47,069 research outputs found

    Gene regulatory network underlying neural crest formation

    Get PDF
    [no abstract

    Backup machinery of yeast transcriptional regulatory network

    Get PDF
    Several studies have suggested the existence of backup machinery of transcriptional regulatory networks (TRNs). Here, we have quantified the backup machinery of yeast gene's TRNs under five different conditions in terms of alternate paths and have revealed that a statistically significant (p<0.0001) stronger backup is maintained for endogenous processes (ENPs) than exogenous processes (EXPs). A number of biologically important genes (SUC2, MF(ALPHA)2, CLN2 etc) are observed that maintain a higher backup. Hub and random transcription factor (TF) knockouts in TRNs have showed ENPs are more robust to deletion than EXPs. While higher average connectivity of TFs in EXPs than ENPs can't explain the higher robustness in ENPs, we have found that the later have a densely interconnectedness explaining their specialized architecture that may have evolved due to evolutionary pressure. Some non-hub TFs identified here are more likely to be essential, and if not essential, have a larger impact on fitness

    Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO2 Levels.

    Get PDF
    Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean's primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom's metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and shared metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum's response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. IMPORTANCE Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum's metabolism

    Evolutionary plasticity of developmental gene regulatory network architecture

    Get PDF
    Sea stars and sea urchins evolved from a last common ancestor that lived at the end of the Cambrian, approximately half a billion years ago. In a previous comparative study of the gene regulatory networks (GRNs) that embody the genomic program for embryogenesis in these animals, we discovered an almost perfectly conserved five-gene network subcircuit required for endoderm specification. We show here that the GRN structure upstream and downstream of the conserved network kernel has, by contrast, diverged extensively. Mesoderm specification is accomplished quite differently; the Delta–Notch signaling system is used in radically distinct ways; and various regulatory genes have been coopted to different functions. The conservation of the conserved kernel is thus the more remarkable. The results indicate types of network linkage subject to evolutionary change. An emergent theme is that subcircuit design may be preserved even while the identity of genes performing given roles changes because of alteration in their cis-regulatory control systems

    Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment

    Get PDF
    We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population

    A gene regulatory network armature for T lymphocyte specification

    Get PDF
    Choice of a T lymphoid fate by hematopoietic progenitor cells depends on sustained Notch–Delta signaling combined with tightly regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification, tests of the short-term Notch dependence of these gene expression changes, and analyses of the effects of overexpression of two essential transcription factors, namely PU.1 and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T cell precursors progress from primitive multipotency to T lineage commitment. Our analyses reveal separate contributions of Notch signaling, GATA-3 activity, and down-regulation of PU.1. Using BioTapestry (www.BioTapestry.org), the results have been assembled into a draft gene regulatory network for the specification of T cell precursors and the choice of T as opposed to myeloid/dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfi1 against Egr-2 and of TCF-1 against PU.1 as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose dependence of GATA-3 effects, the gene-specific modulation of PU.1 activity based on Notch activity, the lack of direct opposition between PU.1 and GATA-3, and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression
    • …
    corecore