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The properties of polymer composites with nanofiller particles change drastically above a critical filler
density known as the percolation threshold. Real nanofillers, such as graphene flakes and cellulose
nanocrystals, are not idealized disks and rods but are often modeled as such. Here we investigate
the effect of the shape of the particle cross section on the geometric percolation threshold. Using
connectedness percolation theory and the second-virial approximation, we analytically calculate the
percolation threshold of hard convex particles in terms of three single-particle measures. We apply
this method to polygonal rods and platelets and find that the universal scaling of the percolation
threshold is lowered by decreasing the number of sides of the particle cross section. This is caused by
the increase of the surface area to volume ratio with decreasing number of sides. Published by AIP
Publishing. https://doi.org/10.1063/1.5040185

I. INTRODUCTION

Nanofillers dispersed in a polymeric medium can form
in some sense connected networks above a critical density
known as the percolation threshold. As a result, the phys-
ical properties of such composites relating to, e.g., elastic,
electrical, and thermal response, change drastically if the
filler fraction is increased to one or two times the percola-
tion threshold. These types of composite materials have many
interesting applications, possibly including the replacement
for indium-tin oxide as a transparent electrode.1,2 To preserve
transparency, however, it is desirable to have an extremely
low percolation threshold and so understanding what fac-
tors determine this is of practical as well as fundamental
interest.

Using theory and simulations, studies have been
performed on how the percolation threshold depends on
particle aspect ratio,3–7 polydispersity,8–17 attractive interac-
tions,8 clustering,18,19 and alignment.20–24 In these studies,
nanofiller particles are usually modeled as perfect rods, disks,
or ellipsoids. In a recent work,25 we studied one type of
shape deformation, namely, rodlike nanofillers with kink or
bend defects, and found very little effect on the percola-
tion threshold up to moderate deformations. However, real
nanofillers may have many other types of shape irregulari-
ties. For example, graphene sheets, while having very high
aspect ratios with a diameter of 1 µm and thickness of a
few angstroms, also have quite irregular shapes, with sharp
corners and high variability between flakes.26–28 Cellulose
nanocrystals, another example of a promising material, can
be coated with a conductive polymer to form composites

a)Electronic mail: t.m.drwenski@uu.nl
b)Electronic mail: p.p.a.m.v.d.schoot@tue.nl

with a very low percolation threshold.29 These nanocrystals
are not perfect cylinders, but rather have a rectangular cross
section.30,31

In this paper, we investigate how the percolation thresh-
old depends on the precise particle cross section, for rod-
like and platelike nanofiller particles. Using connectedness
percolation theory in the second-virial approximation, we
write the percolation threshold for convex particles in terms
of three single-particle measures, namely, the volume, sur-
face area, and mean half-width. We apply this formalism
to systems of polygonal rods and platelets. We show that
particle cross sections with fewer sides have lower percola-
tion thresholds due to their increased surface area to volume
ratio.

The remainder of the paper continues as follows. In Sec. II,
we present our method for calculating the percolation thresh-
old for convex particles in the isotropic phase. Particle models
considered are shown in Fig. 1. In Sec. III, we apply this
method to systems of polygonal rods and platelets, and in
Sec. IV we conclude by summarizing and discussing our
results.

II. METHOD

In this section, we calculate the percolation threshold
using connectedness percolation theory32,33 within the second-
virial approximation. The percolation packing fraction φP is
defined as the lowest packing fraction at which the average
cluster size of connected particles diverges. We define two
particles as connected if their surface-to-surface distance is
less than a certain connectedness criterion (or connectedness
range) ∆. For electrical percolation, this connectedness crite-
rion is related to the electron tunneling distance and depends
on the nanofiller properties as well as the dielectric properties
of the medium.7,8

0021-9606/2018/149(5)/054902/7/$30.00 149, 054902-1 Published by AIP Publishing.
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FIG. 1. Regular right polygonal prism
models with n sides of length s, facial
center-to-vertex length d/2, height l, and
with (a) n = 3, (b) n = 4, and (c)
n = 6, with the rodlike version (l > d) on
the left and platelike version (l < d) on
the right. (d) Irregular equiangular right
hexagonal platelet of height l, sides of
s1, s2, and s1, and with unique diameters
d1 and d2.

