971 research outputs found

    Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D Images

    Get PDF
    We propose a novel joint registration and segmentation approach to estimate scene flow from RGB-D images. Instead of assuming the scene to be composed of a number of independent rigidly-moving parts, we use non-binary labels to capture non-rigid deformations at transitions between the rigid parts of the scene. Thus, the velocity of any point can be computed as a linear combination (interpolation) of the estimated rigid motions, which provides better results than traditional sharp piecewise segmentations. Within a variational framework, the smooth segments of the scene and their corresponding rigid velocities are alternately refined until convergence. A K-means-based segmentation is employed as an initialization, and the number of regions is subsequently adapted during the optimization process to capture any arbitrary number of independently moving objects. We evaluate our approach with both synthetic and real RGB-D images that contain varied and large motions. The experiments show that our method estimates the scene flow more accurately than the most recent works in the field, and at the same time provides a meaningful segmentation of the scene based on 3D motion.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish Government under the grant programs FPI-MICINN 2012 and DPI2014- 55826-R (co-founded by the European Regional Development Fund), as well as by the EU ERC grant Convex Vision (grant agreement no. 240168)

    Lucas/Kanade meets Horn/Schunck : combining local and global optic flow methods

    Get PDF
    Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas-Kanade technique or BigĂĽn\u27s structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of differential methods in four ways: (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemproal and nonlinear extensions to this hybrid method are presented. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure

    Robust Discontinuity Preserving Optical Flow Methods

    Full text link

    Analysis of motion in scale space

    Get PDF
    This work includes some new aspects of motion estimation by the optic flow method in scale spaces. The usual techniques for motion estimation are limited to the application of coarse to fine strategies. The coarse to fine strategies can be successful only if there is enough information in every scale. In this work we investigate the motion estimation in the scale space more basically. The wavelet choice for scale space decomposition of image sequences is discussed in the first part of this work. We make use of the continuous wavelet transform with rotationally symmetric wavelets. Bandpass decomposed sequences allow the replacement of the structure tensor by the phase invariant energy operator. The structure tensor is computationally more expensive because of its spatial or spatio-temporal averaging. The energy operator needs in general no further averaging. The numerical accuracy of the motion estimation with the energy operator is compared to the results of usual techniques, based on the structure tensor. The comparison tests are performed on synthetic and real life sequences. Another practical contribution is the accuracy measurement for motion estimation by adaptive smoothed tensor fields. The adaptive smoothing relies on nonlinear anisotropic diffusion with discontinuity and curvature preservation. We reached an accuracy gain under properly chosen parameters for the diffusion filter. A theoretical contribution from mathematical point of view is a new discontinuity and curvature preserving regularization for motion estimation. The convergence of solutions for the isotropic case of the nonlocal partial differential equation is shown. For large displacements between two consecutive frames the optic flow method is systematically corrupted because of the violence of the sampling theorem. We developed a new method for motion analysis by scale decomposition, which allows to circumvent the systematic corruption without using the coarse to fine strategy. The underlying assumption is, that in a certain neighborhood the grey value undergoes the same displacement. If this is fulfilled, then the same optic flow should be measured in all scales. If there arise inconsistencies in a pixel across the scale space, so they can be detected and the scales containing this inconsistencies are not taken into account

    A multigrid platform for real-time motion computation with discontinuity-preserving variational methods

    Get PDF
    Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, allow to deal with large displacements and perform well under noise or varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically, one or more large linear or nonlinear systems of equations have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. In particular, discontinuity-preserving regularisation strategies are thereby in the focus of our work. (ii) We show by the examples of classical as well as more advanced variational techniques that real-time performance is possible - even for very complex optic flow models with high accuracy. Experiments show frame rates up to 63 dense flow fields per second for real-world image sequences of size 160 x 120 on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude
    • …
    corecore