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Anonymity of identity-based encryption (IBE) means that given a ciphertext, one cannot distinguish the target identity from a
random identity. In this paper, we thoroughly discuss the anonymity of IBE systems. We found that the current definition of
anonymity is obscure to describe some IBE systems, such as Gentry IBE system. Furthermore, current definition cannot express the
degree of anonymity. Sowedivide the degree of anonymity intoweak anonymity and strong anonymity based on indistinguishability
between different games. For weakly anonymous IBE systems, the target identity in a ciphertext cannot be distinguished from a
random identity. For strongly anonymous IBE systems, the whole ciphertext cannot be distinguished from a random tuple. We also
discuss the type of anonymity and divide it into two types. Type 1 means that a random tuple can be seen as a valid ciphertext,
while type 2 cannot. Based on our new definitions, we show that three famous IBE systems, Gentry IBE system, Boyen-Waters IBE
system, and Lewko IBE system, have strong but different types of anonymity.

1. Introduction

Shamir [1] proposed the concept of identity-based encryption
(IBE) in 1984 to simplify the public key infrastructure. In
an IBE system, public keys for users can be formed from
arbitrary strings such as e-mail addresses, IP addresses,
or other meaningful strings. Anyone can encrypt messages
using the identity, and only the owner of the corresponding
secret key can decrypt the messages. But Shamir did not
give a concrete construction of IBE until Boneh and Franklin
[2] presented the first practical IBE system based on groups
with efficiently computable bilinear maps. Another but less
efficient IBE system using quadratic residues was proposed
by Cocks [3]. After that, many new IBE systems are proposed
[4–11].

Anonymous IBE was first noticed by Boyen [12] and later
formalized byAbdalla et al. [13, 14]. Roughly speaking, an IBE
system is said to be recipient anonymous or simply anonymous
if the ciphertext leaks no information about the recipient’s
identity. In other words, an attack cannot distinguish the
target identity from a random identity for a ciphertext.
Recently, people found that the anonymity of IBE can help to

construct public key encryption with keyword search (PEKS)
systems [13, 15–17].

The first anonymous IBE system is Boneh-Franklin IBE
system [2]. In fact, this system has intrinsic anonymity;
that is, its semantic security equals anonymity. But Boneh-
Franklin IBE system is proposed in the random oracle model
[18]. Boyen and Waters [8] gave the first construction of
anonymous IBE in the standard model under the decisional
bilinearDiffie-Hellman (BDH) and decisional linear assump-
tions. Another efficient construction of anonymous IBE in
the standard model was proposed by Gentry [9], but it is
proven secure under a dynamic and complicates assumption.
After that, many new anonymous IBE systems in the standard
model are proposed [19–21]. An extension of anonymous
IBE, named committed blind anonymous IBE, was proposed
by Camenisch et al. [22] in which a user can request the
decryption key for a given identity without the key generation
entity learning the identity.

When studying how to construct anonymous IBE sys-
tems, researchers have found if asymmetric bilinear maps
are used in previous IBE systems [4–7]; these systems seem
anonymous. But how to prove anonymous security of these
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systems from simple assumptions was unknown until Ducas
[23] gave a positive answer. He showed that an IBE system
can be proven anonymous with some minor modification.
Another anonymous IBE system using asymmetric bilinear
map is proposed by Chen et al. [24]. Recently, Herranz et al.
[25] discussed the relations between semantic security and
anonymity for IBE systems.

When an “anonymous” IBE system is constructed, we
should prove its anonymity. It seems to prove anonymity for
IBE systems, we only need to prove that we cannot distinguish
the target identity from the challenge ciphertext in the secu-
rity game for anonymity. However, current anonymous IBE
systems, exceptGentry IBE system [9], all use a stronger game
called GameRandom than the standard game for anonymity
where the challenge ciphertext is composed of independently
random group elements to prove anonymity. Obviously, if
a valid ciphertext is indistinguishable from a random tuple,
it is definitely anonymous. However, the game GameRandom
is overqualified for anonymity, because anonymity only
requires that an attacker cannot distinguish the target identity
for a ciphertext. Hence, current definition of anonymity is not
complete enough to describe the anonymity of current IBE
systems.

Our Results. We make a concrete analysis of the anonymity
of identity-based encryption systems. We found that current
definition of anonymity is obscure to describe some IBE
systems, such asGentry IBE system [9]. Furthermore, current
definition cannot express the degree of anonymity. By using
the indistinguishability of some related security games, we
divide anonymity into two degrees: weak anonymity and
strong anonymity.Weak anonymity equals current definition
of anonymity, in which the target identity for a ciphertext
cannot be distinguished from a random identity. For strongly
anonymous IBE systems, the whole ciphertext cannot be
distinguished from a random tuple. We also discuss the type
of anonymity and divide it into two types. Type 1 means that
a random tuple can be seen as a valid ciphertext for some
identity, while type 2 cannot. Based on our discussion, we
analyse some IBE systems. We show that three famous IBE
systems, Gentry IBE System [9], Boyen-Waters IBE system
[8], and Lewko IBE System [26], have strong but different
types of anonymity.

Organization.The paper is organized as follows.We give nec-
essary background information and definitions of security in
Section 2.We then analyse the anonymity and define different
degrees and types of anonymity in Section 3. In Section 4, we
discuss the anonymity of some current IBE systems. At last
we conclude the paper with Section 5.

2. Background

In this section, we briefly review the concepts of the bilinear
maps, identity-based encryption, and its security models for
semantic security and anonymity.

2.1. Bilinear Maps

Definition 1. Let G, G
𝑇
be two cyclic multiplicative groups

with prime order𝑝. Let 𝑔 be a generator ofG and 𝑒 : G×G →

G
𝑇
a bilinear map with the following properties:

(1) bilinearity: for all 𝑢, V ∈ G and for all 𝑎, 𝑏 ∈ Z, one
has 𝑒(𝑢𝑎, V𝑏) = 𝑒(𝑢, V)𝑎𝑏;

(2) nondegeneracy: the map does not send all pairs in
G × G to the identity in G

𝑇
. Observe that since G,G

𝑇

are groups of prime order, this implies that if 𝑔 is a
generator of G then 𝑒(𝑔, 𝑔) is a generator of G

𝑇
.

