3,019 research outputs found

    Clustering based on Random Graph Model embedding Vertex Features

    Full text link
    Large datasets with interactions between objects are common to numerous scientific fields (i.e. social science, internet, biology...). The interactions naturally define a graph and a common way to explore or summarize such dataset is graph clustering. Most techniques for clustering graph vertices just use the topology of connections ignoring informations in the vertices features. In this paper, we provide a clustering algorithm exploiting both types of data based on a statistical model with latent structure characterizing each vertex both by a vector of features as well as by its connectivity. We perform simulations to compare our algorithm with existing approaches, and also evaluate our method with real datasets based on hyper-textual documents. We find that our algorithm successfully exploits whatever information is found both in the connectivity pattern and in the features

    Evidential Label Propagation Algorithm for Graphs

    Get PDF
    Community detection has attracted considerable attention crossing many areas as it can be used for discovering the structure and features of complex networks. With the increasing size of social networks in real world, community detection approaches should be fast and accurate. The Label Propagation Algorithm (LPA) is known to be one of the near-linear solutions and benefits of easy implementation, thus it forms a good basis for efficient community detection methods. In this paper, we extend the update rule and propagation criterion of LPA in the framework of belief functions. A new community detection approach, called Evidential Label Propagation (ELP), is proposed as an enhanced version of conventional LPA. The node influence is first defined to guide the propagation process. The plausibility is used to determine the domain label of each node. The update order of nodes is discussed to improve the robustness of the method. ELP algorithm will converge after the domain labels of all the nodes become unchanged. The mass assignments are calculated finally as memberships of nodes. The overlapping nodes and outliers can be detected simultaneously through the proposed method. The experimental results demonstrate the effectiveness of ELP.Comment: 19th International Conference on Information Fusion, Jul 2016, Heidelber, Franc

    Post-processing partitions to identify domains of modularity optimization

    Full text link
    We introduce the Convex Hull of Admissible Modularity Partitions (CHAMP) algorithm to prune and prioritize different network community structures identified across multiple runs of possibly various computational heuristics. Given a set of partitions, CHAMP identifies the domain of modularity optimization for each partition ---i.e., the parameter-space domain where it has the largest modularity relative to the input set---discarding partitions with empty domains to obtain the subset of partitions that are "admissible" candidate community structures that remain potentially optimal over indicated parameter domains. Importantly, CHAMP can be used for multi-dimensional parameter spaces, such as those for multilayer networks where one includes a resolution parameter and interlayer coupling. Using the results from CHAMP, a user can more appropriately select robust community structures by observing the sizes of domains of optimization and the pairwise comparisons between partitions in the admissible subset. We demonstrate the utility of CHAMP with several example networks. In these examples, CHAMP focuses attention onto pruned subsets of admissible partitions that are 20-to-1785 times smaller than the sets of unique partitions obtained by community detection heuristics that were input into CHAMP.Comment: http://www.mdpi.com/1999-4893/10/3/9
    • …
    corecore