2,004 research outputs found

    Simple Obstacle Avoidance Algorithm for Rehabilitation Robots

    Get PDF
    The efficiency of a rehabilitation robot is improved by offering record-and-replay to operate the robot. While automatically moving to a stored target (replay) collisions of the robot with obstacles in its work space must be avoided. A simple, though effective, generic and deterministic algorithm for obstacle avoidance was developed. The algorithm derives a collision free path of the end-effector of the robot around known obstacles to the target location in O(n) time. In a case study, using the rehabilitation robot ARM, the performance of the algorithm was tested. As was a newly human-machine-interface offering this record-and-replay functionality to the use

    Rehabilitation robot cell for multimodal standing-up motion augmentation

    Get PDF
    The paper presents a robot cell for multimodal standing-up motion augmentation. The robot cell is aimed at augmenting the standing-up capabilities of impaired or paraplegic subjects. The setup incorporates the rehabilitation robot device, functional electrical stimulation system, measurement instrumentation and cognitive feedback system. For controlling the standing-up process a novel approach was developed integrating the voluntary activity of a person in the control scheme of the rehabilitation robot. The simulation results demonstrate the possibility of “patient-driven” robot-assisted standing-up training. Moreover, to extend the system capabilities, the audio cognitive feedback is aimed to guide the subject throughout rising. For the feedback generation a granular synthesis method is utilized displaying high-dimensional, dynamic data. The principle of operation and example sonification in standing-up are presented. In this manner, by integrating the cognitive feedback and “patient-driven” actuation systems, an effective motion augmentation system is proposed in which the motion coordination is under the voluntary control of the user

    Design and evaluation of the gait rehabilitation robot LOPES

    Get PDF
    The goal of the work presented in this thesis was to realize a robotic device that is able provide suitable gait training to stroke patients.\ud It is believed that motor training in general, but specifically for stroke patients should be intensive and task-specific in order to reach optimal outcome. Meanwhile, the training of severe stroke patients has proven to be physically very demanding to therapists. For this reason it is believed that robotic aids can be useful alternative for physical therapists to provide gait training. In this research we supposed a training setting in which a therapist is in control of the training, while the robot carries out the physical labor in guiding, assisting and correcting the patient

    Encapsulating and representing the knowledge on the evaluation of an engineering system

    Get PDF
    This paper proposes a cross-disciplinary methodology for a fundamental question in product development: How can the innovation patterns during the evolution of an engineering system (ES) be encapsulated, so that it can later be mined through data mining analysis methods? Reverse engineering answers the question of which components a developed engineering system consists of, and how the components interact to make the working product. TRIZ answers the question of which problem-solving principles can be, or have been employed in developing that system, in comparison to its earlier versions, or with respect to similar systems. While these two methodologies have been very popular, to the best of our knowledge, there does not yet exist a methodology that reverseengineers and encapsulates and represents the information regarding the complete product development process in abstract terms. This paper suggests such a methodology, that consists of mathematical formalism, graph visualization, and database representation. The proposed approach is demonstrated by analyzing the design and development process for a prototype wrist-rehabilitation robot

    Design of a wearable upper limb rehabilitation robot and its motion simulation and dynamics analysis

    Get PDF
    Objective: A new wearable upper limb rehabilitation robot is designed to address the disadvantages of the current desktop upper limb rehabilitation robot, which is bulky and inconvenient to move, and the rationality of the design is verified through the analysis of its motion characteristics and the calculation of joint moments. Methods: Firstly, according to the principle of modular design, the overall structure was designed. Secondly, the SOILDWORKS is used for three-dimensional modeling, and the SOILDWORKS Motion is used to simulate the elbow flexion/extension movement, shoulder flexion/extension movement and shoulder-elbow joint linkage movement of the robot. Finally, the dynamic equation of the system is established based on Lagrange method, and the change curve of the joint torque of the manipulator is calculated by MATLAB software. Results: The simulation results confirmed that the motion simulation curves of shoulder joint, elbow joint and wrist joint were smooth. The dynamic analysis confirmed that the joint torque variation curve was smooth and the maximum joint torque was less than the rated torque of the motor after deceleration. Conclusion: The design of wearable upper limb rehabilitation robot is reasonable, which lays a theoretical foundation for the subsequent research on upper limb rehabilitation robot

    Underactuated Rehabilitation Robotics for Hand Function

    Get PDF
    Normal hand function plays an important role in daily life. At present, the incidence of hand dysfunction caused by diseases such as cerebral palsy or stroke is increasing year by year. For the rehabilitation of hand dysfunction, in addition to surgical treatment, effective rehabilitation exercise is also particularly important. It is also a necessary link in the efficient and intelligent development of rehabilitation medicine to develop robots that can effectively help patients with rehabilitation hand functions.In this paper, based on the analysis of the design principles and objectives of the rehabilitation robot with hand function, the kinematics model of the rehabilitation robot with hand function is constructed,based on top-down principle in the design of the machine, the design of the machine hand function rehabilitation robots design optimization process framework, and based on the kinematics model and the virtual prototype technology, build its skeleton model, and carries on the kinematics simulation analysis, the design is verified the correctness of the hand function rehabilitation robot kinematics model

    Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.

    Get PDF
    A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions
    • 

    corecore