We say thatG is a bilinear group if the group operation in
G and the bilinear map 𝑒 : G × G → G

𝑇
are both efficiently

computable.

Bilinear maps are also called pairings. We assume that
there is an efficient algorithm G for generating bilinear
groups. The algorithm G, on input a security parameter 𝜆,
outputs a tuple𝐺 = [𝑝,G,G

1
, 𝑔 ∈ G, 𝑒], where𝑔 is a generator

and log(𝑝) = Θ(𝜆).

2.2. Algorithms. An IBE system consists of the following four
algorithms: Setup, KeyGen, Encrypt, and Decrypt.

Setup(1𝜆). This algorithm takes as input the security param-
eter 𝜆 and outputs a public key PK and a master secret key
MK. The public key implies also a key space K(PK) and an
identity spaceID(PK).

KeyGen(MK,I). This algorithm takes as input the master
secret key MK and an identity I ∈ ID(PK) and outputs
a secret key SKI associated withI.

Encrypt(PK,I, M). This algorithm takes as input the public
key PK, an identity I, and a message 𝑀 and outputs a
ciphertext CT.

Decrypt(SKI, CT).This algorithm takes as input a secret key
SKI and the ciphertext CT. If the ciphertext is an encryption
toI, then the algorithm outputs the encrypted message𝑀.

2.3. Security Models. The chosen plaintext security (semantic
security) and anonymity of an IBE system are defined
according to the following IND-ID-CPA (indistinguishability
against full identity and chosen plaintext attacks) game and
ANON-ID-CPA (anonymity against full identity and chosen
plaintext attacks) game, respectively.

IND-ID-CPA Game

Setup. The challenger B runs the Setup algorithm and gives
PK to the adversaryA.

Phase 1. The adversary A submits an identity I. The chal-
lenger creates a secret key SKI for that identity and gives it to
the adversary.

Challenge.A submits a challenge identityI∗ and two equal
length messages 𝑀

0
,𝑀
1
to B with the restriction that each

identityI given out in the key phase must not beI∗. Then



Journal of Applied Mathematics 3

B flips a random coin 𝛽 ∈ {0, 1} and passes the ciphertext
CT∗ = Encrypt(PK,𝑀

𝛽
,I∗) toA.

Phase 2. Phase 1 is repeated with the restriction that any
queried identityI is notI∗.

Guess.A outputs its guess 𝛽󸀠 of 𝛽.

The advantage of A in this game is defined as AdvA =

|Pr[𝛽󸀠 = 𝛽] − (1/2)|.

Definition 2. One says that an IBE system is IND-ID-CPA
secure, if no probabilistic polynomial time adversaryA has a
nonnegligible advantage in winning the IND-ID-CPA game.

ANON-ID-CPA Game

Setup. The challenger B runs the Setup algorithm and gives
PK to the adversaryA.

Phase 1. The adversary A submits an identity I. The chal-
lenger creates a secret key SKI for that identity and gives it to
the adversary.

Challenge. A submits two challenge identitiesI∗
0
,I∗
1
and a

message 𝑀 to B with the restriction that each identity I
given out in the key phase must not be I∗

0
or I∗
1
. Then

B flips a random coin 𝜇 ∈ {0, 1} and passes the ciphertext
CT∗ = Encrypt(PK,𝑀,I∗

𝜇
) toA.

Phase 2. Phase 1 is repeated with the restriction that any
queried identityI is notI∗

0
orI∗
1
.

Guess.A outputs its guess 𝜇󸀠 of 𝜇.

The advantage of A in this game is defined as AdvA =

|Pr[𝜇󸀠 = 𝜇] − (1/2)|.

Definition 3. One says that an IBE system is ANON-ID-CPA
secure, if no probabilistic polynomial time adversary A has
a nonnegligible advantage in winning the ANON-ID-CPA
game.

Some systems such as [8, 27] use weaker notions called
IND-sID-CPA (indistinguishability against selective identity
and chosen plaintext attacks) security and ANON-sID-CPA
(anonymity against selective identity and chosen plaintext
attacks) security, which are against selective identity. In the
selective identity models, the adversary submits the target
identity I∗ (or I∗

1
, I∗
2
) before public parameters are

generated.

3. Analysis of Anonymity

Most IBE systems are constructed on bilinearmaps.However,
it is hard to construct anonymous IBE systems due to the
bilinearity of bilinear maps, that is, for all 𝑢, V ∈ G and for
all 𝑎, 𝑏 ∈ Z

𝑝
, we have 𝑒(𝑢𝑎, V𝑏) = 𝑒(𝑢

𝑏
, V𝑎). For pairing-based

IBE systems, it is easy for us to test the target identity if an
IBE system is not anonymous. Roughly speaking, if an IBE
system is not anonymous, supposing that 𝐶

1
, . . . , 𝐶

𝑘
∈ G are

components of a ciphertext of such a system,we can construct
elements 𝑎

1
, . . . , 𝑎

𝑘
∈ Ĝ from the public parameters and some

identityI to check whether 𝑒(𝐶
1
, 𝑎
1
) ⋅ ⋅ ⋅ 𝑒(𝐶

𝑘
, 𝑎
𝑘
) = 1, where

𝑒 : G× Ĝ → G
𝑇
denotes the bilinear map used in the system.

If the equation is true, the target identity is I. Using this
method, we can easily see that some previous IBE systems are
not anonymous, such as [4–7, 10, 11].

Gentry proposed the concept of ANON-IND-ID-CPA
(anonymity and indistinguishability against full identity and
chosen plaintext attacks) security in [9] which is the conjunc-
tion of IND-ID-CPA security and ANON-ID-CPA security.
It seems that Gentry’s definition is equivalent to IND-ID-
CPA security and ANON-ID-CPA security, but there is a
flaw which makes them not equivalent. To make up this
flaw in Gentry’s definition, we first review Gentry’s definition
and rewrite these definitions using the indistinguishability
between some similar security games.

ANON-IND-ID-CPA Game

Setup. The challenger B runs the Setup algorithm and gives
PK to the adversaryA.

Phase 1. The adversary A submits an identity I. The chal-
lenger creates a secret key SKI for that identity and gives it to
the adversary.

Challenge. A submits two challenge identities I∗
0
,I∗
1
and

two equal length message 𝑀
0
,𝑀
1
to B with the restriction

that each identity I given out in the key phase must not be
I∗
0
or I∗
1
. Then B picks two random bits 𝛽, 𝜇 ∈ {0, 1} and

passes the ciphertext CT∗ = Encrypt(PK,𝑀
𝛽
,I∗
𝜇
) toA.

