
A BIOLOGICALLY PLAUSIBLE LEARNING RULE FOR
DEEP LEARNING IN THE BRAIN

Isabella Pozzi
Vision & Cognition Group

Netherlands Institute for Neuroscience
Amsterdam, The Netherlands
i.pozzi@nin.knaw.nl

Sander M. Bohte
Machine Learning Group

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

s.m.bohte@cwi.nl

Pieter R. Roelfsema
Vision & Cognition Group

Netherlands Institute for Neuroscience
Amsterdam, The Netherlands
p.roelfsema@nin.knaw.nl

ABSTRACT

Intelligence is our ability to learn appropriate responses to new stimuli and situations. Recent
theoretical insights have allowed a preliminary understanding of how animals learn to represent and
memorize the key features of sensory stimuli for the guidance of action, and how this learning can
proceed by trial-and-error. However, our understanding of how organisms can learn more complex
tasks is still in its infancy. A number of researchers have proposed that deep learning, which is
providing important progress in a wide range of high complexity tasks, might inspire new insights
into learning processes in the brain. However, the methods used for deep learning in artificial
neural networks are biologically unrealistic and would need to be replaced by biologically realistic
counterparts. Previously, some biologically plausible learning rules were devised [Roelfsema and
Ooyen (2005); Rombouts et al. (2012)], showing promising results. However, these previous studies
focused on shallow networks with three layers, and only mentioned the possibility of generalizing the
biologically plausible learning schemes to deeper networks with an arbitrary number of layers. Will
these learning rules also generalize to networks with more layers and can they handle tasks of higher
complexity? Here, we demonstrate that these learning schemes indeed generalize to networks with
an arbitrary number of layers if we include an attention network that propagates information about
the selected action to lower network levels. The resulting learning rule is equivalent to a particular
form of error-backpropagation that trains one output unit at anyone time. To demonstrate the utility
of the learning scheme in larger problems we include simulations with a network with two -hidden-
layers that is trained on the MNIST dataset, i.e. a standard and interesting Machine Learning task.
Our results demonstrate that the capability of the new biologically plausible learning rule (called
Q-AGREL) is comparable to error backpropagation. However, its learning rate is 1.5-2 times slower
because the network trains one output unit at a time in a reinforcement learning setting and it therefore
has to discover the appropriate outputs by trial-and-error, unlike supervised backpropagation where
the correct response is signaled by an external teacher and the connections to all output units are
updated at the same time. Our results provide new insights into how deep learning can be implemented
in the brain.

Keywords Reinforcement learning · MNIST · deep learning · biologically plausible learning rules

ar
X

iv
:s

ub
m

it/
24

55
08

6
 [

cs
.N

E
]

 3
 N

ov
 2

01
8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301646082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Imagine a human or monkey in front of a screen, who has to decide which action gives the reward, e.g. money or fruit
juice. The subject does not yet know the rules behind the task, and he does not know when the task finishes or when the
rules change. Yet through trial-and-error, humans and animals can learn complicated tasks, even if the only feedback is
the presence or absence of reward at the end of each trial. Understanding this learning process of mapping new stimuli
and new situations onto appropriate actions, is a central question in both AI and Neuroscience.

There are various types of learning rules for neural networks. In unsupervised learning, the network learns the statistical
regularities of the sensory input without any feedback about desired performance. In supervised learning a teacher
provides the desired pattern of activity of the output layer of the network, for every stimulus. A weak form of supervision
is reinforcement learning where the network or agent explores its environment and receives rewards or punishments
for selected actions, but the most rewarding actions have to be discovered by the agent because there is no teacher.
As a result, learning is slower in reinforcement learning than in the case of fully supervised learning. An important
virtue of reinforcement learning is that it also occurs in animals and humans. Hence, reinforcement learning by artificial
neural networks can be used as a model for learning in the brain [Bishop et al. (1995)]. Indeed, previous theories
have suggested how powerful reinforcement learning rules inspired by artificial neural networks could be implemented
in the brain [Roelfsema and Holtmaat (2018)] and the methodology for shaping neural networks with rewards and
punishments is an active area of research [Schmidhuber et al. (2011); Friedrich et al. (2010); Vasilaki et al. (2009);
O’Reilly and Frank (2006); Huang et al. (2013)].

Artificial neural networks with many layers are called deep [Hinton et al. (2006)] and they have recently accomplished
breakthrough performance on important tasks, like image and speech recognition [Krizhevsky et al. (2012); Hinton
et al. (2012)]. Deep artificial neural networks are typically trained with supervised learning methods and in particular
with the error-backpropagation rule, a method that specifies how connections between the units of a network should
change during training. The error backpropagation adjusts synaptic weights in networks that are composed of several
layers to reduce the errors in the mapping of inputs into the lower layer to outputs in the top layer. It does so by first
computing the output error, which is the difference between the actual and desired activity levels of output units. Error
backpropagation then determines how the strength of connections between successively lower layers should change
to decrease this error, by computing derivatives using gradient descent [Rumelhart et al. (1986)]. Artificial neural
networks, trained by error backpropagation, now attain human-level performance in image recognition [LeCun et al.
(2015)] and in some (computer) games [Mnih et al. (2015); Silver et al. (2017)].

