1,519 research outputs found

    Multi-contact Walking Pattern Generation based on Model Preview Control of 3D COM Accelerations

    Get PDF
    We present a multi-contact walking pattern generator based on preview-control of the 3D acceleration of the center of mass (COM). A key point in the design of our algorithm is the calculation of contact-stability constraints. Thanks to a mathematical observation on the algebraic nature of the frictional wrench cone, we show that the 3D volume of feasible COM accelerations is a always a downward-pointing cone. We reduce its computation to a convex hull of (dual) 2D points, for which optimal O(n log n) algorithms are readily available. This reformulation brings a significant speedup compared to previous methods, which allows us to compute time-varying contact-stability criteria fast enough for the control loop. Next, we propose a conservative trajectory-wide contact-stability criterion, which can be derived from COM-acceleration volumes at marginal cost and directly applied in a model-predictive controller. We finally implement this pipeline and exemplify it with the HRP-4 humanoid model in multi-contact dynamically walking scenarios

    Sufficient Dimension Reduction and Modeling Responses Conditioned on Covariates: An Integrated Approach via Convex Optimization

    Get PDF
    Given observations of a collection of covariates and responses (Y,X)Rp×Rq(Y, X) \in \mathbb{R}^p \times \mathbb{R}^q, sufficient dimension reduction (SDR) techniques aim to identify a mapping f:RqRkf: \mathbb{R}^q \rightarrow \mathbb{R}^k with kqk \ll q such that Yf(X)Y|f(X) is independent of XX. The image f(X)f(X) summarizes the relevant information in a potentially large number of covariates XX that influence the responses YY. In many contemporary settings, the number of responses pp is also quite large, in addition to a large number qq of covariates. This leads to the challenge of fitting a succinctly parameterized statistical model to Yf(X)Y|f(X), which is a problem that is usually not addressed in a traditional SDR framework. In this paper, we present a computationally tractable convex relaxation based estimator for simultaneously (a) identifying a linear dimension reduction f(X)f(X) of the covariates that is sufficient with respect to the responses, and (b) fitting several types of structured low-dimensional models -- factor models, graphical models, latent-variable graphical models -- to the conditional distribution of Yf(X)Y|f(X). We analyze the consistency properties of our estimator in a high-dimensional scaling regime. We also illustrate the performance of our approach on a newsgroup dataset and on a dataset consisting of financial asset prices.Comment: 34 pages, 1 figur

    Mathematical framework for Traction Force Microscopy

    No full text
    International audienceThis paper deals with the Traction Force Microscopy (TFM) problem. It consists in obtaining stresses by solving an inverse problem in an elastic medium, from known experimentally measured displacements. In this article, the application is the determination of the stresses exerted by a living cell at the surface of an elastic gel. We propose an abstract framework which formulates this inverse problem as a constrained minimization problem. The mathematical constraints express the biomechanical conditions that the cell must satisfy. From this framework, two methods currently used can be derived, the adjoint method (AM) and the Fourier Transform Traction Cytometry (FTTC) method. An improvement of the FTTC method is also derived using this framework. The numerical results are compared and show the advantage of the AM, in particular it can capture details more accurately

    Variational approach to relaxed topological optimization: closed form solutions for structural problems in a sequential pseudo-time framework

    Get PDF
    The work explores a specific scenario for structural computational optimization based on the following elements: (a) a relaxed optimization setting considering the ersatz (bi-material) approximation, (b) a treatment based on a non-smoothed characteristic function field as a topological design variable, (c) the consistent derivation of a relaxed topological derivative whose determination is simple, general and efficient, (d) formulation of the overall increasing cost function topological sensitivity as a suitable optimality criterion, and (e) consideration of a pseudo-time framework for the problem solution, ruled by the problem constraint evolution. In this setting, it is shown that the optimization problem can be analytically solved in a variational framework, leading to, nonlinear, closed-form algebraic solutions for the characteristic function, which are then solved, in every time-step, via fixed point methods based on a pseudo-energy cutting algorithm combined with the exact fulfillment of the constraint, at every iteration of the non-linear algorithm, via a bisection method. The issue of the ill-posedness (mesh dependency) of the topological solution, is then easily solved via a Laplacian smoothing of that pseudo-energy. In the aforementioned context, a number of (3D) topological structural optimization benchmarks are solved, and the solutions obtained with the explored closed-form solution method, are analyzed, and compared, with their solution through an alternative level set method. Although the obtained results, in terms of the cost function and topology designs, are very similar in both methods, the associated computational cost is about five times smaller in the closed-form solution method this possibly being one of its advantages. Some comments, about the possible application of the method to other topological optimization problems, as well as envisaged modifications of the explored method to improve its performance close the workPeer ReviewedPostprint (author's final draft

