research

Topological Semantics and Decidability

Abstract

It is well-known that the basic modal logic of all topological spaces is S4S4. However, the structure of basic modal and hybrid logics of classes of spaces satisfying various separation axioms was until present unclear. We prove that modal logics of T0T_0, T1T_1 and T2T_2 topological spaces coincide and are S4.Wealsoexaminebasichybridlogicsoftheseclassesandprovetheirdecidability;aspartofthis,wefindoutthatthehybridlogicsof. We also examine basic hybrid logics of these classes and prove their decidability; as part of this, we find out that the hybrid logics of T_1andT2 and T_2 spaces coincide.Comment: presentation changes, results about concrete structure adde

    Similar works