21 research outputs found

    Unprovability of strong complexity lower bounds in bounded arithmetic

    Get PDF
    While there has been progress in establishing the unprovability of complexity statements in lower fragments of bounded arithmetic, understanding the limits of JeĖ‡r Ģabekā€™s theory APC1 [JeĖ‡r07a] and of higher levels of Bussā€™s hierarchy Si 2 [Bus86] has been a more elusive task. Even in the more restricted setting of Cookā€™s theory PV [Coo75], known results often rely on a less natural formalization that encodes a complexity statement using a collection of sentences instead of a single sentence. This is done to reduce the quantifier complexity of the resulting sentences so that standard witnessing results can be invoked. In this work, we establish unprovability results for stronger theories and for sentences of higher quantifier complexity. In particular, we unconditionally show that APC1 cannot prove strong complexity lower bounds separating the third level of the polynomial hierarchy. In more detail, we consider non-uniform average-case separations, and establish that APC1 cannot prove a sentence stating that āˆ€n ā‰„ n0 āˆƒ fn āˆˆ Ī 3-SIZE[nd] that is (1/n)-far from every Ī£3-SIZE[2nĪ“] circuit. This is a consequence of a much more general result showing that, for every i ā‰„ 1, strong separations for Ī i-SIZE[poly(n)] versus Ī£i-SIZE[2nā„¦(1)] cannot be proved in the theory Ti PV consisting of all true āˆ€Ī£b iāˆ’1- sentences in the language of Cookā€™s theory PV. Our argument employs a convenient game-theoretic witnessing result that can be applied to sentences of arbitrary quantifier complexity. We combine it with extensions of a technique introduced by Kraj ĢÄ±Ė‡cek [Kra11] that was recently employed by Pich and Santhanam [PS21] to establish the unprovability of lower bounds in PV (i.e., the case i = 1 above, but under a weaker formalization) and in a fragment of APC1

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines

    Fuzzy expert systems in civil engineering

    Get PDF
    Imperial Users onl

    Arithmetic and Modularity in Declarative Languages for Knowledge Representation

    Get PDF
    The past decade has witnessed the development of many important declarative languages for knowledge representation and reasoning such as answer set programming (ASP) languages and languages that extend first-order logic. Also, since these languages depend on background solvers, the recent advancements in the efficiency of solvers has positively affected the usability of such languages. This thesis studies extensions of knowledge representation (KR) languages with arithmetical operators and methods to combine different KR languages. With respect to arithmetic in declarative KR languages, we show that existing KR languages suffer from a huge disparity between their expressiveness and their computational power. Therefore, we develop an ideal KR language that captures the complexity class NP for arithmetical search problems and guarantees universality and efficiency for solving such problems. Moreover, we introduce a framework to language-independently combine modules from different KR languages. We study complexity and expressiveness of our framework and develop algorithms to solve modular systems. We define two semantics for modular systems based on (1) a model-theoretical view and (2) an operational view on modular systems. We prove that our two semantics coincide and also develop mechanisms to approximate answers to modular systems using the operational view. We augment our algorithm these approximation mechanisms to speed up the process of solving modular system. We further generalize our modular framework with supported model semantics that disallows self-justifying models. We show that supported model semantics generalizes our two previous model-theoretical and operational semantics. We compare and contrast the expressiveness of our framework under supported model semantics with another framework for interlinking knowledge bases, i.e., multi-context systems, and prove that supported model semantics generalizes and unifies different semantics of multi-context systems. Motivated by the wide expressiveness of supported models, we also define a new supported equilibrium semantics for multi-context systems and show that supported equilibrium semantics generalizes previous semantics for multi-context systems. Furthermore, we also define supported semantics for propositional programs and show that supported model semnatics generalizes the acclaimed stable model semantics and extends the two celebrated properties of rationality and minimality of intended models beyond the scope of logic programs
    corecore