We consider clusters composed of rigid non-spherical
particles with single-particle volume V. The orientation
of such a particle can be given by three Euler angles
Ω = (α, β, γ). Assuming a uniform spatial distribution
of particles with number density ρ, the orientation distri-
bution function ψ(Ω) is defined so that the probability to
find a particle with an orientation Ω in the interval dΩ is
given by ψ(Ω)dΩ, with the normalization constraint that
∫ dΩψ(Ω) = ∫

2π
0 dα ∫

π
0 dβ sin β ∫

2π
0 dγ ψ(Ω) = 1. The

orientational average is denoted as 〈. . .〉 = ∫ dΩ . . .ψ(Ω).
In this paper, we only consider percolation in the isotropic
phase, where all orientations are equally probable and so
ψ(Ω) = 1/(8π2).

Within the second-virial closure, the percolation packing
fraction is simply given by8,10,25,33

φP =
V

〈f̂ +(0,Ω)〉
, (1)

with f̂ +(0,Ω) = limq→0 f̂ +(q,Ω), where f̂ +(q,Ω) is the Fourier
transform of the connectedness Mayer function f +(r,Ω). Here
we denote the Fourier transform of an arbitrary function f (r)
by f̂ (q) = ∫ drf (r) exp(iq · r). For the derivation of Eq. (1)
for arbitrarily shaped rigid particles, see Ref. 25, which fol-
lows the derivation for cylinders.8,10 Equation (1) is exact in
the isotropic phase within the second-virial closure and has
a similar form to that of spherical nanofillers.33 However,
Eq. (1) is not exact in aligned phases unless the alignment
is perfect. Interestingly, Eq. (1) can also be derived from
a random geometric graph approach under the assumption
that the node degrees (particle contact numbers) are Poisson
distributed.34,35

The connectedness Mayer function is defined as33,36

f +(r,ΩAB) =



1, A and B are connected;

0, otherwise,

= f shell(r,ΩAB) − f core(r,ΩAB), (2)

where

f shell(r,ΩAB) =



1, A and B have overlapping shells;

0, otherwise

and

f core(r,ΩAB) =



1, A and B have overlapping cores;

0, otherwise.

Here r is the vector connecting the centers of the two parti-
cles and ΩAB is the relative orientation between particles A
and B. This is the so-called core-shell model,37 where we
define two particles as connected if their shortest surface-to-
surface distance is less than the connectedness criterion ∆,
i.e., their shells overlap, but an overlap of the hard cores is
forbidden. The connectedness Mayer function is f + = 1 for a
connected configuration and f + = 0 for a disconnected one.
In addition, we will consider the less realistic but simpler
model of “ghost” particles, which are ideal particles with-
out a hard core. In this model, particles are defined by the
shape and size of their shells and are connected if their shells
overlap.

We define the connectedness volume as the spatial integral
of the connectedness Mayer function asE+(ΩAB) = f̂ +(0,ΩAB).
From integrating Eq. (2) over separation r and relative orien-
tations ΩAB, we obtain the average excluded volume in the
isotropic phase as

〈E+
AB〉 = 〈E

shell
AB 〉 − 〈E

core
AB 〉, (3)

where we dropped the Ω argument of the averaged E for
simplicity.

We now invoke a striking result from integral geometry,
which relates the orientationally averaged excluded volume
of two arbitrary convex bodies A and B to their three single-
particle invariant measures as38,39

〈EAB〉 = VA + SAMB + SBMA + VB, (4)

where Vα denotes the volume, Sα denotes the surface area,
and Mα denotes the mean half-width of a single parti-
cle of species α. For a recent work on integral geometry
applied to the excluded volume of hard bodies, see Ref. 40.
The mean half-width of a convex polyhedron C is given
by40

MC =
1

8π

∑
Ei

|Ei |φi, (5)

where |Ei | is the length of edge Ei and φi is the angle between
the normals of the faces that meet at Ei.