The brain of humans and animals are also composed of many layers between the sensory neurons that register the
stimulus and the motor neurons that control the muscles. Hence it is tempting to speculate that the methods for deep
learning that work so well for artificial neural networks also play a role in the brain Marblestone et al. (2016); Scholte
et al. (2017). A number of important challenges need to be solved, however, and some of them were elegantly expressed
by Francis Crick who argued that the error-backpropagation rule is neurobiologically unrealistic [Crick (1989)]. He
found it difficult to imagine how synapses in the brain could determine the change in their strength that would decrease
the overall network error; that is, how can they compute the error derivative based on information available locally,
at the synapse? In more recent years, researchers have started to address this challenge by proposing ways in which
learning rules that are equivalent to error-backpropagation might be implemented in the brain [Urbanczik and Senn
(2014), Schiess et al. (2016); Scellier and Bengio (2017); Roelfsema and Ooyen (2005); Rombouts et al. (2015); Brosch
et al. (2015)], which were reviewed in [Marblestone et al. (2016)].

One of the main challenges remained to inform synapses at the lower network levels about the desired change in their
strength, because the influence of changes in their strength on activity in the output layer is only indirect and depends on
many intermediate synapses. Here we will focus on a particular type of learning rule known as AGREL (attention-gated
reinforcement learning) [Roelfsema and Ooyen (2005)] and AuGMEnT (attention-gated memory tagging) [Rombouts
et al. (2015)]. These learning rules realized that in a reinforcement learning setting the synaptic error derivative can be
split into two factors. The first factor is the reward prediction error (RPE) during reinforcement learning. The RPE
is positive if an action selected by the network is associated with more reward than expected or if the prospects of
receiving reward increase and the RPE is negative if the outcome of the selected action is disappointing. In the brain, the
RPE is signaled by neuromodulatory systems that project diffusely to many synapses so that they can inform them about
the RPE [Schultz (2002)]. The second factor is an attentional feedback signal that is known to propagate from the motor
cortex to earlier processing levels in the brain [Roelfsema and Holtmaat (2018); Pooresmaeili et al. (2014)]. When a
network chooses an action, this feedback signal is most pronounced for those neurons and synapses that can be held
responsible for the selection of this action and hence for the resulting RPE. These two factors jointly determine synaptic
plasticity. Importantly, the learning rules cause the strength of feedback connections to become proportional to that of
the feedforward connections, and the learning rules then become computationally equivalent to error backpropagation
on the error in the value of the selected action. A recent study in humans demonstrated the separable influences of

2

1) Feedforward pass 2) Action selection

Output layer

0.1 0.5 0.2

Input layer
xNx1

0.1

qs

Output layer

0 1 0

Input layer
xNx1

0

Feedforward
neuron Feedback

neuron

3) Backward pass 4) Reward prediction error

Output layer

0 1 0

Input layer
xNx1

0

Output layer

0 1 0

Input layer
xNx1

0
ẟ

ẟ ẟ ẟ

ẟẟẟ

5) Update of the synapses

Output layer

0 0

Input layer
xNx1

0 1

updated weights
fixed weights

Figure 1: Schematic depiction of Q-AGREL. At each node, a feedforward neuron (grey) and a feedback neuron (green)
are present; two sets of weights, i.e. feedforward and feedback weights, connect the nodes in the network. 1) In the
feedforward pass, the information is inferred from the input layer throughout the network, until the ouput layer, where
the Q-values are computed; 2) based on the Q-values, an action is selected as described in the text; 3) the activity of
the winning unit is propagated back through the feedback connections to the feedback neurons; 4) a reward prediction
error δ is globally computed; 5) the synapses (both feedforward and feedback, even if the latter are not indicated in the
image) are updated.

rewards and attention on the learning of new stimulus-response associations [Vartak et al. (2017)]. Furthermore, as both
factors are available at the synapses undergoing plasticity, it has been argued that learning schemes such as AGREL and
AuGMEnT are indeed implemented in the brain [Roelfsema and Holtmaat (2018)].

The previous AGREL and AuGMEnT models used networks with only three layers, that is, a single hidden layer, and
modeled learning in tasks with only a handful input neurons. The present work has two goals. The first is to establish
the relation between the biologically realistic learning rules and error backpropagation for deep networks composed of
multiple layers between the input and output layer in a reinforcement learning setting. Can the brain, with its many
layers between input and output indeed solve the credit-assignment problem in a manner that is equivalent to deep
learning? The second goal is to compare trial-and-error learning with biologically plausible learning rules to learning
with error-backpropagation in more challenging problems. To this aim we investigated if and how the biologically
learning rules cope with the MNIST data for handwritten digit recognition. We will present a binary image to the
network, it chooses a digit category and immediate feedback is given about whether the choice is right or wrong.

2 Deep, biologically plausible reinforcement learning

We here generalize and extend AGREL to networks with multiple layers with two modifications of the previous learning
schemes. Firstly, we use rectified linear (ReLU) functions as activation function of the neurons in the network. This
simplifies the learning rule, because the derivative of the ReLU is equal to zero for negative activation values, and has a
constant positive value for positive activation values. We note, however, that the learning scheme could be generalized
to other activation functions. Secondly, we assume that network nodes correspond to cortical columns with feedforward
and feedback subnetworks: in the present implementation we use a feedforward neuron and a feedback neuron per
node, shown as grey and green circles in Fig. 1.

3

Overall, the network learning goes through five phases upon presentation of an input image (Fig. 1): (1) the signal is
propagated through the network by feedforward connections to obtain activations for the output units that estimate the
value of each of the choices (Feedforward pass), (2) in the output layer one output unit is chosen (Action selection),
(3) the selected output unit causes (attention-like) feedback to the feedback unit of each node (Backward pass). Note
that this feedback network propagates information about the selected action (just as in the brain see e.g. [Roelfsema and
Holtmaat (2018)]), and that it does not need to propagate error signals, which would be biologically implausible. (4) A
reward prediction error δ is computed and signaled throughout the network, and (5) the strengths of the synapses are
updated.