Phase 2. Phase 1 is repeated with the restriction that any
queried identityI is notI∗

0
orI∗
1
.

Guess.A outputs its guess 𝛽󸀠 of 𝛽 and 𝜇
󸀠 of 𝜇.

The advantage of A in this game is defined as AdvA =

|Pr[𝛽󸀠 = 𝛽 ∧ 𝜇
󸀠
= 𝜇] − (1/4)|.

Definition 4. One says that an IBE system is ANON-IND-ID-
CPA secure, if no probabilistic polynomial time adversaryA
has a nonnegligible advantage in winning the ANON-IND-
ID-CPA game.

Though the ANON-IND-ID-CPA game is the conjunc-
tion of the IND-ID-CPA game and the ANON-ID-CPA
game, they are not always equivalent. If the assumption used
in the IND-ID-CPA game is different from the assumption
used in theANON-ID-CPA game, these two games cannot be
combined to be the ANON-IND-ID-CPA game. In Gentry’s
definition, they are equivalent because only one assumption
called the Decision 𝑞-ABDHE assumption is used in these
games.

To cover the difference caused by different assumptions
and full or selective security, we focus on the core of these
games. In the IND-ID-CPA game, the adversary needs to
distinguish an encryption of the chosen message from an
encryption of a random message both for the challenge
identity, while in the ANON-ID-CPA game, the adversary
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needs to distinguish an encryption for the challenge identity
from an encryption for a random identity both of the chosen
message. And in the combined ANON-IND-ID-CPA game,
the adversary needs to distinguish an encryption of the
chosenmessage for the challenge identity from an encryption
of a random message for a random identity. Hence, we
can redefine these concepts using the indistinguishability
between different challenge ciphertexts.

Let 𝑀 be a message and I∗ a challenge identity both
chosen by the adversary. Let 𝑀

𝑅
be a random message and

I
𝑅
a random identity. We define the following games which

differ on what challenge ciphertext is given by the simulator
to the adversary.

(i) Game
𝑀,I∗ : it is the basic game. The challenger runs

the Setup algorithm and gives the public key to the
adversary. The adversary can make a secret key query
forI, whereI is not equal to the target identityI∗.
The challenge ciphertext is Encrypt(PK,𝑀,I∗).

(ii) Game
𝑀
𝑅
,I∗ : this is like Game

𝑀,I∗ except that the
challenge ciphertext is Encrypt(PK,𝑀

𝑅
,I∗).

(iii) Game
𝑀,I
𝑅

: this is like Game
𝑀,I∗ except that the

challenge ciphertext is Encrypt(PK,𝑀,I
𝑅
).

(iv) Game
𝑀
𝑅
,I
𝑅

: this is like Game
𝑀,I∗ except that the

challenge ciphertext is Encrypt(PK,𝑀
𝑅
,I
𝑅
).

Using the indistinguishability between these games, we
rewrite the definitions of ANON-IND-ID-CPA, IND-ID-
CPA, and ANON-ID-CPA securities as follows.

Definition 5. One says that an IBE system is ANON-IND-
ID-CPA secure, if no probabilistic polynomial time adversary
A has a nonnegligible advantage in distinguishing between
Game

𝑀,I∗ and Game
𝑀
𝑅
,I
𝑅

.

Definition 6. One says that an IBE system is IND-ID-CPA
secure, if no probabilistic polynomial time adversary A
has a nonnegligible advantage in distinguishing between
Game

𝑀,I∗ and Game
𝑀
𝑅
,I∗ .

Definition 7. One says that an IBE system is ANON-ID-
CPA secure, if no probabilistic polynomial time adversary
A has a nonnegligible advantage in distinguishing between
Game

𝑀,I∗ and Game
𝑀,I
𝑅

.

Definitions for selective identity are similar except that
in all the games the adversary should submit the target
identityI∗ before public parameters are generated. Note that
Game

𝑀
𝑅
,I∗ , Game

𝑀,I
𝑅

, and Game
𝑀
𝑅
,I
𝑅

are three different
games. We have the following result for the relation between
ANON-IND-ID-CPA security, IND-ID-CPA security, and
ANON-ID-CPA security.

Lemma 8. If an IBE system E is IND-ID-CPA secure and
ANON-ID-CPA secure, thenE is ANON-IND-ID-CPA secure.

Proof. We have
󵄨󵄨󵄨󵄨󵄨
Game

𝑀,I∗AdvA − Game
𝑀
𝑅
,I∗AdvA

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖
1
, (1)

󵄨󵄨󵄨󵄨󵄨
Game

𝑀
𝑅
,I∗AdvA − Game

𝑀
𝑅
,I
𝑅

AdvA
󵄨󵄨󵄨󵄨󵄨
≤ 𝜖
2
, (2)

where 𝜖
1
, 𝜖
2
are both negligible. Equation (1) holds because

E is IND-ID-CPA secure and (2) holds becauseE is ANON-
ID-CPA secure. So

󵄨󵄨󵄨󵄨󵄨
Game

𝑀,I∗AdvA − Game
𝑀
𝑅
,I
𝑅

AdvA
󵄨󵄨󵄨󵄨󵄨
≤ 𝜖
1
+ 𝜖
2
, (3)

which means that E is ANON-IND-ID-CPA secure.

However, it is still unknown whether ANON-IND-ID-
CPA security is equivalent to IND-ID-CPA security and
ANON-ID-CPA security. The following lemma is an efficient
method to prove the anonymity, which is used for some
previous systems, such as Caro-Iovino-PersianoHIBE system
[28], Seo-Cheon HIBE system [29].

Lemma 9. If an IBE system E is IND-ID-CPA secure,
and there is no polynomial time adversary who can distin-
guish between𝐺𝑎𝑚𝑒

𝑀
𝑅
,I∗ and𝐺𝑎𝑚𝑒

𝑀
𝑅
,I
𝑅

with nonnegligible
advantage, then E is ANON-ID-CPA secure.

