5,653 research outputs found

    Exact and efficient top-K inference for multi-target prediction by querying separable linear relational models

    Get PDF
    Many complex multi-target prediction problems that concern large target spaces are characterised by a need for efficient prediction strategies that avoid the computation of predictions for all targets explicitly. Examples of such problems emerge in several subfields of machine learning, such as collaborative filtering, multi-label classification, dyadic prediction and biological network inference. In this article we analyse efficient and exact algorithms for computing the top-KK predictions in the above problem settings, using a general class of models that we refer to as separable linear relational models. We show how to use those inference algorithms, which are modifications of well-known information retrieval methods, in a variety of machine learning settings. Furthermore, we study the possibility of scoring items incompletely, while still retaining an exact top-K retrieval. Experimental results in several application domains reveal that the so-called threshold algorithm is very scalable, performing often many orders of magnitude more efficiently than the naive approach

    Low-Rank Discriminative Least Squares Regression for Image Classification

    Full text link
    Latest least squares regression (LSR) methods mainly try to learn slack regression targets to replace strict zero-one labels. However, the difference of intra-class targets can also be highlighted when enlarging the distance between different classes, and roughly persuing relaxed targets may lead to the problem of overfitting. To solve above problems, we propose a low-rank discriminative least squares regression model (LRDLSR) for multi-class image classification. Specifically, LRDLSR class-wisely imposes low-rank constraint on the intra-class regression targets to encourage its compactness and similarity. Moreover, LRDLSR introduces an additional regularization term on the learned targets to avoid the problem of overfitting. These two improvements are helpful to learn a more discriminative projection for regression and thus achieving better classification performance. Experimental results over a range of image databases demonstrate the effectiveness of the proposed LRDLSR method

    Let's Make Block Coordinate Descent Go Fast: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence

    Full text link
    Block coordinate descent (BCD) methods are widely-used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can lead to significantly faster BCD methods. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with a sparse dependency between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization
    corecore