The proposed learning rule, Q-AGREL, has four factors:

∆wi,j = prei · postj · δ · fbj , (1)

where ∆wi,j is the change in the strength of the synapse between units i and j, prei is a function of the activity of
the presynaptic unit, postj a function of the activity of the postsynaptic unit and fbj the amount of feedback from the
selected action arriving at feedback unit j through the feedback network. This local learning rule governs the plasticity
of both feedforward and feedback connections between the nodes.

To understand the learning rule, it is important to describe the interactions between the feedforward and feedback units
within a node. The role of the feedback units in the node is to gate the plasticity of feedforward connections (as well as
their own plasticity). In Equation 1, fbj acts as a plasticity-gating term, which determines the plasticity of synapses
onto the feedforward neuron. There is neuroscientific evidence for the gating of plasticity of feedforward connections
by the activity of feedback connections, as was reviewed by [Roelfsema and Holtmaat (2018)].

In the opposite direction, the feedforward units gate the activity of the feedback units. Feedback gating is shaped by
the local derivative of the activation function, which, for a unit with a ReLU activation function, corresponds to an
all-or-nothing gating signal: for ReLU feedforward units, the associated feedback units of a node are only active if
the feedforward units are activated above their threshold. Otherwise the feedback units remain silent and they do not
propagate the feedback signal to lower processing levels.

Gating of the activity of feedback units by the activity of feedforward units is in accordance with neurobiological
findings: attentional feedback effects on the firing rate of sensory neurons are pronounced if the neurons are well driven
by a stimulus and much weaker if they are not [Van Kerkoerle et al. (2017); Roelfsema (2006); Treue and Trujillo
(1999)].

In what follows we will first consider learning by a network with two fully connected hidden layers comprised of ReLU
units (Fig. 1), and we will then explain why the proposed learning scheme can train networks with an arbitrary number
of layers in a manner that provides synaptic changes that are equivalent to a particular form of error backpropagation.

In the network with two hidden layers, there are N input units with activities xi. The activation of the J neurons in the
first hidden layer, y(1)j , is given by:

y
(1)
j = ReLU

(
a
(1)
j

)
with a

(1)
j =

N∑
i=1

ui,jxi , (2)

where ui,j is the synaptic weight between the i-th input neuron and the j-th neuron in the first hidden layer, and the
ReLU function can be expressed as:

ReLU(x) =

{
x if x > 0 ,

0 otherwise .
(3)

Similarly, the activations of the K neurons in the second hidden layer, y(2)k , are obtained as follows:

y
(2)
k = ReLU

(
a
(2)
k

)
with a

(2)
k =

J∑
j=1

vj,ky
(1)
j , (4)

with vj,k as synaptic weight between the j-th neuron in the first hidden layer and the k-th neuron in the second hidden
layer. The L neurons in the output layer are fully connected (by the synaptic weights wk,l) to the second hidden layer
and will compute a linearly weighted sum of their inputs:

ql =

K∑
k=1

wk,ly
(2)
k , (5)

which we treat as Q-values as defined in Reinforcement Learning [Sutton et al. (1998)], from which actions (or
classifications) are selected by an action selection mechanism.

4

x1 xNfbx1 fbxN

y1(1) yJ(1)

y1(2) yK(2)

ẟ

ẟ ẟ

ẟ

ẟẟ

fby(1)1 fby(1)
J

fby(2)1 fby(2)
K

FEEDFORWARD SYNAPSES

 FEEDBACK SYNAPSES

u ′�1,N

v1,K

u N,1

v′�K,1

(a)

ReLU
in

out

∑

y(1)
1

a(1)
1 fby(1)1

fby(1)1 g (1)1

xN

g (2)K
fby(2)

K

Δu N,1 = αδxNg (1)1 fby(1)1 ≡ Δu ′�1,N

Δv′�K,1 = αδy(1)
1 g (2)K

fby(2)
K

≡ Δv1,K

(b)

Figure 2: Details of the Q-AGREL algorithm. (a) Explanatory sketch of the notation used. The feedforward (grey)
and feedback (green) weights are indicated, together with the activation of the neurons (e.g. y(1)1 for the feedforward
neuron and fb

y
(1)
1

for the respective feedback neuron); (b) details on a single-neuron level. During the forward pass,
the feedforward neuron receives a set of weighted inputs, which are summed, obtaining the net input to the neuron (i.e.
a
(1)
1), which will be passed to a ReLU function. During the backward pass, the feedback neuron activation (fb

y
(1)
1

)

is gated by the factor g(1)1 (i.e. plasticity gating). During the weight update, y(1)1 and fb
y
(1)
1

are used to update the
synapses at the feedback and feedforward neuron, respectively (synapse gating). It can be seen how all the information
is locally available for the update, both for the feedback and feedforward synapses.

In our action selection mechanism, the output unit with the highest activity has the largest chance of being selected.
After action selection, the activity of the winning unit is set to one and the activity of the other units to zero. For the
action-selection process, we implemented a max-Boltzmann controller [Wiering and Schmidhuber (1997)]: the network
will select the output unit with the highest Q-value as the winning unit with probability 1 − ε, and otherwise it will
probabilistically select an output unit using a Boltzmann distribution over the output activations:

P(zl = 1) =
exp ql∑
l exp ql

. (6)

Once an action is selected, the network will receive a scalar reward r and a globally available RPE δ is computed as:

δ = r − qs , (7)

where qs is the activity of the winning unit s (see Fig. 1), i.e. zl=s = 1 and zl 6=s = 0, leading to a global prediction
error E = 1

2δ
2. In a classification task, we set the reward to 1 when the selected output unit corresponds to the correct

class, and we set the reward to 0 otherwise.