Proof. We have
󵄨󵄨󵄨󵄨󵄨
Game

𝑀,I∗AdvA − Game
𝑀
𝑅
,I∗AdvA

󵄨󵄨󵄨󵄨󵄨
≤ 𝜖
1
, (4)

󵄨󵄨󵄨󵄨󵄨
Game

𝑀,I
𝑅

AdvA − Game
𝑀
𝑅
,I
𝑅

AdvA
󵄨󵄨󵄨󵄨󵄨
≤ 𝜖
2
, (5)

󵄨󵄨󵄨󵄨󵄨
Game

𝑀
𝑅
,I∗AdvA − Game

𝑀
𝑅
,I
𝑅

AdvA
󵄨󵄨󵄨󵄨󵄨
≤ 𝜖
3
, (6)

where 𝜖
1
, 𝜖
2
, 𝜖
3
are all negligible. Equations (4) and (5) hold

becauseE is IND-ID-CPA secure and (6) holds according to
the hypothesis. So

󵄨󵄨󵄨󵄨󵄨
Game

𝑀,I∗AdvA − Game
𝑀,I
𝑅

AdvA
󵄨󵄨󵄨󵄨󵄨
≤ 𝜖
1
+ 𝜖
2
+ 𝜖
3
, (7)

which means that E is ANON-ID-CPA secure.

In some anonymous IBE systems, such as Boyen-
Waters anonymous IBE system, they use a new game called
GameRandom. We define it as follows.

(i) GameRandom: this is like Game
𝑀,I∗ except that the

challenge ciphertext consists of independent random
group elements.

Note that GameRandom is different from Game
𝑀
𝑅
,I
𝑅

.
Though they are similar concepts, they are not always equiv-
alent. GameRandom is a special game in which the chal-
lenge ciphertext is composed of independent random group
elements, while the challenge ciphertext of Game

𝑀
𝑅
,I
𝑅

is
still a valid ciphertext. Since every element is random, the
ciphertext leaks no information about the identity. So if the
transition fromGame

𝑀,I∗ to GameRandom is computationally
indistinguishable, the IBE system is no doubt anonymous.
This proof method was used in Boyen-Waters anonymous
IBE system and later anonymous IBE systems. Obviously, the
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transition from Game
𝑀,I∗ to Game

𝑀,I
𝑅

is different from
the transition fromGame

𝑀,I∗ to GameRandom.The difference
leads to the following classification of anonymous IBE sys-
tems.

Definition 10 (weak anonymity). One says that an IBE system
has weak anonymity, if no probabilistic polynomial time
adversary A has a nonnegligible advantage in distinguish-
ing between Game

𝑀,I∗ and Game
𝑀,I
𝑅

or distinguishing
between Game

𝑀,I∗ and Game
𝑀
𝑅
,I
𝑅

.

Definition 11 (strong anonymity). One says that an IBE sys-
temhas strong anonymity, if no probabilistic polynomial time
adversaryA has a nonnegligible advantage in distinguishing
between Game

𝑀,I∗ and GameRandom.

Obviously, weak anonymity is the standard definition
shown in previous articles where the target identity is indis-
tinguishable from a random identity. It is easy to see that
weak anonymity is required for all anonymous IBE systems
and strong anonymity implies weak anonymity. So weak
anonymity is also called standard anonymity, while strong
anonymity is called superstandard anonymity. In the next
section, we will analyse some IBE systems based on our
definitions of anonymity. We will see that these IBE systems
all have strong anonymity. To further clarify the anonymity
of IBE systems, we use the difference between Game

𝑀
𝑅
,I
𝑅

and GameRandom to define two types of anonymity, named
type 1 anonymity and type 2 anonymity. First we define the
equivalence of two games. Let GameA, GameB be two games.
If any ciphertext output by GameA can seem as a properly
distributed ciphertext output byGameB and vice versa, we say
that GameA equals GameB or GameA = GameB. Obviously,
GameA = GameB means that GameA is indistinguishable
from GameB. However, if two games are indistinguishable,
they are not always equivalent. For example, for any IND-
IND-CPA secure IBE system, Game

𝑀,I∗ ̸=Game
𝑀
𝑅
,I∗ , but

they are indistinguishable according to the definition of IND-
ID-CPA security.

Definition 12. For an anonymous IBE systemE, if Game
𝑀
𝑅
,I
𝑅

= GameRandom, one says that E has type 1 anonymity, or else
E has type 2 anonymity.

If an IBE system E has only weak anonymity, it is
obvious that Game

𝑀
𝑅
,I
𝑅

̸=GameRandom; that is, E has type 2
anonymity. So there is no type 1 anonymous IBE system with
only weak anonymity. For a strongly anonymous IBE system,
type 1 anonymity always means that it only needs to prove
E’s anonymity in the ANON-IND-ID-CPA game or in the
ANON-ID-CPA game, while type 2 anonymity always means
that E needs additional steps to prove strong anonymity, for
example, proving the indistinguishability of transition from
Game

𝑀
𝑅
,I
𝑅

to GameRandom.
Note that there is some IBE systemwhich has the property

Game
𝑀
𝑅
,I
𝑅

= GameRandom, such as Boneh-Boyen IBE
system. In Boneh-Boyen IBE system, a ciphertext is like
𝑀𝑒(𝑔, 𝑔)

𝛼𝑠, (𝑢Iℎ)𝑠, 𝑔𝑠. It is easy to see that a random tuple
is still a valid ciphertext for some identity and message. But

as we know, Boneh-Boyen IBE system is not anonymous
because there is a gap between Game

𝑀,I and Game
𝑀,I
𝑅

.

4. Anonymity of Some IBE Systems

In this section, we analyse some IBE systems based on our
definitions of anonymity. We discuss three famous anony-
mous IBE systems: Gentry IBE System [9], Boyen-Waters
IBE system [8], and Lewko IBE System [26]. We show that
these three IBE systems are all strongly anonymous but have
different types.

4.1. Gentry IBE System [9]. We show that Gentry’s anony-
mous IBE system has type 1 strong anonymity.We first briefly
describe Gentry IBE system as follows.

Setup(1𝜆). Given the security parameter 𝜆, the setup algo-
rithm first gets (𝑝,G,G

𝑇
, 𝑔, 𝑒) ← G(𝜆). Next it chooses

another randomgenerator ℎ ∈ G and random integer𝛼 ∈ Z
𝑝
.