    Development of robust and efficient solution strategies for coupled problems

    Get PDF
    Det er mange modeller i moderne vitenskap hvor sammenkoblingen mellom forskjellige fysiske prosesser er svært viktig. Disse finner man for eksempel i forbindelse med lagring av karbondioksid i undervannsreservoarer, flyt i kroppsvev, kreftsvulstvekst og geotermisk energiutvinning. Denne avhandlingen har to fokusområder som er knyttet til sammenkoblede modeller. Det første er å utvikle pålitelige og effektive tilnærmingsmetoder, og det andre er utviklingen av en ny modell som tar for seg flyt i et porøst medium som består av to forskjellige materialer. For tilnærmingsmetodene har det vært et spesielt fokus på splittemetoder. Dette er metoder hvor hver av de sammenkoblede modellene håndteres separat, og så itererer man mellom dem. Dette gjøres i hovedsak fordi man kan utnytte tilgjengelig teori og programvare for å løse hver undermodell svært effektivt. Ulempen er at man kan ende opp med løsningsalgoritmer for den sammenkoblede modellen som er trege, eller ikke kommer frem til noen løsning i det hele tatt. I denne avhandlingen har tre forskjellige metoder for å forbedre splittemetoder blitt utviklet for tre forskjellige sammenkoblede modeller. Den første modellen beskriver flyt gjennom deformerbart porøst medium og er kjent som Biot ligningene. For å anvende en splittemetode på denne modellen har et stabiliseringsledd blitt tilført. Dette sikrer at metoden konvergerer (kommer frem til en løsning), men dersom man ikke skalerer stabiliseringsleddet riktig kan det ta veldig lang tid. Derfor har et intervall hvor den optimale skaleringen av stabiliseringsleddet befinner seg blitt identifisert, og utfra dette presenteres det en måte å praktisk velge den riktige skaleringen på. Den andre modellen er en fasefeltmodell for sprekkpropagering. Denne modellen løses vanligvis med en splittemetode som er veldig treg, men konvergent. For å forbedre dette har en ny akselerasjonsmetode har blitt utviklet. Denne anvendes som et postprosesseringssteg til den klassiske splittemetoden, og utnytter både overrelaksering og Anderson akselerasjon. Disse to forskjellige akselerasjonsmetodene har kompatible styrker i at overrelaksering akselererer når man er langt fra løsningen (som er tilfellet når sprekken propagerer), og Anderson akselerasjon fungerer bra når man er nærme løsningen. For å veksle mellom de to metodene har et kriterium basert på residualfeilen blitt brukt. Resultatet er en pålitelig akselerasjonsmetode som alltid akselererer og ofte er svært effektiv. Det siste modellen kalles Cahn-Larché ligningene og er også en fasefeltmodell, men denne beskriver elastisitet i et medium bestående av to elastiske materialer som kan bevege seg basert på overflatespenningen mellom dem. Dette problemet er spesielt utfordrende å løse da det verken er lineært eller konvekst. For å håndtere dette har en ny måte å behandle tidsavhengigheten til det underliggende koblede problemet på blitt utviklet. Dette leder til et diskret system som er ekvivalent med et konvekst minimeringsproblem, som derfor er velegnet til å løses med de fleste numeriske optimeringsmetoder, også splittemetoder. Den nye modellen som har blitt utviklet er en utvidelse av Cahn-Larché ligningene og har fått navnet Cahn-Hilliard-Biot. Dette er fordi ligningene utgjør en fasefelt modell som beskriver flyt i et deformerbart porøst medium med to poroelastiske materialer. Disse kan forflytte seg basert på overflatespenning, elastisk spenning, og poretrykk, og det er tenkt at modellen kan anvendes i forbindelse med kreftsvulstmodellering.There are many applications where the study of coupled physical processes is of great importance. These range from the life sciences with flow in deformable human tissue to structural engineering with fracture propagation in elastic solids. In this doctoral dissertation, there is a twofold focus on coupled problems. Firstly, robust and efficient solution strategies, with a focus on iterative decoupling methods, have been applied to several coupled systems of equations. Secondly, a new thermodynamically consistent coupled system of equations is proposed. Solution strategies are developed for three different coupled problems; the quasi-static linearized Biot equations that couples flow through porous materials and elastic deformation of the solid medium, variational phase-field models for brittle fracture that couple a phase-field equation for fracture evolution with linearized elasticity, and the Cahn-Larché equations that model elastic effects in a two-phase elastic material and couples an extended Cahn-Hilliard phase-field equation and linearized elasticity. Finally, the new system of equations that is proposed