So for a given convex body A, which consists of a core
body Acore and a shell body Ashell, and similarly for B, we
can calculate the connectedness excluded volume and thus the
percolation threshold, given that we can calculate the volume,
surface area, and mean half-width of the core and shells of A
and B. Here we restrict ourselves to the monodisperse case,
where A = B. In this case, Eq. (4) reduces to

〈E〉 = 2V + 2SM, (6)
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where we drop the subscript A for convenience. Now a par-
ticle in the core-shell model is defined by the three geo-
metric properties of its core (Vc, Sc, and Mc) and of its
shell (Vs, Ss, and Ms), where the subscripts c and s denote
core and shell, respectively. Using Eqs. (1), (3), and (6),
this gives for the percolation threshold in the core-shell
model

φP =
1

2(Vs/Vc + SsMs/Vc − 1 − ScMc/Vc)
. (7)

We will also consider ghost particles (with vanishing cores),
where a particle is defined by the three geometric properties
of its shell (Vs, Ss, and Ms). Within the ghost model, the
percolation threshold has the even simpler form of

φ
ghost
P =

1
2(1 + SsMs/Vs)

, (8)

which shows that the percolation threshold only depends on
the dimensionless combination of single particle properties,
namely, SsMs/Vs. Note that in the ghost model [Eq. (8)], the
percolation packing fraction [Eq. (1)] is defined using the shell
volume V = Vs, whereas in the core-shell model [Eq. (7)], the
core volume V = Vc is used.

The second-virial approximation is known to be very
accurate for rodlike particles with high aspect ratios.3,10 For
rodlike particles with a smaller aspect ratio, the Parsons-Lee
correction can be used to effectively include higher order virial
coefficients.5,13,41,42 For moderate aspect ratio hard sphero-
cylinders (with length L, diameter D, and L/D & 10), this
correction has been shown to give good results.5 Although
there is no rigorous argument for applying this correction to
shapes besides spherocylinders, it has given good agreement
with Monte Carlo results for the equation of state for the less
symmetric hard “boomerang” (bent-core) particles.43 How-
ever, as this factor is only a rescaling of the second virial results
and does not change the qualitative behavior, for simplicity we
will not use it here.

Far away from Onsager’s needle limit, e.g., for short rod-
like or for platelike particles, it would be desirable to include
higher order virial terms, however, this is often computation-
ally impractical. A method that is known to be highly accurate
and that better captures angular correlations is the so-called
Fundamental Measure Theory (FMT).44 Although it was orig-
inally developed for spheres,45,46 it has recently been applied
to many hard body systems including rod/sphere mixtures,47

rodlike particles with various cross sections,48 and boardlike
particles;49 however, in the latter two studies, the particles
were not freely rotating. It would be desirable to use FMT
to study percolation; however, such a theory has yet to be
formulated.

Surprisingly, second-virial theory seems to have
predictive power in systems of flat rather than elongated par-
ticles. For example, it gave the same phase diagram topol-
ogy as FMT when applied to binary mixtures of disks.50

The percolation threshold from second-virial theory was also
in qualitative agreement with Monte Carlo calculations for
spheres with a small hopping distance51 as well as Monte
Carlo calculations for very thin oblate ellipsoids.16 In addi-
tion, it has been shown from random graph theory that

hard spheres with a thin connectedness shell form con-
nected networks with a tree-like structure, indicating third
and higher virial terms can be neglected.52 In light of these
results, we also here apply second-virial theory to systems of
platelets.

III. RESULTS

In Sec. III A, we calculate the percolation thresholds for
rodlike nanofillers with various cross sections, the rectangular
ones being potentially relevant to (coated) cellulose nanocrys-
tals. Then, in Sec. III B, we consider platelike nanofillers, with
an emphasis on regular and irregular hexagonal platelets which
resemble graphene flakes.

A. Regular right polygonal prisms

First, we consider regular right polygonal prisms with n
sides on their polygonal faces [see Figs. 1(a)–1(c)]. We char-
acterize these by the length of the prism ln and the length of the
polygonal side s. The facial diameter, which we define as twice
the center-to-vertex distance of the polygon (or equivalently,
the diameter of the circle circumscribing the face), is then
given by dn = s/sin(π/n). The single-particle core properties
are simply given by

Vc =
1
8

lnd2
n n sin

(
2π
n

)
, (9)

for the volume,

Sc =
1
4

d2
n n sin

(
2π
n

)
+ lndnn sin

(
π

n

)
, (10)

for the surface area, and

Mc =
1
8

dnn sin
(
π

n

)
+

1
4

ln, (11)

for the mean half-width. It can be easily checked that the
limit n → ∞ returns the correct properties for cylinders,
i.e.,

Vc,cyl =
π

4
ld2, (12)

for the volume,
Sc,cyl =

π

2
d2 + πld, (13)

for the surface area, and

Mc,cyl =
π

8
d +

1
4

l, (14)

for the mean half-width. Similarly, we can write the shell prop-
erties by letting dn → dn + ∆ and ln → ln + ∆, where ∆ is the
connectedness criterion. Note that in the ghost model, parti-
cles only have a shell and no core so we set ∆ = 0 in that
case.

