1,001 research outputs found

    Modeling Non-Stationary Processes Through Dimension Expansion

    Get PDF
    In this paper, we propose a novel approach to modeling nonstationary spatial fields. The proposed method works by expanding the geographic plane over which these processes evolve into higher dimensional spaces, transforming and clarifying complex patterns in the physical plane. By combining aspects of multi-dimensional scaling, group lasso, and latent variables models, a dimensionally sparse projection is found in which the originally nonstationary field exhibits stationarity. Following a comparison with existing methods in a simulated environment, dimension expansion is studied on a classic test-bed data set historically used to study nonstationary models. Following this, we explore the use of dimension expansion in modeling air pollution in the United Kingdom, a process known to be strongly influenced by rural/urban effects, amongst others, which gives rise to a nonstationary field

    A Generic Framework for Tracking Using Particle Filter With Dynamic Shape Prior

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.894244Tracking deforming objects involves estimating the global motion of the object and its local deformations as functions of time. Tracking algorithms using Kalman filters or particle filters (PFs) have been proposed for tracking such objects, but these have limitations due to the lack of dynamic shape information. In this paper, we propose a novel method based on employing a locally linear embedding in order to incorporate dynamic shape information into the particle filtering framework for tracking highly deformable objects in the presence of noise and clutter. The PF also models image statistics such as mean and variance of the given data which can be useful in obtaining proper separation of object and backgroun

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201
    • …
    corecore