232 research outputs found

    The BIOMASS level 2 prototype processor : design and experimental results of above-ground biomass estimation

    Get PDF
    BIOMASS is ESA’s seventh Earth Explorer mission, scheduled for launch in 2022. The satellite will be the first P-band SAR sensor in space and will be operated in fully polarimetric interferometric and tomographic modes. The mission aim is to map forest above-ground biomass (AGB), forest height (FH) and severe forest disturbance (FD) globally with a particular focus on tropical forests. This paper presents the algorithms developed to estimate these biophysical parameters from the BIOMASS level 1 SAR measurements and their implementation in the BIOMASS level 2 prototype processor with a focus on the AGB product. The AGB product retrieval uses a physically-based inversion model, using ground-canceled level 1 data as input. The FH product retrieval applies a classical PolInSAR inversion, based on the Random Volume over Ground Model (RVOG). The FD product will provide an indication of where significant changes occurred within the forest, based on the statistical properties of SAR data. We test the AGB retrieval using modified airborne P-Band data from the AfriSAR and TropiSAR campaigns together with reference data from LiDAR-based AGB maps and plot-based ground measurements. For AGB estimation based on data from a single heading, comparison with reference data yields relative Root Mean Square Difference (RMSD) values mostly between 20% and 30%. Combining different headings in the estimation process significantly improves the AGB retrieval to slightly less than 20%. The experimental results indicate that the implemented retrieval scheme provides robust results that are within mission requirements

    Biomass estimation in Indonesian tropical forests using active remote sensing systems

    Get PDF

    Temporal Characteristics of Boreal Forest Radar Measurements

    Get PDF
    Radar observations of forests are sensitive to seasonal changes, meteorological variables and variations in soil and tree water content. These phenomena cause temporal variations in radar measurements, limiting the accuracy of tree height and biomass estimates using radar data. The temporal characteristics of radar measurements of forests, especially boreal forests, are not well understood. To fill this knowledge gap, a tower-based radar experiment was established for studying temporal variations in radar measurements of a boreal forest site in southern Sweden. The work in this thesis involves the design and implementation of the experiment and the analysis of data acquired. The instrument allowed radar signatures from the forest to be monitored over timescales ranging from less than a second to years. A purpose-built, 50 m high tower was equipped with 30 antennas for tomographic imaging at microwave frequencies of P-band (420-450 MHz), L-band (1240-1375 MHz) and C-band (5250-5570 MHz) for multiple polarisation combinations. Parallel measurements using a 20-port vector network analyser resulted in significantly shorter measurement times and better tomographic image quality than previous tower-based radars. A new method was developed for suppressing mutual antenna coupling without affecting the range resolution. Algorithms were developed for compensating for phase errors using an array radar and for correcting for pixel-variant impulse responses in tomographic images. Time series results showed large freeze/thaw backscatter variations due to freezing moisture in trees. P-band canopy backscatter variations of up to 10 dB occurred near instantaneously as the air temperature crossed 0⁰C, with ground backscatter responding over longer timescales. During nonfrozen conditions, the canopy backscatter was very stable with time. Evidence of backscatter variations due to tree water content were observed during hot summer periods only. A high vapour pressure deficit and strong winds increased the rate of transpiration fast enough to reduce the tree water content, which was visible as 0.5-2 dB backscatter drops during the day. Ground backscatter for cross-polarised observations increased during strong winds due to bending tree stems. Significant temporal decorrelation was only seen at P-band during freezing, thawing and strong winds. Suitable conditions for repeat-pass L-band interferometry were only seen during the summer. C-band temporal coherence was high over timescales of seconds and occasionally for several hours for night-time observations during the summer. Decorrelation coinciding with high transpiration rates was observed at L- and C-band, suggesting sensitivity to tree water dynamics.The observations from this experiment are important for understanding, modelling and mitigating temporal variations in radar observables in forest parameter estimation algorithms. The results also are also useful in the design of spaceborne synthetic aperture radar missions with interferometric and tomographic capabilities. The results motivate the implementation of single-pass interferometric synthetic aperture radars for forest applications at P-, L- and C-band