Then the setup algorithm sets 𝑔
1
= 𝑔
𝛼. The public key PK is

published as

PK = (𝑔, 𝑔
1
, ℎ) , (8)

and the master key MK is

MK = (𝛼) . (9)

KeyGen(MK,I). To generate the secret key SKI for an
identity I ∈ Z

𝑝
, the key extract algorithm chooses random

𝑟I ∈ Z
𝑝
and outputs SKI as

SKI = (𝑟I, (ℎ𝑔
−𝑟I)
1/(𝛼−I)

) . (10)

The constraints are that I ̸= 𝛼 and the PKG always uses
the same random value 𝑟I forI.

Encrypt(PK,I, M). To encrypt a message 𝑀 ∈ G
𝑇
for an

identity I, the algorithm chooses random integers 𝑠 ∈ Z
𝑝

and outputs the ciphertext CT as

CT = (𝑀 ⋅ 𝑒(𝑔, ℎ)
−𝑠
, 𝑔
𝑠

1
𝑔
−𝑠⋅I

, 𝑒(𝑔, 𝑔)
𝑠
) . (11)

Decrypt(SKI, CT). To decrypt a ciphertext CT = (𝐶, 𝐶
1
, 𝐶
2
)

for an identityI, using the corresponding secret key SKI =

(𝑟I, ℎI) outputs

𝑀 = 𝐶 ⋅ 𝑒 (ℎI, 𝐶1) ⋅ 𝐶
𝑟I

2
. (12)

Lemma 13 (see [9,Theorem 1]). Gentry IBE system is ANON-
IND-ID-CPA secure.

Lemma 14. For Gentry IBE system, 𝐺𝑎𝑚𝑒
𝑀
𝑅
,I
𝑅

=

𝐺𝑎𝑚𝑒Random.

Proof. Let C
1
be the set of all the possible ciphertext output

by Game
𝑀
𝑅
,I
𝑅

and C
2
the set of all the possible ciphertext

outputs by GameRandom. We will show thatC
1
= C
2
.

Obviously, we have C
1
⊂ C
2
. Note that this claim is true

for all IBE systems.



6 Journal of Applied Mathematics

Next, for a random tuple (𝐶, 𝐶
1
, 𝐶
2
), where 𝐶

1
∈ G and

𝐶, 𝐶
2
∈ G
𝑇
, we say that it is a valid ciphertext of Gentry-AIBE

system. At first we can set 𝐶
2
= 𝑒(𝑔, 𝑔)

𝑠 for some 𝑠 and then
we can set𝐶

1
= 𝑔
𝑠

1
𝑔
−𝑠⋅I for some identityI and𝐶 = 𝑀⋅𝑒(𝑔,

ℎ)
−𝑠 for some message𝑀. So we haveC

2
⊂ C
1
.

As a result, C
1

= C
2
. This means that the challenge

ciphertext output by Game
𝑀
𝑅
,𝐼
𝑅

can seem as a challenge ci-
phertext by GameRandom and vice versa. Then for Gentry-
AIBE system, Game

𝑀
𝑅
,𝐼
𝑅

= GameRandom.

From Lemmas 13 and 14, we get the following result.

Theorem 15. Gentry IBE system has type 1 strong anonymity.

4.2. Boyen-Waters IBE System [8]. For an anonymous IBE
system, equation Game

𝑀
𝑅
,I
𝑅

= GameRandom means that it
is intrinsically strongly anonymous, just as we showed for
Gentry IBE system in the previous section. The equation
also holds for some previous systems, for example, Boneh-
Franklin IBE system. But for some strongly anonymous IBE
systems, it does not hold; that is, Game

𝑀
𝑅
,𝐼
𝑅

̸=GameRandom. In
fact, these two games are computationally indistinguishable
under some assumption, for example, the decisional linear
assumption.

As an example, we will show that Boyen-Waters anony-
mous IBE system is a type 2 anonymous IBE system; that is, it
does not satisfy the equation.We first briefly describe Boyen-
Waters IBE system as follows.

Setup(1𝜆). Given the security parameter 𝜆, the setup algo-
rithm first gets (𝑝,G, G

𝑇
, 𝑔, 𝑒) ← G(𝜆). Next it chooses

another two random group elements 𝑔
0
, 𝑔
1
∈ G and five ran-

dom integers 𝜔, 𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
∈ Z
𝑝
. Then the setup algorithm

sets Ω = 𝑒(𝑔, 𝑔)
𝑡
1
𝑡
2
𝜔
, V
1
= 𝑔
𝑡
1 , V
2
= 𝑔
𝑡
2 , V
3
= 𝑔
𝑡
3 , V
4
= 𝑔
𝑡
4 . The

public key PK is published as

PK = (Ω, 𝑔, 𝑔
0
, 𝑔
1
, V
1
, V
2
, V
3
, V
4
) , (13)

and the master key MK is

MK = (𝜔, 𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
) . (14)

KeyGen(MK,I). To generate the secret key SKI for an
identity I ∈ Z

𝑝
, the key extract algorithm chooses random

𝑟
1
, 𝑟
2
∈ Z
𝑝
and outputs SKI as

SKI = (𝑔
𝑟
1
𝑡
1
𝑡
2
+𝑟
2
𝑡
3
𝑡
4 , 𝑔
−𝜔𝑡
2(𝑔
0
𝑔
I
1
)
−𝑟
1
𝑡
2

, 𝑔
−𝜔𝑡
1(𝑔
0
𝑔
I
1
)
−𝑟
1
𝑡
1

,

(𝑔
0
𝑔
I
1
)
−𝑟
2
𝑡
4

, (𝑔
0
𝑔
I
1
)
−𝑟
2
𝑡
3

) .

(15)

Encrypt(PK,I, M). To encrypt a message 𝑀 ∈ G
𝑇
for an

identityI, the algorithm chooses random integers 𝑠, 𝑠
1
, 𝑠
2
∈

Z
𝑝
and outputs the ciphertext CT as

CT = (𝑀Ω
𝑠
, (𝑔
0
𝑔
I
1
)
𝑠

, V𝑠−𝑠1
1

, V𝑠1
2
, V𝑠−𝑠2
3

, V𝑠2
4
) . (16)

Decrypt(SKI, CT). To decrypt a ciphertext CT = (𝐶, 𝐶
1
, 𝐶
2
,

𝐶
3
, 𝐶
4
, 𝐶
5
) for an identityI, using the corresponding secret

key SKI = (𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
, 𝑑
5
) outputs

𝑀 = 𝐶 ⋅ 𝑒 (𝑑
1
, 𝐶
1
) ⋅ 𝑒 (𝑑

2
, 𝐶
2
) ⋅ 𝑒 (𝑑

3
, 𝐶
3
)

⋅ 𝑒 (𝑑
4
, 𝐶
4
) ⋅ 𝑒 (𝑑

5
, 𝐶
5
) .

