18,612 research outputs found

    Deep Reinforcement Learning on a Budget: 3D Control and Reasoning Without a Supercomputer

    Get PDF
    An important goal of research in Deep Reinforcement Learning in mobile robotics is to train agents capable of solving complex tasks, which require a high level of scene understanding and reasoning from an egocentric perspective. When trained from simulations, optimal environments should satisfy a currently unobtainable combination of high-fidelity photographic observations, massive amounts of different environment configurations and fast simulation speeds. In this paper we argue that research on training agents capable of complex reasoning can be simplified by decoupling from the requirement of high fidelity photographic observations. We present a suite of tasks requiring complex reasoning and exploration in continuous, partially observable 3D environments. The objective is to provide challenging scenarios and a robust baseline agent architecture that can be trained on mid-range consumer hardware in under 24h. Our scenarios combine two key advantages: (i) they are based on a simple but highly efficient 3D environment (ViZDoom) which allows high speed simulation (12000fps); (ii) the scenarios provide the user with a range of difficulty settings, in order to identify the limitations of current state of the art algorithms and network architectures. We aim to increase accessibility to the field of Deep-RL by providing baselines for challenging scenarios where new ideas can be iterated on quickly. We argue that the community should be able to address challenging problems in reasoning of mobile agents without the need for a large compute infrastructure

    Decision-Making: A Neuroeconomic Perspective

    Get PDF
    This article introduces and discusses from a philosophical point of view the nascent field of neuroeconomics, which is the study of neural mechanisms involved in decision-making and their economic significance. Following a survey of the ways in which decision-making is usually construed in philosophy, economics and psychology, I review many important findings in neuroeconomics to show that they suggest a revised picture of decision-making and ourselves as choosing agents. Finally, I outline a neuroeconomic account of irrationality

    A Parameterisation of Algorithms for Distributed Constraint Optimisation via Potential Games

    No full text
    This paper introduces a parameterisation of learning algorithms for distributed constraint optimisation problems (DCOPs). This parameterisation encompasses many algorithms developed in both the computer science and game theory literatures. It is built on our insight that when formulated as noncooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of algorithms developed in the computer science literature using game theoretic methods. Furthermore, our parameterisation can assist system designers by making the pros and cons of, and the synergies between, the various DCOP algorithm components clear

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar
    corecore