275,360 research outputs found

    An introduction to reinforcement learning for neuroscience

    Full text link
    Reinforcement learning has a rich history in neuroscience, from early work on dopamine as a reward prediction error signal for temporal difference learning (Schultz et al., 1997) to recent work suggesting that dopamine could implement a form of 'distributional reinforcement learning' popularized in deep learning (Dabney et al., 2020). Throughout this literature, there has been a tight link between theoretical advances in reinforcement learning and neuroscientific experiments and findings. As a result, the theories describing our experimental data have become increasingly complex and difficult to navigate. In this review, we cover the basic theory underlying classical work in reinforcement learning and build up to an introductory overview of methods used in modern deep reinforcement learning that have found applications in systems neuroscience. We start with an overview of the reinforcement learning problem and classical temporal difference algorithms, followed by a discussion of 'model-free' and 'model-based' reinforcement learning together with methods such as DYNA and successor representations that fall in between these two categories. Throughout these sections, we highlight the close parallels between the machine learning methods and related work in both experimental and theoretical neuroscience. We then provide an introduction to deep reinforcement learning with examples of how these methods have been used to model different learning phenomena in the systems neuroscience literature, such as meta-reinforcement learning (Wang et al., 2018) and distributional reinforcement learning (Dabney et al., 2020). Code that implements the methods discussed in this work and generates the figures is also provided.Comment: Code available at: https://colab.research.google.com/drive/1kWOz2Uxn0cf2c4YizqIXQKWyxeYd6wvL?usp=sharin

    On the use of Deep Reinforcement Learning for Visual Tracking: a Survey

    Get PDF
    This paper aims at highlighting cutting-edge research results in the field of visual tracking by deep reinforcement learning. Deep reinforcement learning (DRL) is an emerging area combining recent progress in deep and reinforcement learning. It is showing interesting results in the computer vision field and, recently, it has been applied to the visual tracking problem yielding to the rapid development of novel tracking strategies. After providing an introduction to reinforcement learning, this paper compares recent visual tracking approaches based on deep reinforcement learning. Analysis of the state-of-the-art suggests that reinforcement learning allows modeling varying parts of the tracking system including target bounding box regression, appearance model selection, and tracking hyper-parameter optimization. The DRL framework is elegant and intriguing, and most of the DRL-based trackers achieve state-of-the-art results

    Pigouvian algorithmic platform design

    Get PDF
    There are rising concerns that reinforcement algorithms might learn tacit collusion in oligopolistic pricing, and moreover that the resulting ā€˜black boxā€™ strategies would be difficult to regulate. Here, I exploit a strong connection between evolutionary game theory and reinforcement learning to show when the latterā€™s rest points are Bayesā€“Nash equilibria, but also to derive a system of Pigouvian taxes guaranteed to implement an (unknown) socially optimal outcome of an oligopoly pricing game. Finally, I illustrate reinforcement learning of equilibrium play via simulation, which provides evidence of the capacity of reinforcement algorithms to collude in a very simple setting, but the introduction of the optimal tax scheme induces a competitive outcome

    A survey of reinforcement learning in relational domains

    Get PDF
    Reinforcement learning has developed into a primary approach for learning control strategies for autonomous agents. However, most of the work has focused on the algorithmic aspect, i.e. various ways of computing value functions and policies. Usually the representational aspects were limited to the use of attribute-value or propositional languages to describe states, actions etc. A recent direction - under the general name of relational reinforcement learning - is concerned with upgrading the representation of reinforcement learning methods to the first-order case, being able to speak, reason and learn about objects and relations between objects. This survey aims at presenting an introduction to this new field, starting from the classical reinforcement learning framework. We will describe the main motivations and challenges, and give a comprehensive survey of methods that have been proposed in the literature. The aim is to give a complete survey of the available literature, of the underlying motivations and of the implications if the new methods for learning in large, relational and probabilistic environments
    • ā€¦
    corecore