(17)

Using the conjunction of Lemmas 1, 2, and 3 in [8], we
have the following result for Boyen-Waters IBE system.

Lemma 16. For Boyen-Waters IBE system, 𝐺𝑎𝑚𝑒
𝑀,I∗ and

𝐺𝑎𝑚𝑒Random are computationally indistinguishable under the
decisional BDH and decisional linear assumptions.

Now we show that Boyen-Waters IBE system has type 2
anonymity.

Lemma 17. For Boyen-Waters IBE system, 𝐺𝑎𝑚𝑒
𝑀
𝑅
,I
𝑅

̸=

𝐺𝑎𝑚𝑒Random.

Proof. Given a random tuple (𝑅, 𝑅
1
, 𝑅
2
, 𝑅
3
, 𝑅
4
, 𝑅
5
)where𝑅 ∈

G
𝑇
and 𝑅

1
, . . . , 𝑅

5
∈ G, we say that it has at most 1/𝑝

probability to be a valid ciphertext of BW-AIBE system. At
first we set 𝑅

3
= V𝑠1
2

and 𝑅
5

= V𝑠2
4

for some 𝑠
1
and 𝑠

2
,

respectively, and then we can set 𝑅
2
= V𝑠−𝑠1
1

for some 𝑠, but
a valid ciphertext requires that 𝑅

4
= V𝑠−s2
3

. Since 𝑅
4
is a

random element of G, so 𝑅
4
has only 1/𝑝 probability to be

V𝑠−𝑠2
3

. When 𝑅
4

̸= V𝑠−𝑠2
3

, the random tuple cannot be a valid
ciphertext which means that Game

𝑀
𝑅
,𝐼
𝑅

̸=GameRandom.

From Lemmas 16 and 17, we can easily get the following
result.

Theorem 18. Boyen-Waters IBE system has type 2 strong
anonymity.

4.3. Lewko IBE System [26]. Boyen-Waters IBE system only
has selective security. We now show that a fully secure IBE
system, Lewko IBE system, has type 2 full anonymity. Lewko
IBE system is constructed from dual orthonormal bases and
can seem as a translation of Lewko-Waters IBE system [11] in
prime order groups. In Lewko’s original description, she only
gave a proof for chosen plaintext security.

Lewko IBE system is constructed on dual orthonormal
bases of dual pairing vector spaces. We first review vectors
of group elements. Given a group element 𝑔 ∈ G and a vector
k = (V

1
, . . . , V

𝑛
) ∈ Z𝑛

𝑝
, we write 𝑔

k to denote a 𝑛-tuple of
elements of G : 𝑔

k
:= (𝑔

V
1 , . . . , 𝑔

V
𝑛). For any 𝑎 ∈ Z

𝑝
and

k,w ∈ Z𝑛
𝑝
, we have (𝑔k

)
𝑎
= 𝑔
𝑎k

= (𝑔
𝑎V
1 , . . . , 𝑔

𝑎V
𝑛) and 𝑔

k+w
=

(𝑔
V
1
+𝑤
1 , . . . , 𝑔

V
𝑛
+𝑤
𝑛). We also use 𝑒

𝑛
to denote the pairing of

vectors:

𝑒
𝑛
(𝑔

k
, 𝑔

w
) :=

𝑛

∏

𝑖=1

𝑒 (𝑔
V
𝑖 , 𝑔
𝑤
𝑖) = 𝑒(𝑔, 𝑔)

k⋅w
. (18)
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For a fixed (constant) dimension 𝑛, we choose two ran-
dom bases B := (b

1
, . . . , b

𝑛
) and B∗ := (b

1
, . . . , b

𝑛
) of Z𝑛×𝑛

𝑝
,

subject to the constraint that

b
𝑖
⋅ b∗
𝑗
= {

0, 𝑖 ̸= 𝑗

𝜓, 𝑖 = 𝑗
(mod𝑝) . (19)

(B,B∗) are called dual orthonormal bases and Dual(Z𝑛
𝑝
)

denotes the set of dual orthonormal bases. We then describe
Lewko IBE system as follows.

Setup(1𝜆). Given the security parameter 𝜆, the setup algo-
rithm first gets (𝑝,G, G

𝑇
, 𝑔, 𝑒) ← G(𝜆). Next it chooses ran-

domdual orthonormal bases (D,D∗) fromDual(Z6
𝑝
). LetD =

(d
1
, . . . , d

6
) and D = (d∗

1
, . . . , d∗

6
). It also chooses random

values 𝛼, 𝜃, 𝜎 ∈ Z
𝑝
. The public key is published as

PK = (𝑝,G, Ω = 𝑒(𝑔, 𝑔)
𝛼𝜃d
1
⋅d∗
1 , 𝑔

d
1 , . . . , 𝑔

d
4) , (20)

and the master key is

MK = (𝑔
𝜃d∗
1 , 𝑔
𝛼𝜃d∗
1 , 𝑔
𝜃d∗
2 , 𝑔
𝜎d∗
3 , 𝑔
𝜎d∗
4 ) . (21)

KeyGen(MK,I). The key generation algorithm chooses ran-
dom 𝑟

1
, 𝑟
2
∈ Z
𝑝
and outputs the secret key as

SKI := 𝑔
(𝛼+𝑟
1
I)𝜃d∗

1
−𝑟
1
𝜃d∗
2
+𝑟
2
I𝜎d∗
3
−𝑟
2
𝜎d∗
4 . (22)

Encrypt(PK,I, M). To encrypt a message 𝑀 ∈ G
𝑇
for an

identity I, the algorithm chooses random integers 𝑠
1
, 𝑠
2
∈

Z
𝑝
and outputs the ciphertext as

CT = (𝐶
1
:= 𝑀Ω

𝑠
1 , 𝐶
2
:= 𝑔
𝑠
1
d
1
+𝑠
1
Id
2
+𝑠
2
d
3
+𝑠
2
Id
4) . (23)

