen impedanssisignaalia kuin muita yleisesti käytettäviä ulkoisia hengitystahdistussignaaleja. Todetaan, että kaksoisliiketahdistettu sydämen PET-kuvantamismenetelmä on tutkimuksessa käytettyjä kaupallisia menetelmiä herkempi ja tarkempi havaitsemaan sydämen pieniä rakenteita sekä sepelvaltimon seinämän tulehdusplakkeja

    Feature Papers in Electronic Materials Section

    Get PDF
    This book entitled "Feature Papers in Electronic Materials Section" is a collection of selected papers recently published on the journal Materials, focusing on the latest advances in electronic materials and devices in different fields (e.g., power- and high-frequency electronics, optoelectronic devices, detectors, etc.). In the first part of the book, many articles are dedicated to wide band gap semiconductors (e.g., SiC, GaN, Ga2O3, diamond), focusing on the current relevant materials and devices technology issues. The second part of the book is a miscellaneous of other electronics materials for various applications, including two-dimensional materials for optoelectronic and high-frequency devices. Finally, some recent advances in materials and flexible sensors for bioelectronics and medical applications are presented at the end of the book
    corecore