    First Demonstration of Space-Borne Polarization Coherence Tomography for Characterizing Hyrcanian Forest Structural Diversity

    Get PDF
    Structural diversity is recognized as a complementary aspect of biological diversity and plays a fundamental role in forest management, conservation, and restoration. Hence, the assessment of structural diversity has become a major effort in the primary international processes, dealing with biodiversity and sustainable forest management. Because of prohibitive costs associated with the ground measurements of forest structure, despite their high accuracy, space-borne polarization coherence tomography (PCT) can introduce an alternative approach given its ability to provide a vertical reflectivity profile and spatiotemporal resolutions related to detecting forest structural changes. In this study, for the first time ever, the potential of space-borne PCT was evaluated in a broad-leaved Hyrcanian forest of Iran over 308 circular sample plots with an area of 0.1 ha. Two aspects of horizontal structure diversity, including standard deviation of diameter at breast height (σdbh) and the number of trees (N), were predicted as important characteristics in wood production and biomass estimation. In addition, the performance of prediction algorithms, including multiple linear regression (MLR), k-nearest neighbors (k-NN), random forest (RF), and support vector regression (SVR) were compared. We addressed the issue of temporal decorrelation in space-borne PCT utilizing the single-pass TanDEM-X interferometer. The data were acquired in standard DEM mode with single polarization of HH. Consequently, airborne laser scanning (ALS) was used to estimate initial values of height hv and ground phase φ0. The Fourier–Legendre series was used to approximate the relative reflectivity profile of each pixel. To link the relative reflectivity profile averaged within each plot with corresponding ground measurements of σdbh and N, thirteen geometrical and physical parameters were defined (P1−P13). Leave-one-out cross validation (LOOCV) showed a better performance of k-NN than the other algorithms in predicting σdbh and N. It resulted in a relative root mean square error (rRMSE) of 32.80%, mean absolute error (MAE) of 4.69 cm, and R2* of 0.25 for σdbh, whereas only 22% of the variation in N was explained using the PCT algorithm with an rRMSE of 41.56%. This study revealed promising results utilizing TanDEM-X data even though the accuracy is still limited. Hence, an entire assessment of the used framework in characterizing the reflectivity profile and the possible effect of the scale is necessary for future studies

    First Demonstration of Space-Borne Polarization Coherence Tomography for Characterizing Hyrcanian Forest Structural Diversity

    Get PDF
    Structural diversity is recognized as a complementary aspect of biological diversity and plays a fundamental role in forest management, conservation, and restoration. Hence, the assessment of structural diversity has become a major effort in the primary international processes, dealing with biodiversity and sustainable forest management. Because of prohibitive costs associated with the ground measurements of forest structure, despite their high accuracy, space-borne polarization coherence tomography (PCT) can introduce an alternative approach given its ability to provide a vertical reflectivity profile and spatiotemporal resolutions related to detecting forest structural changes. In this study, for the first time ever, the potential of space-borne PCT was evaluated in a broad-leaved Hyrcanian forest of Iran over 308 circular sample plots with an area of 0.1 ha. Two aspects of horizontal structure diversity, including standard deviation of diameter at breast height (σdbh) and the number of trees (N), were predicted as important characteristics in wood production and biomass estimation. In addition, the performance of prediction algorithms, including multiple linear regression (MLR), k-nearest neighbors (k-NN), random forest (RF), and support vector regression (SVR) were compared. We addressed the issue of temporal decorrelation in space-borne PCT utilizing the single-pass TanDEM-X interferometer. The data were acquired in standard DEM mode with single polarization of HH. Consequently, airborne laser scanning (ALS) was used to estimate initial values of height hv and ground phase φ0. The Fourier–Legendre series was used to approximate the relative reflectivity profile of each pixel. To link the relative reflectivity profile averaged within each plot with corresponding ground measurements of σdbh and N, thirteen geometrical and physical parameters were defined (P1−P13). Leave-one-out cross validation (LOOCV) showed a better performance of k-NN than the other algorithms in predicting σdbh and N. It resulted in a relative root mean square error (rRMSE) of 32.80%, mean absolute error (MAE) of 4.69 cm, and R2* of 0.25 for σdbh, whereas only 22% of the variation in N was explained using the PCT algorithm with an rRMSE of 41.56%. This study revealed promising results utilizing TanDEM-X data even though the accuracy is still limited. Hence, an entire assessment of the used framework in characterizing the reflectivity profile and the possible effect of the scale is necessary for future studies

