3,853 research outputs found

    Branching Bisimilarity with Explicit Divergence

    Full text link
    We consider the relational characterisation of branching bisimilarity with explicit divergence. We prove that it is an equivalence and that it coincides with the original definition of branching bisimilarity with explicit divergence in terms of coloured traces. We also establish a correspondence with several variants of an action-based modal logic with until- and divergence modalities

    Bisimulation in Inquisitive Modal Logic

    Full text link
    Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic, and characterise inquisitive modal logic as the bisimulation invariant fragments of first-order logic over various classes of two-sorted relational structures. These results crucially require non-classical methods in studying bisimulations and first-order expressiveness over non-elementary classes.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    On infinite-finite duality pairs of directed graphs

    Get PDF
    The (A,D) duality pairs play crucial role in the theory of general relational structures and in the Constraint Satisfaction Problem. The case where both classes are finite is fully characterized. The case when both side are infinite seems to be very complex. It is also known that no finite-infinite duality pair is possible if we make the additional restriction that both classes are antichains. In this paper (which is the first one of a series) we start the detailed study of the infinite-finite case. Here we concentrate on directed graphs. We prove some elementary properties of the infinite-finite duality pairs, including lower and upper bounds on the size of D, and show that the elements of A must be equivalent to forests if A is an antichain. Then we construct instructive examples, where the elements of A are paths or trees. Note that the existence of infinite-finite antichain dualities was not previously known

    Monadic second-order definable graph orderings

    Full text link
    We study the question of whether, for a given class of finite graphs, one can define, for each graph of the class, a linear ordering in monadic second-order logic, possibly with the help of monadic parameters. We consider two variants of monadic second-order logic: one where we can only quantify over sets of vertices and one where we can also quantify over sets of edges. For several special cases, we present combinatorial characterisations of when such a linear ordering is definable. In some cases, for instance for graph classes that omit a fixed graph as a minor, the presented conditions are necessary and sufficient; in other cases, they are only necessary. Other graph classes we consider include complete bipartite graphs, split graphs, chordal graphs, and cographs. We prove that orderability is decidable for the so called HR-equational classes of graphs, which are described by equation systems and generalize the context-free languages

    The tractability frontier of well-designed SPARQL queries

    Full text link
    We study the complexity of query evaluation of SPARQL queries. We focus on the fundamental fragment of well-designed SPARQL restricted to the AND, OPTIONAL and UNION operators. Our main result is a structural characterisation of the classes of well-designed queries that can be evaluated in polynomial time. In particular, we introduce a new notion of width called domination width, which relies on the well-known notion of treewidth. We show that, under some complexity theoretic assumptions, the classes of well-designed queries that can be evaluated in polynomial time are precisely those of bounded domination width

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    On Maltsev Digraphs

    Get PDF
    This is an Open Access article, first published by E-CJ on 25 February 2015.We study digraphs preserved by a Maltsev operation: Maltsev digraphs. We show that these digraphs retract either onto a directed path or to the disjoint union of directed cycles, showing in this way that the constraint satisfaction problem for Maltsev digraphs is in logspace, L. We then generalize results from Kazda (2011) to show that a Maltsev digraph is preserved not only by a majority operation, but by a class of other operations (e.g., minority, Pixley) and obtain a O(|VG|4)-time algorithm to recognize Maltsev digraphs. We also prove analogous results for digraphs preserved by conservative Maltsev operations which we use to establish that the list homomorphism problem for Maltsev digraphs is in L. We then give a polynomial time characterisation of Maltsev digraphs admitting a conservative 2-semilattice operation. Finally, we give a simple inductive construction of directed acyclic digraphs preserved by a Maltsev operation, and relate them with series parallel digraphs.Peer reviewedFinal Published versio

    Inquisitive bisimulation

    Full text link
    Inquisitive modal logic InqML is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic in the context of relational structures with two sorts, one for worlds and one for information states. We characterise inquisitive modal logic, as well as its multi-agent epistemic S5-like variant, as the bisimulation invariant fragment of first-order logic over various natural classes of two-sorted structures. These results crucially require non-classical methods in studying bisimulation and first-order expressiveness over non-elementary classes of structures, irrespective of whether we aim for characterisations in the sense of classical or of finite model theory
    corecore