4 research outputs found

    A Biologically Plausible Learning Rule for Deep Learning in the Brain

    Get PDF
    Researchers have proposed that deep learning, which is providing important progress in a wide range of high complexity tasks, might inspire new insights into learning in the brain. However, the methods used for deep learning by artificial neural networks are biologically unrealistic and would need to be replaced by biologically realistic counterparts. Previous biologically plausible reinforcement learning rules, like AGREL and AuGMEnT, showed promising results but focused on shallow networks with three layers. Will these learning rules also generalize to networks with more layers and can they handle tasks of higher complexity? We demonstrate the learning scheme on classical and hard image-classification benchmarks, namely MNIST, CIFAR10 and CIFAR100, cast as direct reward tasks, both for fully connected, convolutional and locally connected architectures. We show that our learning rule - Q-AGREL - performs comparably to supervised learning via error-backpropagation, with this type of trial-and-error reinforcement learning requiring only 1.5-2.5 times more epochs, even when classifying 100 different classes as in CIFAR100. Our results provide new insights into how deep learning may be implemented in the brain

    A biologically plausible learning rule for deep learning in the brain

    Get PDF
    Researchers have proposed that deep learning, which is providing important progress in a wide range of high complexity tasks, might inspire new insights into learning in the brain. However, the methods used for deep learning by artificial neural networks are biologically unrealistic and would need to be replaced by biologically realistic counterparts. Previous biologically plausible reinforcement learning rules, like AGREL and AuGMEnT, showed promising results but focused on shallow networks with three layers. Will these learning rules also generalize to networks with more layers and can they handle tasks of higher complexity? Here, we demonstrate that these learning schemes indeed generalize to deep networks, if we include an attention network that propagates information about the selected action to lower network levels. The resulting learning rule, called Q-AGREL, is equivalent to a particular form of error-backpropagation that trains one output unit at any one time. To demonstrate the utility of the learning scheme for larger problems, we trained networks with two hidden layers on the MNIST dataset, a standard and interesting Machine Learning task. Our results demonstrate that the capability of Q-AGREL is comparable to that of error backpropagation, although the learning rate is 1.5-2 times slower because the network has to learn by trial-and-error and updates the action value of only one output unit at a time. Our results provide new insights into how deep learning can be implemented in the brain

    Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks

    No full text
    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies

    Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks

    No full text
    corecore