Next, only the winning output unit starts propagating the feedback signal – the other output units are silent. This
feedback will pass through the feedback connections with their own weights w′ to the feedback neurons in the next
layer, where the feedback signal is gated by the local derivative of the activation function, and then further passed to the
next layer of feedback neurons through weights v′, and so on. We will demonstrate that this feedback scheme locally
updates the synapses of the network in a manner equivalent to a particular form of error-backpropagation.

Given the learning rate α, the update of the feedforward weights wk,s between the last hidden layer and the output layer
(but the same rule holds for the corresponding set of feedback weights, indicated as w′

s,k) is given by:

∆wk,s = αδy
(2)
k zs = ∆w′

s,k and ∆wk,l 6=s = 0 = ∆w′
l 6=s,k . (8)

5

x1 xNfbx1 fbxN

y1(1) yJ(1)

y1(2) yK(2)

ẟ

ẟ ẟ

ẟ

ẟẟ

if g (1)1 = 1
fby(1)1 fby(1)

J

fby(2)1 fby(2)
K

g (1)1

(a)

x1 xNfbx1 fbxN

y1(1) yJ(1)

y1(2) yK(2)

ẟ

ẟ ẟ

ẟ

ẟẟ

if g (1)1 = 0
fby(1)1 fby(1)

J

fby(2)1 fby(2)
K

g (1)1

(b)

Figure 3: Effects of the plasticity-gating mechanisms on the feedback signal. (a) Open gate. Because the activation of
the neuron y(1)1 is positive, the gate is open and the feedback signal fb

y
(1)
1

is received by the feedback neurons in the

next layer (i.e. fbx1
, . . . , fbxN

); (b) Closed gate. The gate switches off when the input to the feedforward unit y(1)1 stay
below the threshold for activation and now the plasticity gating feedback signal is not propagated to the next lower layer
(i.e. the grey elements in the figure).

Note that the synaptic changes only depend on δ, the RPE and pre- and post-synpatic activity. The feedforward and
feedback weights v and v′ between the first and second hidden layer change as follows:

∆vj,k = αδy
(1)
j g(2)kws,kzs = αδy

(1)
j g(2)kfby(2)

k

= ∆v′k,j , with g(2)k =

{
1 if y

(2)
k > 0 ,

0 otherwise ,
(9)

fb
y
(2)
k

=
∑
l

g(O)lw
′
l,kzl = w′

s,kzs ,

(10)
which is the feedback coming from the output layer. Hence, the synaptic plasticity rule depends on the RPE, the pre-
and postsynaptic activity and the activity of the feedback neuron fb

y
(2)
k

. Finally, the weights u between the inputs and
the first hidden layer are adapted as:

∆ui,j = αδxig(1)j
∑
k

v′k,jg(2)kw
′
s,kzs

= αδxig(1)j
∑
k

v′k,jg(2)kfby(2)
k

= αδxig(1)jfby(1)
j
,

with g(1)j =

{
1 if y

(1)
j > 0 ,

0 otherwise ,
(11)

fb
y
(1)
j

=
∑
k

g(2)kv
′
kjfby(2)

k

, (12)

which is the feedback coming from the second hidden layer. Again, the plasticity depends on pre- and postsynpatic
activity, the RPE and the activity of the feedback unit fb

y
(1)
j

in the column. fb
y
(2)
k

and fb
y
(1)
j

represent the activity of

feedback neurons y(2)k and y(2)j , which are activated by the propagation of signals through the feedback network once
an action has been selected (see also Fig. 2).

In general, for even deeper networks, updates of feedforward synapses ∆wp,m from p-th neuron in the n-th hidden
layer onto m-th feedforward neuron in the (n+ 1)-th hidden layer are thus computed as:

∆wp,m = αδy(n)p g(n+1)m
fb

y
(n+1)
m

, (13)

6

and it is equal to the update of the corresponding feedback synapse ∆w′
m,p, where the activity of the feedback unit is

determined by the feedback signals coming from the (n+ 2)-th hidden layer as follows:

fb
y
(n+1)
m

=
∑
q

g(n+2)q
v′q,mfby(n+2)

q
, (14)

with q indexing the units of the (n+ 2)-th hidden layer.

The update of a synapse is thus expressed as the product of four factors: the RPE δ, the activity of the presynaptic
unit, the activity of postsynaptic feedforward unit and the activity of feedback unit of the same postsynaptic node, as
anticipated in Equation 1. Notably, all the information necessary for the synaptic update is available locally, at the
synapse. Moreover, the identical update for both feedforward and corresponding feedback synapses (i.e., ∆wk,l and
∆w′

l,k, ∆vj,k and ∆v′k,j , and ∆ui,j and ∆u′j,i) can be computed locally (see also Fig. 2b).

For clarity, we reiterate the two main features of the proposed learning rule, which can also be considered as predictions
for neurobiological experiments. First, the feedback units gate the plasticity of feedforward connections into the same
node (Fig. 2b). The plausibility of this prediction has been discussed by [Roelfsema and Holtmaat (2018)]. Second, if
the feedforward unit of a particular node (or cortical column) is not active (its input remains below the ReLU threshold),
the associated feedback units are switched off (Fig. 3b). This switching off of feedback units has consequences for the
propagation of the feedback signals to lower network levels and hence for the plasticity at these levels, as is illustrated
in Fig. 3.

We next demonstrate that Q-AGREL is equivalent to a special form of error-backpropagation. In this form the network
only computes the derivatives relative to the error of the Q-value of the selected output unit.