Decrypt(SKI, CT). The decryption algorithm computes the
message as

𝑀 =
𝐶
1

𝑒
𝑛
(SKI, 𝐶2)

. (24)

Security proof of Lewko IBE system used the dual sys-
tem encryption technique [10]. Its semifunctional keys
are like 𝑔

(𝛼+𝑟
1
I)𝜃d∗

1
−𝑟
1
𝜃d∗
2
+𝑟
2
I𝜎d∗
3
−𝑟
2
𝜎d∗
4
+𝑡
5
d∗
5
+𝑡
6
d∗
6 and its semi-

functional ciphertext is (𝑀Ω
𝑠
1 , 𝑔
𝑠
1
d
1
+𝑤d
2
+𝑠
2
d
3
+𝑠
2
Id
4
+𝑠
5
d
5
+𝑠
6
d
6)

where 𝑡
5
, 𝑡
6
, 𝑠
5
, 𝑠
6

𝑅

← Z
𝑝
. Let GameFinal be the game, where all

returned keys are semifunctional and the challenge ciphertext
is (𝑅, 𝑔

𝑠
1
d
1
+𝑤d
2
+𝑠
2
d
3
+𝑠
2
Id
4
+𝑠
5
d
5
+𝑠
6
d
6), where 𝑅

𝑅

← G
𝑇

and
𝑤, 𝑠
5
, 𝑠
6

𝑅

← Z
𝑝
. In [26], Lewko showed thatGame

𝑀,I is indis-
tinguishable fromGameFinal󸀠 under the subspace assumption.
We continue her work and show that her IBE system has type
2 strong anonymity.

We first review the subspace assumption introduced by
Lewko in [26].

Definition 19. Given a group generation G, one defines the
following distribution:

𝐺 := (𝑝,G,G
𝑇
, 𝑔, 𝑒)

𝑅

←󳨀 G,

(B,B
∗
)
𝑅

←󳨀 Dual (Z𝑛
𝑝
) , 𝜂, 𝛽, 𝜏

1
, 𝜏
2
, 𝜏
3
, 𝜇
1
, 𝜇
2
, 𝜇
3

𝑅

←󳨀 Z
𝑝
,

𝑈
1
:= 𝑔
𝜇
1
b
1
+𝜇
2
b
𝑘+1
+𝜇
3
b
2𝑘+1 ,

𝑈
2
:= 𝑔
𝜇
1
b
2
+𝜇
2
b
𝑘+2
+𝜇
3
b
2𝑘+2 , . . . ,

𝑈
𝑘
:= 𝑔
𝜇
1
b
𝑘
+𝜇
2
b
2𝑘
+𝜇
3
b
3𝑘 ,

𝑉
1
:= 𝑔
𝜏
1
𝜂b∗
1
+𝜏
2
𝛽b∗
𝑘+1 ,

𝑉
2
:= 𝑔
𝜏
1
𝜂b∗
2
+𝜏
2
𝛽b∗
𝑘+2 , . . . ,

𝑉
𝑘
:= 𝑔
𝜏
1
𝜂b∗
𝑘
+𝜏
2
𝛽b∗
2𝑘 ,

𝑊
1
:= 𝑔
𝜏
1
𝜂b∗
1
+𝜏
2
𝛽b∗
𝑘+1
+𝜏
3
b∗
2𝑘+1 ,

𝑊
2
:= 𝑔
𝜏
1
𝜂b∗
2
+𝜏
2
𝛽b∗
𝑘+2
+𝜏
3
b∗
2𝑘+2 , . . . ,

𝑊
𝑘
:= 𝑔
𝜏
1
𝜂b∗
𝑘
+𝜏
2
𝛽b∗
2𝑘
+𝜏
3
b∗
3𝑘 ,

𝐷⃗ := (𝑔
b
1 , 𝑔

b
2 , . . . , 𝑔

b
2𝑘 , 𝑔

b
3𝑘+1 , . . . , 𝑔

b
𝑛 , 𝑔
𝜂b∗
1 , . . . ,

𝑔
𝜂b∗
𝑘 , 𝑔
𝛽b∗
𝑘+1 , . . . , 𝑔

𝛽b∗
2𝑘 , 𝑔

b∗
2𝑘+1 , . . . ,

𝑔
b∗
𝑛 , 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑘
, 𝜇
3
) .

(25)

We define the advantage of an algorithm A in breaking the
subspace assumption to be
󵄨󵄨󵄨󵄨󵄨
Pr [A (𝐷⃗, 𝑉

1
, . . . , 𝑉

𝑘
) = 1] − Pr [A (𝐷⃗,𝑊

1
, . . . ,𝑊

𝑘
) = 1]

󵄨󵄨󵄨󵄨󵄨
.

(26)

We say that the subspace assumption holds if no prob-
abilistic polynomial time algorithm has a nonnegligible
advantage in breaking the subspace assumption.

Lemma 20. Let 𝐺𝑎𝑚𝑒
𝐹𝑖𝑛𝑎𝑙
󸀠 be the game, where all returned

keys are semifunctional and the challenge ciphertext is
(𝑅, 𝑔
𝑠
1
d
1
+𝑤
2
d
2
+𝑠
2
d
3
+𝑤
4
d
4
+𝑠
5
d
5
+𝑠
6
d
6), where 𝑅 𝑅← G

𝑇
and 𝑤

2
, 𝑤
4
,

𝑠
5
, 𝑠
6

𝑅

← Z
𝑝
. If there exists a polynomial time algorithm A,

where 𝐺𝑎𝑚𝑒
𝐹𝑖𝑛𝑎𝑙

𝐴𝑑VA − 𝐺𝑎𝑚𝑒
𝐹𝑖𝑛𝑎𝑙
󸀠𝐴𝑑VA = 𝜖, then we can

construct a polynomial time algorithmB with advantage 𝜖 to
break the subspace assumption with 𝑛 = 6 and 𝑘 = 1.

