28 research outputs found

    Inpainting of Cyclic Data using First and Second Order Differences

    Full text link
    Cyclic data arise in various image and signal processing applications such as interferometric synthetic aperture radar, electroencephalogram data analysis, and color image restoration in HSV or LCh spaces. In this paper we introduce a variational inpainting model for cyclic data which utilizes our definition of absolute cyclic second order differences. Based on analytical expressions for the proximal mappings of these differences we propose a cyclic proximal point algorithm (CPPA) for minimizing the corresponding functional. We choose appropriate cycles to implement this algorithm in an efficient way. We further introduce a simple strategy to initialize the unknown inpainting region. Numerical results both for synthetic and real-world data demonstrate the performance of our algorithm.Comment: accepted Converence Paper at EMMCVPR'1

    Second Order Differences of Cyclic Data and Applications in Variational Denoising

    Full text link
    In many image and signal processing applications, as interferometric synthetic aperture radar (SAR), electroencephalogram (EEG) data analysis or color image restoration in HSV or LCh spaces the data has its range on the one-dimensional sphere S1\mathbb S^1. Although the minimization of total variation (TV) regularized functionals is among the most popular methods for edge-preserving image restoration such methods were only very recently applied to cyclic structures. However, as for Euclidean data, TV regularized variational methods suffer from the so called staircasing effect. This effect can be avoided by involving higher order derivatives into the functional. This is the first paper which uses higher order differences of cyclic data in regularization terms of energy functionals for image restoration. We introduce absolute higher order differences for S1\mathbb S^1-valued data in a sound way which is independent of the chosen representation system on the circle. Our absolute cyclic first order difference is just the geodesic distance between points. Similar to the geodesic distances the absolute cyclic second order differences have only values in [0,{\pi}]. We update the cyclic variational TV approach by our new cyclic second order differences. To minimize the corresponding functional we apply a cyclic proximal point method which was recently successfully proposed for Hadamard manifolds. Choosing appropriate cycles this algorithm can be implemented in an efficient way. The main steps require the evaluation of proximal mappings of our cyclic differences for which we provide analytical expressions. Under certain conditions we prove the convergence of our algorithm. Various numerical examples with artificial as well as real-world data demonstrate the advantageous performance of our algorithm.Comment: 32 pages, 16 figures, shortened version of submitted manuscrip

    A Second Order Non-Smooth Variational Model for Restoring Manifold-Valued Images

    Full text link
    We introduce a new non-smooth variational model for the restoration of manifold-valued data which includes second order differences in the regularization term. While such models were successfully applied for real-valued images, we introduce the second order difference and the corresponding variational models for manifold data, which up to now only existed for cyclic data. The approach requires a combination of techniques from numerical analysis, convex optimization and differential geometry. First, we establish a suitable definition of absolute second order differences for signals and images with values in a manifold. Employing this definition, we introduce a variational denoising model based on first and second order differences in the manifold setup. In order to minimize the corresponding functional, we develop an algorithm using an inexact cyclic proximal point algorithm. We propose an efficient strategy for the computation of the corresponding proximal mappings in symmetric spaces utilizing the machinery of Jacobi fields. For the n-sphere and the manifold of symmetric positive definite matrices, we demonstrate the performance of our algorithm in practice. We prove the convergence of the proposed exact and inexact variant of the cyclic proximal point algorithm in Hadamard spaces. These results which are of interest on its own include, e.g., the manifold of symmetric positive definite matrices

    Simultaneous Smoothing and Estimation of DTI via Robust Variational Non-local Means

    Get PDF
    International audienceRegularized diffusion tensor estimation is an essential step in DTI analysis. There are many methods proposed in literature for this task but most of them are neither statistically robust nor feature preserving denoising techniques that can simultaneously estimate symmetric positive definite (SPD) diffusion tensors from diffusion MRI. One of the most popular techniques in recent times for feature preserving scalar- valued image denoising is the non-local means filtering method that has recently been generalized to the case of diffusion MRI denoising. However, these techniques denoise the multi-gradient volumes first and then estimate the tensors rather than achieving it simultaneously in a unified approach. Moreover, some of them do not guarantee the positive definiteness of the estimated diffusion tensors. In this work, we propose a novel and robust variational framework for the simultaneous smoothing and estimation of diffusion tensors from diffusion MRI. Our variational principle makes use of a recently introduced total Kullback-Leibler (tKL) divergence, which is a statistically robust similarity measure between diffusion tensors, weighted by a non-local factor adapted from the traditional non-local means filters. For the data fidelity, we use the nonlinear least-squares term derived from the Stejskal-Tanner model. We present experimental results depicting the positive performance of our method in comparison to competing methods on synthetic and real data examples

    Joint Estimation and Smoothing of Clinical DT-MRI with a Log-Euclidean Metric

    Get PDF
    Diffusion tensor MRI is an imaging modality that is gaining importance in clinical applications. However, in a clinical environment, data has to be acquired rapidly at the detriment of the image quality. We propose a new variational framework that specifically targets low quality DT-MRI. The hypothesis of an additive Gaussian noise on the images leads us to estimate the tensor field directly on the image intensities. To further reduce the influence of the noise, we optimally exploit the spatial correlation by adding to the estimation an anisotropic regularization term. This criterion is easily optimized thanks to the use of the recently introduced Log-Euclidean metrics. Results on real clinical data show promising improvements of fiber tracking in the brain and we present the first successful attempt, up to our knowledge, to reconstruct the spinal cord
    corecore