For supervised error backpropagation in the same networks with error E computed as the summed square error over
all output Q-values ql and target outputs q̂l, E = 1

2

∑
l(ql − q̂l)

2, if we define ∂E
∂ql

= (ql − q̂l) := e
(O)
l , where the

superscript (O) stands for output layer, the relevant equations for the synaptic updates are:

∆wk,l = −αy(2)k e
(O)
l , (15)

∆vj,k = −αy(1)j y
(2)
k

′∑
l

wl,ke
(O)
l = −αy(1)j y

(2)
k

′
e
(2)
k , (16)

∆ui,j = −αxiy(1)j

′∑
k

vk,jy
(2)
k

′∑
l

wl,ke
(O)
l = −αxiy(1)j

′∑
k

vk,jy
(2)
k

′
e
(2)
k = −αxiy(1)j

′
e
(1)
j , (17)

and in general, for a weight between units p and m in layer n and n+ 1 respectively:

∆wp,m = −αy(n)p y(n+1)
m

′
e(n+1)
m , with e(n+1)

m =:
∂E

∂y
(n+1)
m

=
∑
q

wm,qy
(n+2)
q

′
e(n+2)
q , (18)

with q indexing the units of the (n+ 2)-th hidden layer and < · >′ indicating the derivative.

This corresponds to the Q-AGREL equations for the adjustment to the winning output when we set y()j
′

= gj and

e
(O)
l=s = ∂E

∂qs
= −δ, and e(O)

l 6=s = 0:

∆wk,l = αδy
(2)
k , (19)

∆vj,k = αδy
(1)
j gkfby(2)

k

, (20)

∆ui,j = αδxigj
∑
k

gkwl,kfby(2)
k

= αδxigjfby(1)
j
, (21)

and, by recursion,

∆wp,m = αδy(n)p gmfby(n+1)
m

. (22)

Compared to supervised error-backpropagation, in the RL formulation of Q-AGREL only the error el for the winning
action l is non-zero, and the weights in the network are adjusted to reduce the error for this action only. Depending
on the selection mechanism that determines winning actions from Q-values, this trial-and-error approach will adjust

7

the network towards selecting the correct action, while the Q-values for incorrect actions will be trained to just be
sufficiently smaller than the correct action so that they are unlikely to be selected. These Q-values will only further
decrease in strength occasionally, when the stochastic action takes an explorative action. This in contrast to standard
error-backpropagation, which will continuously drive the values of the incorrect actions to the appropriate lower action
values. Furthermore, reinforcement learning of Q-values by Q-AGREL is expected to be slower than learning with
fully supervised error-backpropagation where a teacher provides the correct Q-values for all actions. We will test these
predictions in our simulations.

3 Experiments

We tested the performance of Q-AGREL for fully connected neural networks with one and two hidden layers on the
MNIST dataset. MNIST is a classification task, and it is therefore simpler than the more general reinforcement learning
settings that necessitate the learning of a number of intermediate actions before a reward can be obtained, and for which
AuGMEnT was developed. Like AuGMEnT, Q-AGREL computes reward expectancy in the form of Q-values and it
selects actions with an action-selection mechanism. We chose this approach because it gives rise to more stable learning
as compared to AGREL, which uses separate action and critic networks.

The MNIST dataset consists of 60,000 training samples, of which 1,000 were randomly chosen for validation at every
epoch, and of 10,000 test samples. Every sample is an image of 28 by 28 pixels, and the samples were presented in
batches to the network (i.e. batch gradient) to speed up the learning process (but the learning scheme also works with
learning after each trial, i.e. not in batches): 100 samples were given as an input, the gradients were calculated, divided
by the batch size, and then the weights were updated, for each batch until the whole training dataset was processed (i.e.
for 590 batches in total), indicating the end of an epoch. Once every five epochs, a validation accuracy was calculated
on the validation dataset. An early stopping criterion was implemented: if for five consecutive times the validation
accuracy was the same with one decimal precision, learning was stopped. Otherwise, we trained the networks for 1,000
epochs in total, and at the 500-th epoch the learning rate was decreased to facilitate the convergence. By randomly
choosing the validation set in every epoch, the convergence criterion was met more quickly, because the networks train
effectively on the whole training dataset, so also on the validation set, throughout different epochs.

We ran the same experiments with Q-AGREL and with error backpropagation with 10 different seeds for synaptic
weight initialization. All weights were randomly initialized within the range [−0.05, 0.05] and layers were fully
connected. We demonstrated in the above that the changes of synaptic weights of Q-AGREL are identical to those of
error-backpropagation for one of the output units at a time, provided that the strengths of the feedforward connections
between nodes are proportional to the strength of the feedback connections. This reciprocity could emerge as the result
of the learning rules described above (see also [Roelfsema and Ooyen (2005)]).

Here we therefore compared the performance of networks where (1) the feedback synapses were identical to the
feedforward synapses (strict reciprocity), (2) with independently randomly initialized feedback weights (random

10−5 10−4 10−3 10−2 10−1 100
Learning rate

0.2

0.4

0.6

0.8

Re
wa

rd

Q-AGREL - 30 epochs

(a)

10−5 10−4 10−3 10−2 10−1 100

Learning rate
0.5

1.0

1.5

2.0

2.5

3.0

Er
ro
r

Error-backpropagation - 30 epochs

(b)

Figure 4: Learning rate optimization study. (a) Curve followed by the Reward throughout the Q-AGREL learning
process, as a function of the increasing learning rate; (b) trend of the Epoch error when the learning rate is increased
during error backpropagation.

8

feedback learning) which are expected to become approximately reciprocal during the learning process and (3) networks
with so-called feedback alignment [Lillicrap et al. (2016)], for which the feedback synapses were randomly initialized
but not updated during learning. We note that the networks with feedback alignment thereby violated one of the
conditions required for the equivalence between Q-AGREL and error-backpropagation.