    Estimation of Canopy Height Using an Airborne Ku-Band Frequency-Modulated Continuous Waveform Profiling Radar

    Get PDF
    An airborne Ku-band frequency-modulated continuous waveform (FMCW) profiling radar terms as Tomoradar provides a distance-resolved measure of microwave radiation backscattered from the canopy surface and the underlying ground. The Tomoradar waveform data are acquired in the southern Boreal Forest Zone with Scots pine, Norway spruce, and birch as major species in Finland. A weighted filtering algorithm based on statistical properties of noise is designed to process the original waveform. In addition, another algorithm of estimating canopy height for the processed waveform is developed by extracting the canopy top and ground position. A higher-precision reference data from a Velodyne VLP-16 laser scanner and a digital terrain model are introduced to validate the accuracy of extracted canopy height. According to the processed results from 127 765 copolarization measurements in 32 stripes of Tomoradar field test, the mean error of canopy height varies from-0.04 to 1.53 m, and the root-mean-square error approximates 1 m. Moreover, the estimated canopy heights highly correlate with the reference data in view of that the correlation coefficients maintain from 0.86 to 0.99 with an average value of 0.96. All these results demonstrate that Tomoradar presents an important approach in estimating the canopy height with several meters footprint and is feasible of being a validation instrument for satellite LiDAR with large footprint in the forest inventory.</p

    Predictions of Biomass Change in a Hemi-Boreal Forest Based on Multi-Polarization L- and P-Band SAR Backscatter

    Get PDF
    Above-ground biomass change accumulated during four growth seasons in a hemi-boreal forest was predicted using airborne L- and P-band synthetic aperture radar (SAR) backscatter. The radar data were collected in the BioSAR 2007 and BioSAR 2010 campaigns over the Remningstorp test site in southern Sweden. Regression models for biomass change were developed from biomass maps created using airborne LiDAR data and field measurements. To facilitate training and prediction on image pairs acquired at different dates, a backscatter offset correction method for L-band data was developed and evaluated. The correction, based on the HV/VV backscatter ratio, facilitated predictions across image pairs almost identical to those obtained using data from the same image pair for both training and prediction. For P-band, previous positive results using an offset correction based on the HH/VV ratio were validated. The best L-band model achieved a root mean square error (RMSE) of 21 t/ha, and the best P-band model achieved an RMSE of 19 t/ha. Those accuracies are similar to that of the LiDAR-based biomass change of 18 t/ha. The limitation of using LiDAR-based data for training was considered. The findings demonstrate potential for improved biomass change predictions from L-band backscatter despite varying environmental conditions and calibration uncertainties

    Predictions of Biomass Change in a Hemi-Boreal Forest Based on Multi-Polarization L- and P-Band SAR Backscatter

    Get PDF
    Above-ground biomass change accumulated during four growth seasons in a hemi-boreal forest was predicted using airborne L- and P-band synthetic aperture radar (SAR) backscatter. The radar data were collected in the BioSAR 2007 and BioSAR 2010 campaigns over the Remningstorp test site in southern Sweden. Regression models for biomass change were developed from biomass maps created using airborne LiDAR data and field measurements. To facilitate training and prediction on image pairs acquired at different dates, a backscatter offset correction method for L-band data was developed and evaluated. The correction, based on the HV/VV backscatter ratio, facilitated predictions across image pairs almost identical to those obtained using data from the same image pair for both training and prediction. For P-band, previous positive results using an offset correction based on the HH/VV ratio were validated. The best L-band model achieved a root mean square error (RMSE) of 21 t/ha, and the best P-band model achieved an RMSE of 19 t/ha. Those accuracies are similar to that of the LiDAR-based biomass change of 18 t/ha. The limitation of using LiDAR-based data for training was considered. The findings demonstrate potential for improved biomass change predictions from L-band backscatter despite varying environmental conditions and calibration uncertainties
    • 

    corecore