25,464 research outputs found

    Identification of rolling resistance as a shape parameter in sheared granular media

    Full text link
    Using contact dynamics simulations, we compare the effect of rolling resistance at the contacts in granular systems composed of disks with the effect of angularity in granular systems composed of regular polygonal particles. In simple shear conditions, we consider four aspects of the mechanical behavior of these systems in the steady state: shear strength, solid fraction, force and fabric anisotropies, and probability distribution of contact forces. Our main finding is that, based on the energy dissipation associated with relative rotation between two particles in contact, the effect of rolling resistance can explicitly be identified with that of the number of sides in a regular polygonal particle. This finding supports the use of rolling resistance as a shape parameter accounting for particle angularity and shows unambiguously that one of the main influencing factors behind the mechanical behavior of granular systems composed of noncircular particles is the partial hindrance of rotations as a result of angular particle shape.Comment: Soumis a Physical Review E; Statistical, Nonlinear, and Soft Matter Physics http://link.aps.org/doi/10.1103/PhysRevE.84.01130

    Comparison of the effects of rolling resistance and angularity in sheared granular media

    No full text
    International audienceIn this paper, we compare the effect of rolling resistance at the contacts in granular systems composed of disks with the effect of angularity in granular systems composed of regular polygonal particles. For this purpose, we use contact dynamics simulations. By means of a simple shear numerical device, we investigate the mechanical behavior of these materials in the steady state in terms of shear strength, solid fraction, force and fabric anisotropies, and probability distribution of contact forces. We find that, based on the energy dissipation associated with relative rotation between two particles in contact, the effect of rolling resistance can explicitly be identified with that of the number of sides in a regular polygonal particle. This finding supports the use of rolling resistance as a shape parameter accounting for particle angularity and shows unambiguously that one of the main influencing factors behind the mechanical behavior of granular systems composed of noncircular particles is the partial hindrance of rotations as a result of angular particle shape

    Slow relaxation in weakly open vertex-splitting rational polygons

    Get PDF
    The problem of splitting effects by vertex angles is discussed for nonintegrable rational polygonal billiards. A statistical analysis of the decay dynamics in weakly open polygons is given through the orbit survival probability. Two distinct channels for the late-time relaxation of type 1/t^delta are established. The primary channel, associated with the universal relaxation of ''regular'' orbits, with delta = 1, is common for both the closed and open, chaotic and nonchaotic billiards. The secondary relaxation channel, with delta > 1, is originated from ''irregular'' orbits and is due to the rationality of vertices.Comment: Key words: Dynamics of systems of particles, control of chaos, channels of relaxation. 21 pages, 4 figure

    On Chaotic Dynamics in Rational Polygonal Billiards

    Full text link
    We discuss the interplay between the piece-line regular and vertex-angle singular boundary effects, related to integrability and chaotic features in rational polygonal billiards. The approach to controversial issue of regular and irregular motion in polygons is taken within the alternative deterministic and stochastic frameworks. The analysis is developed in terms of the billiard-wall collision distribution and the particle survival probability, simulated in closed and weakly open polygons, respectively. In the multi-vertex polygons, the late-time wall-collision events result in the circular-like regular periodic trajectories (sliding orbits), which, in the open billiard case are likely transformed into the surviving collective excitations (vortices). Having no topological analogy with the regular orbits in the geometrically corresponding circular billiard, sliding orbits and vortices are well distinguished in the weakly open polygons via the universal and non-universal relaxation dynamics.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    An n-sided polygonal model to calculate the impact of cyber security events

    Full text link
    This paper presents a model to represent graphically the impact of cyber events (e.g., attacks, countermeasures) in a polygonal systems of n-sides. The approach considers information about all entities composing an information system (e.g., users, IP addresses, communication protocols, physical and logical resources, etc.). Every axis is composed of entities that contribute to the execution of the security event. Each entity has an associated weighting factor that measures its contribution using a multi-criteria methodology named CARVER. The graphical representation of cyber events is depicted as straight lines (one dimension) or polygons (two or more dimensions). Geometrical operations are used to compute the size (i.e, length, perimeter, surface area) and thus the impact of each event. As a result, it is possible to identify and compare the magnitude of cyber events. A case study with multiple security events is presented as an illustration on how the model is built and computed.Comment: 16 pages, 5 figures, 2 tables, 11th International Conference on Risks and Security of Internet and Systems, (CRiSIS 2016), Roscoff, France, September 201

    Connectedness percolation of hard convex polygonal rods and platelets

    Get PDF
    The properties of polymer composites with nanofiller particles change drastically above a critical filler density known as the percolation threshold. Real nanofillers, such as graphene flakes and cellulose nanocrystals, are not idealized disks and rods but are often modeled as such. Here we investigate the effect of the shape of the particle cross section on the geometric percolation threshold. Using connectedness percolation theory and the second-virial approximation, we analytically calculate the percolation threshold of hard convex particles in terms of three single-particle measures. We apply this method to polygonal rods and platelets and find that the universal scaling of the percolation threshold is lowered by decreasing the number of sides of the particle cross section. This is caused by the increase of the surface area to volume ratio with decreasing number of sides.Comment: 7 pages, 3 figures; added references, corrected typo, results unchange
    • …
    corecore