2,410 research outputs found

    Big Data Privacy Context: Literature Effects On Secure Informational Assets

    Get PDF
    This article's objective is the identification of research opportunities in the current big data privacy domain, evaluating literature effects on secure informational assets. Until now, no study has analyzed such relation. Its results can foster science, technologies and businesses. To achieve these objectives, a big data privacy Systematic Literature Review (SLR) is performed on the main scientific peer reviewed journals in Scopus database. Bibliometrics and text mining analysis complement the SLR. This study provides support to big data privacy researchers on: most and least researched themes, research novelty, most cited works and authors, themes evolution through time and many others. In addition, TOPSIS and VIKOR ranks were developed to evaluate literature effects versus informational assets indicators. Secure Internet Servers (SIS) was chosen as decision criteria. Results show that big data privacy literature is strongly focused on computational aspects. However, individuals, societies, organizations and governments face a technological change that has just started to be investigated, with growing concerns on law and regulation aspects. TOPSIS and VIKOR Ranks differed in several positions and the only consistent country between literature and SIS adoption is the United States. Countries in the lowest ranking positions represent future research opportunities.Comment: 21 pages, 9 figure

    On the Anonymity of Identity-Based Encryption

    Get PDF
    Anonymity of identity-based encryption (IBE) means that given a ciphertext, one cannot distinguish the target identity from a random identity. In this paper, we thoroughly discuss the anonymity of IBE systems. We found that the current definition of anonymity is obscure to describe some IBE systems, such as Gentry IBE system. Furthermore, current definition cannot express the degree of anonymity. So we divide the degree of anonymity into weak anonymity and strong anonymity based on indistinguishability between different games. For weakly anonymous IBE systems, the target identity in a ciphertext cannot be distinguished from a random identity. For strongly anonymous IBE systems, the whole ciphertext cannot be distinguished from a random tuple. We also discuss the type of anonymity and divide it into two types. Type 1 means that a random tuple can be seen as a valid ciphertext, while type 2 cannot. Based on our new definitions, we show that three famous IBE systems, Gentry IBE system, Boyen-Waters IBE system, and Lewko IBE system, have strong but different types of anonymity

    Enhanced Searchable Public Key Cipher Text With Hidden Structures For Fast Keyword Search

    Get PDF
    Existing semantically secure public-key searchable coding schemes take search time linear with the overall variety of the cipher texts. This makes retrieval from large-scale databases preventative. To alleviate this drawback, this paper proposes Searchable Public-Key Cipher texts with Hidden Structures (SPCHS) for keyword search as quick as potential while not sacrificing linguistics security of the encrypted keywords. In SPCHS, all keyword-searchable Cipher texts area unit structured by hidden relations, and with the search trapdoor such as a keyword, the minimum info of the relations is disclosed to an enquiry rule because the steering to search out all matching Cipher texts expeditiously. We have a tendency to construct a SPCHS theme from scratch during which the Cipher texts have a hidden star-like structure. We have a tendency to prove our theme to be semantically secure within the Random Oracle (RO) model. The search quality of our theme relies on the particular variety of the Cipher texts containing the queried keyword, instead of the amount of all Cipher texts. Finally, we have a tendency to gift a generic SPCHS construction from anonymous identity-based coding and collision-free full-identity malleable Identity-Based Key Encapsulation Mechanism (IBKEM) with namelessness. We have a tendency to illustrate 2 collision-free full-identity malleable IBKEM instances, that area unit semantically secure and anonymous, severally, within the artificial language and customary models

    Lattice-Based Group Signatures: Achieving Full Dynamicity (and Deniability) with Ease

    Full text link
    In this work, we provide the first lattice-based group signature that offers full dynamicity (i.e., users have the flexibility in joining and leaving the group), and thus, resolve a prominent open problem posed by previous works. Moreover, we achieve this non-trivial feat in a relatively simple manner. Starting with Libert et al.'s fully static construction (Eurocrypt 2016) - which is arguably the most efficient lattice-based group signature to date, we introduce simple-but-insightful tweaks that allow to upgrade it directly into the fully dynamic setting. More startlingly, our scheme even produces slightly shorter signatures than the former, thanks to an adaptation of a technique proposed by Ling et al. (PKC 2013), allowing to prove inequalities in zero-knowledge. Our design approach consists of upgrading Libert et al.'s static construction (EUROCRYPT 2016) - which is arguably the most efficient lattice-based group signature to date - into the fully dynamic setting. Somewhat surprisingly, our scheme produces slightly shorter signatures than the former, thanks to a new technique for proving inequality in zero-knowledge without relying on any inequality check. The scheme satisfies the strong security requirements of Bootle et al.'s model (ACNS 2016), under the Short Integer Solution (SIS) and the Learning With Errors (LWE) assumptions. Furthermore, we demonstrate how to equip the obtained group signature scheme with the deniability functionality in a simple way. This attractive functionality, put forward by Ishida et al. (CANS 2016), enables the tracing authority to provide an evidence that a given user is not the owner of a signature in question. In the process, we design a zero-knowledge protocol for proving that a given LWE ciphertext does not decrypt to a particular message
    corecore