models flow through a two-phase deformable porous material where the solid phase evolution is governed by interfacial forces as well as effects from both the fluid and elastic properties of the material. In the work that concerns the quasi-static linearized Biot equations, the focus is on the fixed-stress splitting scheme, which is a popular method for sequentially solving the flow and elasticity subsystems of the full model. Using such a method is beneficial as it allows for the use of readily available solvers for the subproblems; however, a stabilizing term is required for the scheme to converge. It is well known that the convergence properties of the method strongly depend on how this term is chosen, and here, the optimal choice of it is addressed both theoretically and practically. An interval where the optimal stabilization parameter lies is provided, depending on the material parameters. In addition, two different ways of optimizing the parameter are proposed. The first is a brute-force method that relies on the mesh independence of the scheme's optimal stabilization parameter, and the second is valid for low-permeable media and utilizes an equivalence between the fixed-stress splitting scheme and the modified Richardson iteration. Regarding the variational phase-field model for brittle fracture propagation, the focus is on improving the convergence properties of the most commonly used solution strategy with an acceleration method. This solution strategy relies on a staggered scheme that alternates between solving the elasticity and phase-field subproblems in an iterative way. This is known to be a robust method compared to the monolithic Newton method. However, the staggered scheme often requires many iterations to converge to satisfactory precision. The contribution of this work is to accelerate the solver through a new acceleration method that combines Anderson acceleration and over-relaxation, dynamically switching back and forth between them depending on a criterion that takes the residual evolution into account. The acceleration scheme takes advantage of the strengths of both Anderson acceleration and over-relaxation, and the fact that they are complementary when applied to this problem, resulting in a significant speed-up of the convergence. Moreover, the method is applied as a post-processing technique to the increments of the solver, and can thus be implemented with minor modifications to readily available software. The final contribution toward solution strategies for coupled problems focuses on the Cahn-Larché equations. This is a model for linearized elasticity in a medium with two elastic phases that evolve with respect to interfacial forces and elastic effects. The system couples linearized elasticity and an extended Cahn-Hilliard phase-field equation. There are several challenging features with regards to solution strategies for this system including nonlinear coupling terms, and the fourth-order term that comes from the Cahn-Hilliard subsystem. Moreover, the system is nonlinear and non-convex with respect to both the phase-field and the displacement. In this work, a new semi-implicit time discretization that extends the standard convex-concave splitting method applied to the double-well potential from the Cahn-Hilliard subsystem is proposed. The extension includes special treatment for the elastic energy, and it is shown that the resulting discrete system is equivalent to a convex minimization problem. Furthermore, an alternating minimization solver is proposed for the fully discrete system, together with a convergence proof that includes convergence rates. Through numerical experiments, it becomes evident that the newly proposed discretization method leads to a system that is far better conditioned for linearization methods than standard time discretizations. Finally, a new model for flow through a two-phase deformable porous material is proposed. The two poroelastic phases have distinct material properties, and their interface evolves according to a generalized Ginzburg–Landau energy functional. As a result, a model that extends the Cahn-Larché equations to poroelasticity is proposed, and essential coupling terms for several applications are highlighted. These include solid tumor growth, biogrout, and wood growth. Moreover, the coupled set of equations is shown to be a generalized gradient flow. This implies that the system is thermodynamically consistent and makes a toolbox of analysis and solvers available for further study of the model.Doktorgradsavhandlin

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)minu{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or 1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure
    corecore