Proof. B is given 𝐷 := (𝑔
b
1 , 𝑔

b
2 , 𝑔

b
4 , 𝑔

b
5 , 𝑔

b
6 , 𝑔
𝜂b∗
1 , 𝑔
𝛽b∗
2 , 𝑔

b∗
3 ,

𝑔
b∗
4 , 𝑔
𝛽b∗
5 , 𝑔
𝛽b∗
6 , 𝑈
1
, 𝜇
3
) along with 𝑇

1
. B should decide

whether𝑇
1
is distributed as𝑔𝜏1𝜂b

∗

1
+𝜏
2
𝛽b∗
2 or as𝑔𝜏1𝜂b

∗

1
+𝜏
2
𝛽b∗
2
+𝜏
3
b∗
3 .

At firstB implicitly sets d
1
= b∗
6
, d
2
= b∗
5
, d
3
= b∗
4
, d
4
=

b∗
3
, d
5
= b∗
2
, d
6
= b∗
1
. Then B can produce 𝑔d

1 , . . . , 𝑔
d
4 for

the public parameters. Next B sets d∗
1
= b
6
, d∗
2
= b
5
, d∗
3
=

b
4
, d∗
4
= b
3
, d∗
5
= b
2
, d∗
6
= b
1
. Note that B only does not

know 𝑔
d∗
4 .
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Table 1: Comparison.

System Security Anonymity degree Anonymity type Security model

Boneh and Franklin [2] IND-ID-CPA
ANON-ID-CPA Strong 1 Random oracle

Boyen and Waters [8] IND-sID-CPA
ANON-sID-CPA Strong 2 Standard

Gentry [9] ANON-IND-ID-CPA Strong 1 Standard

Ducas [23] IND-sID-CPA
ANON-sID-CPA Strong 2 Standard

Lewko [26] IND-ID-CPA
ANON-ID-CPA Strong 2 Standard

Chen et al. [24] ANON-IND-ID-CPA Strong 2 Standard

B chooses random values 𝜃, 𝜎, 𝛼 ∈ Z
𝑝
for itself. It can

compute 𝑒(𝑔, 𝑔)𝛼𝜃d1 ⋅d
∗

1 as (𝑒
𝑛
(𝑔

b∗
6 , 𝑔

b
6))
𝛼𝜃. It givesA the public

key

PK := G, 𝑝, 𝑒(𝑔, 𝑔)
𝛼𝜃d
1
⋅d∗
1 , 𝑔

d
1 , . . . , 𝑔

d
4 . (27)

To respond a key query forI,B chooses random values
𝑟
1
, 𝑟
󸀠

2
, 𝑡
󸀠

5
, 𝑡
󸀠

6
∈ Z
𝑝
. It will set 𝑟

2
= 𝜇
3
𝑟
󸀠

2
. It forms the secret key

as

SKI := (𝑈
1
)
𝜎𝑟
󸀠

2𝑔
(𝛼+𝑟
1
I)𝜃d∗

1
−𝑟
1
𝜃d∗
2
+𝜇
3
𝑟
󸀠

2
I𝜎d∗
3
+𝑡
󸀠

5
d∗
5
+𝑡
󸀠

6
d∗
6 . (28)

At the challenge phase,B receives two messages𝑀
0
,𝑀
1

and a challenge identityI∗.B chooses a random bit 𝑏 ∈ {0,

1}, a random element 𝑅 ∈ G
𝑇
, and random values 𝑤

2
, 𝑠
1
, 𝑠
2
∈

Z
𝑝
and sets

𝐶
1
:= 𝑅, 𝐶

2
:= 𝑔
𝑠
1
d
1
+𝑤
2
d
2
+𝑠
2
d
3
+𝑠
2
I∗d
4𝑇
1
. (29)

If 𝑇
1
= 𝑔
𝜏
1
𝜂b∗
1
+𝜏
2
𝛽b∗
2 , then the exponent vector of 𝑇

1
is a

random linear combination of d
5
and d

6
, so it is in GameFinal.

If the exponent of 𝑇
1
additionally has 𝜏

3
b∗
3
= 𝜏
3
d
4
, it is in

GameFinal󸀠 . Therefore,B can use the output ofA to break the
subspace assumption.

Theorem 21. Lewko IBE system has type 2 strong anonymity.

Proof. FromLemma 20we know that the ciphertext of Lewko
IBE system leaks no information about target identity, so it is
anonymous.

Furthermore, note that d
1
, . . . , d

6
is a base of Z6×6

𝑝
, so

𝑔
𝑠
1
d
1
+𝑤
2
d
2
+𝑠
2
d
3
+𝑤
4
d
4
+𝑠
5
d
5
+𝑠
6
d
6 can seem a random element in

Z6×6
𝑝

. In other words, GameFinal󸀠 = GameRandom. So Lewko
IBE system has strong anonymity.

Obviously, the set of all possible 𝐶
2
is contained in

span (𝑔d
1 , 𝑔

d
2 , 𝑔

d
3 , 𝑔

d
4). Note that any nonzero vectors in

span (𝑔d
5 , 𝑔

d
6) are not included in span (𝑔d

1 , 𝑔
d
2 , 𝑔

d
3 , 𝑔

d
4),

so Game
𝑀
𝑅
,I
𝑅

̸=GameRandom for Lewko IBE system which
means that Lewko IBE system has type 2 anonymity.

4.4. Comparison. Like previous analysis for Gentry IBE sys-
tem, Boyen-Waters IBE system, and Lewko IBE system, we

can analyse other anonymous IBE systems. A brief compari-
son for some anonymous IBE systems is given in Table 1. We
would find that all listed IBE systems have strong anonymity,
that is, superstandard anonymity. Though weak anonymity,
that is, standard anonymity, is the current definition of
anonymity, to the best of our knowledge, there is no IBE
system having only weak anonymity. Hence we leave an
open problem to construct an IBE system with only weak
anonymity.

5. Conclusion

In this paper, we discuss the anonymity of identity-based
encryption systems. Anonymity can be divided into two
degrees: weak anonymity and strong anonymity. If an IBE sys-
tem has weak anonymity, the target identity of its ciphertext
cannot be distinguished from a random identity. For strongly
anonymous IBE systems, the whole ciphertext cannot be
distinguished from a random tuple. We also discuss the type
of anonymity and divide it into two types: type 1 means that
a random tuple can be seen as a valid ciphertext for some
identity, while type 2 cannot. We show that some current
anonymous IBE systems, such as Gentry IBE system, Boyen-
Waters IBE system, and Lewko IBE system, have strong but
different type of anonymity. We hope that our analysis of
anonymitywould help to constructmore anonymous IBE and
related systems.
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