We optimized the learning rate α for each learning rule. Following a similar procedure as the one described in [Smith
(2017)], we selected an interval of values for the learning rate for each rule. Then a small simulation (i.e. 30 epochs)
was performed, during which the learning rate was increased at each epoch. At the end, the error (in the case of
error-backpropagation) or the reward (for Q-AGREL) was plotted as a function of the learning rate, and a value of α
lying within the range with the steepest decrease in error (for backpropagation) or increase in reward (for Q-AGREL)
was chosen for the simulations (Fig. 4). The steepest increase in the reward for Q-AGREL was for an α between 0.5
and 1, and the steepest decrease in the error for error-backpropagation was for an α between 0.05 and 0.1.

4 Results

To illustrate the learning process of networks trained with the Q-AGREL reinforcement learning approach, we show
how the reward probability increases (Fig. 5a) during the training for one example network. Both the reward obtained at
each batch and at each epoch (i.e. average reward over 59 batches, since for this example a batch size of 1,000 was used)
are plotted. The panel on the right of the Fig. 5 illustrates the improvement in performance of one example network that
was trained with standard error-backpropagation. An unexpected observation was that learning proceeded in a stepwise
manner for Q-AGREL, which contrasts with the smoother progression with standard error-backpropagation. When we
analyzed this result, we found that the network discovered each of the 10 digit classes at a time. When it happened to
select a new class during the presentation of a digit of the same class (i.e. a coincidental correct response) as the result
of the random action selection policy, it quickly started to recognize most samples of the same class.

To substantiate this interpretation, we computed the confusion matrix as function of learning time for an example
network trained with Q-AGREL. We evaluated the frequency with which the different classes were selected by the
network (Fig. 6a) and we also determined the probability of a correct response for each of the classes (Fig. 6b). It
can be seen that from the moment onwards where a new class is recognized, e.g. class "1" at the ∼4-th epoch or
class "5" at the ∼6-th epoch, the network quickly learns how classify multiple images falling within this class. The
network exhibits a tendency to then also apply this class label to images that do not belong to the class (note the initial
overshoot in the count in Fig. 6a) that disappears with more learning. For a comparison, in Fig. 6c and Fig. 6d the
results for error-backpropagation are shown. Here, the network starts recognizing all the classes from the first moment
because the teacher always provides the correct response. This leads to faster learning with error-backpropagation than
with Q-AGREL. Moreover, in Q-AGREL only the synapses that have impact on the selected are changed, whereas
error-backpropagation also decreases the activity of the connections leading to the output units that should remain off. It
is therefore evident that training with Q-AGREL should overall take more time than training with error backpropagation.

0 5 10 15 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Q-AGREL

Epoch reward
Batch reward

(a)

5 10 15 20
Epoch

−1.0

−0.5

0.0

0.5

1.0

1
- E

rro
r

Error-backpropagation

(b)

Figure 5: Example of learning process (the first 20 epochs are shown) with the two learning schemes in example
networks. In both cases two hidden layers were used, the batch size was 1,000 and the learning rate was α = 0.5. (a)
Reward during a Q-AGREL simulation. A step-like trend is observable; (b) evolution of the error (here plotted as
1-error) during an error-backpropagation experiment.

9

Table 1 presents the results of simulations with the different learning rules. In our first simulation, we compared
error-backpropagation to a version of Q-AGREL in which the feedback and the feedforward weights were symmetrical.
We trained networks with only one hidden layer (with 300 units) and networks two hidden layers; these networks had
an extra hidden layer with 100 units. We compared the results obtained with two learning rates and we used 10 seeds
for each combination of learning rate and network architecture and report the results as mean (standard deviation)
(Table 1).

Our first result is that Q-AGREL reaches a relatively high classification accuracy of 97.9-98.2% on the MNIST task,
obtaining essentially the same performance as standard error-backpropagation. The convergence rate of Q-AGREL
was a factor of 2 to 3 slower than that of error-backpropagation. However, this consideration should not distract from
the conclusion that Q-AGREL is able to learn the MNIST classification task with a performance that is on par with
standard error-backpropagation.

It is also of interest that the addition of an extra hidden layer improved performance, both for networks trained with error-
backpropagation and Q-AGREL, albeit only slightly. This difference in final accuracy between the one-hidden-layer
networks and their two-hidden-layers counterparts is not as large as was reported originally by [LeCun et al. (1998)]
(bottom of the Table 1), and we obtain significantly higher accuracies both for Q-AGREL and error-backpropagation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epoch

0

1

2

3

4

C
ou

n
ts

 (
n

or
m

)

Predict ions per class

class 0
class 1
class 2
class 3
class 4

class 5
class 6
class 7
class 8
class 9

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Co
un

ts
 (n

or
m
)

Correct predictions per class

class 0
class 1
class 2
class 3
class 4

class 5
class 6
class 7
class 8
class 9

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epoch

0.0

0.5

1.0

1.5

2.0

C
ou

n
ts

 (
n

or
m

)

Predict ions per class

class 0
class 1
class 2
class 3
class 4

class 5
class 6
class 7
class 8
class 9

(c)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Co
un

ts
 (n

or
m
)

Correct predictions per class

class 0
class 1
class 2
class 3
class 4

class 5
class 6
class 7
class 8
class 9

(d)

Figure 6: Selection frequency for each of the classes for a network trained with Q-AGREL and one with error-
backpropagation (the same networks as Fig. 5a and Fig. 5b, respectively). (a) Frequency of class selection over
the epochs for Q-AGREL; (b) Correct predictions per class over the epochs for Q-AGREL. It is possible to notice
a correspondence between when the network "discovers" a new class and a step in the learning in Fig. 5a; (c)
Frequency of selection across epochs for error-backpropagation; (d) Correct predictions per class over the epochs for
error-backpropagation: the network quickly learns to select all the classes.

