17,428 research outputs found

    Topological Ramsey spaces from Fra\"iss\'e classes, Ramsey-classification theorems, and initial structures in the Tukey types of p-points

    Full text link
    A general method for constructing a new class of topological Ramsey spaces is presented. Members of such spaces are infinite sequences of products of Fra\"iss\'e classes of finite relational structures satisfying the Ramsey property. The Product Ramsey Theorem of Soki\v{c} is extended to equivalence relations for finite products of structures from Fra\"iss\'e classes of finite relational structures satisfying the Ramsey property and the Order-Prescribed Free Amalgamation Property. This is essential to proving Ramsey-classification theorems for equivalence relations on fronts, generalizing the Pudl\'ak-R\"odl Theorem to this class of topological Ramsey spaces. To each topological Ramsey space in this framework corresponds an associated ultrafilter satisfying some weak partition property. By using the correct Fra\"iss\'e classes, we construct topological Ramsey spaces which are dense in the partial orders of Baumgartner and Taylor in \cite{Baumgartner/Taylor78} generating p-points which are kk-arrow but not k+1k+1-arrow, and in a partial order of Blass in \cite{Blass73} producing a diamond shape in the Rudin-Keisler structure of p-points. Any space in our framework in which blocks are products of nn many structures produces ultrafilters with initial Tukey structure exactly the Boolean algebra P(n)\mathcal{P}(n). If the number of Fra\"iss\'e classes on each block grows without bound, then the Tukey types of the p-points below the space's associated ultrafilter have the structure exactly [ω]<ω[\omega]^{<\omega}. In contrast, the set of isomorphism types of any product of finitely many Fra\"iss\'e classes of finite relational structures satisfying the Ramsey property and the OPFAP, partially ordered by embedding, is realized as the initial Rudin-Keisler structure of some p-point generated by a space constructed from our template.Comment: 35 pages. Abstract and introduction re-written to make very clear the main points of the paper. Some typos and a few minor errors have been fixe

    Relational symplectic groupoids

    Full text link
    This note introduces the construction of relational symplectic groupoids as a way to integrate every Poisson manifold. Examples are provided and the equivalence, in the integrable case, with the usual notion of symplectic groupoid is discussed.Comment: 36 pages, 1 figur

    Topological Semantics and Decidability

    Get PDF
    It is well-known that the basic modal logic of all topological spaces is S4S4. However, the structure of basic modal and hybrid logics of classes of spaces satisfying various separation axioms was until present unclear. We prove that modal logics of T0T_0, T1T_1 and T2T_2 topological spaces coincide and are S4.Wealsoexaminebasichybridlogicsoftheseclassesandprovetheirdecidability;aspartofthis,wefindoutthatthehybridlogicsof. We also examine basic hybrid logics of these classes and prove their decidability; as part of this, we find out that the hybrid logics of T_1andT2 and T_2 spaces coincide.Comment: presentation changes, results about concrete structure adde

    Reduced Coproducts of Compact Hausdorff Spaces

    Get PDF
    By analyzing how one obtains the Stone space of the reduced product of an indexed collection of Boolean algebras from the Stone spaces of those algebras, we derive a topological construction, the reduced coproduct , which makes sense for indexed collections of arbitrary Tichonov spaces. When the filter in question is an ultrafilter, we show how the ultracoproduct can be obtained from the usual topological ultraproduct via a compactification process in the style of Wallman and Frink. We prove theorems dealing with the topological structure of reduced coproducts (especially ultracoproducts) and show in addition how one may use this construction to gain information about the category of compact Hausdorff spaces
    • …
    corecore