43 research outputs found

    Scaling the weight parameters in Markov logic networks and relational logistic regression models

    Get PDF
    We consider Markov logic networks and relational logistic regression as two fundamental representation formalisms in statistical relational artificial intelligence that use weighted formulas in their specification. However, Markov logic networks are based on undirected graphs, while relational logistic regression is based on directed acyclic graphs. We show that when scaling the weight parameters with the domain size, the asymptotic behaviour of a relational logistic regression model can be described by a single Bayesian network and is transparently controlled by the provided weights. We also show using two examples that this is not true for Markov logic networks. We also discuss using several examples, mainly from the literature, how the application context can help the user to decide when such scaling is appropriate and when using the raw unscaled parameters might be preferable. We highlight random sampling as a particularly promising area of application for scaled models and expound possible avenues for further research

    Scaling the weight parameters in Markov logic networks and relational logistic regression models

    Get PDF
    We consider Markov logic networks and relational logistic regression as two fundamental representation formalisms in statistical relational artificial intelligence that use weighted formulas in their specification. However, Markov logic networks are based on undirected graphs, while relational logistic regression is based on directed acyclic graphs. We show that when scaling the weight parameters with the domain size, the asymptotic behaviour of a relational logistic regression model can be described by a single Bayesian network and is transparently controlled by the provided weights. We also show using two examples that this is not true for Markov logic networks. We also discuss using several examples, mainly from the literature, how the application context can help the user to decide when such scaling is appropriate and when using the raw unscaled parameters might be preferable. We highlight random sampling as a particularly promising area of application for scaled models and expound possible avenues for further research

    Statistical relational learning with soft quantifiers

    Get PDF
    Quantification in statistical relational learning (SRL) is either existential or universal, however humans might be more inclined to express knowledge using soft quantifiers, such as ``most'' and ``a few''. In this paper, we define the syntax and semantics of PSL^Q, a new SRL framework that supports reasoning with soft quantifiers, and present its most probable explanation (MPE) inference algorithm. To the best of our knowledge, PSL^Q is the first SRL framework that combines soft quantifiers with first-order logic rules for modelling uncertain relational data. Our experimental results for link prediction in social trust networks demonstrate that the use of soft quantifiers not only allows for a natural and intuitive formulation of domain knowledge, but also improves the accuracy of inferred results
    corecore