10

Table 1: Results (averaged over 10 different seeds, the mean and standard deviation are indicated). In some cases, the
network did not converge at the end of the simulation (i.e. after 1000 epochs), even if the learning rate was 10 times
smaller from the 500-th epoch.

Learning rule hidden units learning rate average final accuracy (%) epochs (#)

Symmetrical weights
Q-AGREL 300 0.5 97.86 (0.12) 249 (90)
Q-AGREL 300,100 0.5 98.12 (0.11) 167 (46)
Q-AGREL 300 1 97.96 (0.14) 214 (65)
Q-AGREL 300,100 1 98.24 (0.10) 151 (45)
errorBP 300 0.05 98.15 (0.06) 146 (12)
errorBP 300,100 0.05 98.08 (0.05) 67 (8)
errorBP 300 0.1 98.16 (0.04) 94 (12)
errorBP 300,100 0.1 98.17 (0.06) 47 (4)

Random feedback learning
Q-AGREL 300 0.5 97.90 (0.07) 240 (87)
Q-AGREL 300,100 0.5 98.17 (0.12) 170 (36)
Q-AGREL 300 1 97.85 (0.15) 254 (107)
Q-AGREL 300,100 1 98.24 (0.09) 157 (53)

Feedback alignment
Q-AGREL 300 0.1 97.25 (0.16) 901 (207)
Q-AGREL 300,100 0.1 97.18 (0.10) 999*
errorBP 300 0.1 97.99 (0.09) 283 (26)
errorBP 300,100 0.1 97.69 (0.09) 453 (49)

Benchmark [LeCun et al. (1998)]

errorBP 300 ∼ 95.3 ∼
errorBP 1000 ∼ 95.5 ∼
errorBP 300,100 ∼ 96.95 ∼
errorBP 500,150 ∼ 97.05 ∼

than this original study. Likely causes for these differences are the use of sigmoidal activation functions by [LeCun
et al. (1998)] whereas we included ReLU’s, and the smaller number of training epochs in the original study.

As was mentioned in the above, Q-AGREL is equivalent to a form of error-backpropagation in which the Q-value of
one output unit is updated per trial, but only if the strengths of feedforward and feedback connections are proportional.
However, such proportionality may not be present at the start of the training process in biology and may need to emerge
during learning. In the second section of the table, we therefore also report results from networks trained with Q-AGREL
with independently initialized feedback weights. The final accuracies and learning rate were indistinguishable from
those obtained with Q-AGREL in the case of symmetric weights, which supports our conjecture that the approximate
symmetry of feedforward and feedback connections can emerge during learning.

A number of recent studies [Lillicrap et al. (2016)] have demonstrated that forms of learning in networks with one or
more hidden layers can also occur when the feedback weights are random and not changed during learning. These
previous studies demonstrated that the feedforward connections tend to align in strength with the feedback connections,
which is why this process has been called "feedback alignment". In our simulations, we also included networks which
were trained with such fixed feedback weights. However, these networks achieved substantially lower accuracies and
required many more epochs. Furthermore, we had to lower the learning rate compared to that used with networks
trained with Q-AGREL to obtain reasonable results in this feedback alignment framework.

5 Discussion

We here implemented a deep, biologically plausible reinforcement learning scheme called Q-AGREL and found that
it was able to train networks with one or two hidden layers to perform the MNIST task with performance that was
nearly identical to error-backpropagation. We also found that the trial-and-error nature of learning to classify with

11

reinforcement learning incurred a very limited cost of 2-3x more training epochs to achieve the stopping criterion. We
observed that the learning progressed in a step-wise manner, because the network discovered the usage of the different
classes one by one. This result suggests that small modifications might speed up the learning with Q-AGREL. First, it is
possible to initialize the Q-values of all actions at higher values, which should increase the network’s tendency to sample
all actions from the start. Second, the action selection mechanism could be modified to increase the probability of
selecting actions that have not been sampled for a while. Future studies could examine if these and related modifications
further speed up the learning process.

The results were obtained with relatively simple network architectures (fully connected layers) and learning rules (no
optimizers or data augmentation methods were used). These additions would almost certainly further increase the
final accuracy of the Q-AGREL learning scheme. For example, by simply adding distortions algorithms [Cireşan
et al. (2012))] obtained an accuracy on MNIST of 99.68% using networks with only fully connected layers, which is
comparable to state-of-the-art convolutional neural networks. Interestingly, Cireşan et al. found that adding hidden
layers had only limited effect on the accuracy that could be achieved, and they obtained an accuracy of 98.22% and
98.15% for one-hidden-layer and two-hidden-layer MLP respectively.

The present results demonstrate how deep learning can be implemented in a biologically plausible fashion in deeper
networks and for tasks of higher complexity by using the combination of a global RPE and "attentional" feedback from
the response selection stage to influence synaptic plasticity. Importantly, both factors are available locally, at many, if
not all, relevant synapses in the brain [Roelfsema and Holtmaat (2018)]. We demonstrated that Q-AGREL is equivalent
to a version of error-backpropagation that only updates the value of the selected action. Q-AGREL was developed
for feedforward networks and for classification tasks where feedback about the response is given immediately after
the action is selected. However, the learning scheme is a straightforward generalization of the AuGMeNT framework
[Rombouts et al. (2012, 2015)], which also deals with reinforcement learning problems for which a number of actions
have to be taken before a reward is obtained. In that case, AuGMEnT provides a biologically plausible implementation
of SARSA learning [Sutton et al. (1998)]. Furthermore, AuGMEnT can learn to memorize previously presented sensory
stimuli and to make decisions based on sensory evidence that needs to accumulated across time. The memory units
share a number of the properties of LSTM-units that are widely used in tasks requiring memory and can transform a
so-called partially observable Markov decision process (POMDP) into a simpler Markov decision process (MDP) by
storing relevant information as persistent activity, making it available when selecting the next action.

We find it encouraging that insights into the rules that govern plasticity in the brain are compatible with some of
the more powerful methods for deep learning in artificial neural networks. These results hold promise for a genuine
understanding of learning in the brain, with its many processing stages between sensory neurons and the motor neurons
that ultimately control behavior.

References
Bishop, C. M. et al. (1995). Neural networks for pattern recognition. Oxford university press.

Brosch, T., Neumann, H., and Roelfsema, P. R. (2015). Reinforcement learning of linking and tracing contours in
recurrent neural networks. PLoS computational biology, 11(10):e1004489.

Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2012). Deep big multilayer perceptrons for digit
recognition. In Neural networks: tricks of the trade, pages 581–598. Springer.

Crick, F. (1989). The recent excitement about neural networks. Nature, 337(6203):129–132.

Friedrich, J., Urbanczik, R., and Senn, W. (2010). Learning spike-based population codes by reward and population
feedback. Neural computation, 22(7):1698–1717.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath,
T. N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal processing magazine, 29(6):82–97.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural computation,
18(7):1527–1554.

Huang, T.-R., Hazy, T. E., Herd, S. A., and O’Reilly, R. C. (2013). Assembling old tricks for new tasks: A neural model
of instructional learning and control. Journal of Cognitive Neuroscience, 25(6):843–851.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks.
In Advances in neural information processing systems, pages 1097–1105.

12

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random synaptic feedback weights support
error backpropagation for deep learning. Nature communications, 7:13276.

Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Toward an integration of deep learning and neuroscience.
Frontiers in computational neuroscience, 10:94.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540):529.

O’Reilly, R. C. and Frank, M. J. (2006). Making working memory work: a computational model of learning in the
prefrontal cortex and basal ganglia. Neural computation, 18(2):283–328.

Pooresmaeili, A., Poort, J., and Roelfsema, P. R. (2014). Simultaneous selection by object-based attention in visual and
frontal cortex. Proceedings of the National Academy of Sciences, page 201316181.

Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci., 29:203–227.

Roelfsema, P. R. and Holtmaat, A. (2018). Control of synaptic plasticity in deep cortical networks. Nature Reviews
Neuroscience, 19(3):166.

Roelfsema, P. R. and Ooyen, A. v. (2005). Attention-gated reinforcement learning of internal representations for
classification. Neural computation, 17(10):2176–2214.

Rombouts, J., Roelfsema, P., and Bohte, S. M. (2012). Neurally plausible reinforcement learning of working memory
tasks. In Advances in Neural Information Processing Systems, pages 1871–1879.

Rombouts, J. O., Bohte, S. M., and Roelfsema, P. R. (2015). How attention can create synaptic tags for the learning of
working memories in sequential tasks. PLoS computational biology, 11(3):e1004060.

Rumelhart, D. E., Hinton, G. E., McClelland, J. L., et al. (1986). A general framework for parallel distributed processing.
Parallel distributed processing: Explorations in the microstructure of cognition, 1(45-76):26.

Scellier, B. and Bengio, Y. (2017). Equilibrium propagation: Bridging the gap between energy-based models and
backpropagation. Frontiers in computational neuroscience, 11:24.

Schiess, M., Urbanczik, R., and Senn, W. (2016). Somato-dendritic synaptic plasticity and error-backpropagation in
active dendrites. PLoS computational biology, 12(2):e1004638.

Schmidhuber, J., Cireşan, D., Meier, U., Masci, J., and Graves, A. (2011). On fast deep nets for agi vision. In
International Conference on Artificial General Intelligence, pages 243–246. Springer.

Scholte, H. S., Losch, M. M., Ramakrishnan, K., de Haan, E. H., and Bohte, S. M. (2017). Visual pathways from the
perspective of cost functions and multi-task deep neural networks. Cortex.

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2):241–263.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton,
A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550(7676):354.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. In Applications of Computer Vision (WACV),
2017 IEEE Winter Conference on, pages 464–472. IEEE.

Sutton, R. S., Barto, A. G., Bach, F., et al. (1998). Reinforcement learning: An introduction. MIT press.

Treue, S. and Trujillo, J. C. M. (1999). Feature-based attention influences motion processing gain in macaque visual
cortex. Nature, 399(6736):575.

Urbanczik, R. and Senn, W. (2014). Learning by the dendritic prediction of somatic spiking. Neuron, 81(3):521–528.

Van Kerkoerle, T., Self, M., and Roelfsema, P. (2017). Effects of attention and working memory in the different layers
of monkey primary visual cortex. Nat. Commun, 8:13804.

13

Vartak, D., Jeurissen, D., Self, M. W., and Roelfsema, P. R. (2017). The influence of attention and reward on the
learning of stimulus-response associations. Scientific reports, 7(1):9036.

Vasilaki, E., Frémaux, N., Urbanczik, R., Senn, W., and Gerstner, W. (2009). Spike-based reinforcement learning in
continuous state and action space: when policy gradient methods fail. PLoS computational biology, 5(12):e1000586.

Wiering, M. and Schmidhuber, J. (1997). Hq-learning. Adaptive Behavior, 6(2):219–246.

14

	1 Introduction
	2 Deep, biologically plausible reinforcement learning
	3 Experiments
	4 Results
	5 Discussion