Now, we compare the percolation thresholds of the n-sided
rods to that of cylinders. We choose to compare hard prisms
of the same volume and same aspect ratio ln/dn. This amounts
to setting dn = 2V1/3[ln/dn · n sin(2π/n)]−1/3, where we use
V = Vc as the unit of volume for the core-shell model and
V = Vs for the ghost model.

For cylinders in the ghost model, the needle-limit
l/d → ∞ leads to φ

ghost
P → d/(2l). Similarly, in the

core-shell-model, the asymptotic behavior of cylinders is
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φP → d2/(2l∆). By inspecting the formulas for polygonal
rods, we can determine the long-rod (l/d → ∞) limits of the
percolation threshold for the polygonal rods, which we find
to be

φ
ghost
P →

dn cos(π/n)
2ln

, (15)

for the ghost model, and

φP →
d2

n cos(π/n)
2ln∆

, (16)

for the core-shell model, which return the correct results for
cylinders (n→∞). Since cos(π/n) for n ≥ 3 is a monotonically
increasing function, in the asymptotic limit ln/dn→∞, clearly
φP increases with n.

In Fig. 2, we show the scaled percolation packing fraction
as a function of aspect ratio ln/dn, for (a) the ghost model and
(b) the core-shell model, scaled by the asymptotic φP depen-
dence of cylinders, i.e., (a) 2ln/dn and (b) 2ln∆/d2

n . Here we
can clearly see the n-dependence found in Eqs. (15) and (16).
Figures 2(a) and 2(b) show that reshaping a cylinder (with
fixed volume) into a triangular (n = 3), rectangular (n = 4),
or hexagonal (n = 6) prism lowers the percolation thresh-
old by a factor sec(π/n) = 2,

√
2, 2/
√

3, respectively. This
interesting effect is qualitatively similar within both models
and can most easily be understood by considering the sim-
pler expression found for the ghost model in Eq. (8). At
fixed volume, the lowest percolation threshold is found by
maximizing the surface area times the mean half-width. In
fact, both the surface area and the mean half-width increase
with decreasing n, with n = 3 (triangular prisms) yielding the
minimal percolation threshold for the polygonal rods studied
here.

B. Right polygonal platelets

We now turn our attention to platelets [see Figs. 1(a)–
1(d)]. We compare regular polygonal platelets and irregular
hexagonal platelets to disks, in order to see the effect of shape
on the percolation threshold. In the limit that dn � ∆, ln, we

find that for n-sided regular platelets,

φ
ghost
P →

2ln
dnn sin(π/n)

, (17)

for the ghost model, and

φP →
2lng(n)
∆

(18)

for the core-shell model, and where for convenience we
introduced g(n) = (2n tan(π/n) + 3n sin(π/n) + 6)−1 on the
right-hand side of Eq. (18). Strikingly, we see that in the
core-shell model, the asymptotic percolation threshold is
independent of the diameter dn, which is in agreement
with simulations of platelets.53 In the cylindrical disk limit
n → ∞, φghost

P → 2ln/(πdn) and for the core-shell model
φP → 2ln/(6∆ + 5π∆), in agreement with other studies.10

Whereas the ghost model’s asymptotic percolation threshold
[Eq. (17)] decreases with increasing n, the core-shell model’s
n dependence in the scaling factor, g(n), is a monotonically
increasing function of n. However, the core-shell model only
has a weak dependence on n, in contrast to the rodlike limit.
Here we see that reshaping a disk (with fixed volume) into a
triangular (n = 3), rectangular (n = 4), or hexagonal (n = 6)
platelet lowers the percolation threshold by a relatively small
factor [g(n) (6 + 5π)]−1 ≈ 1.11, 1.04, 1.01, respectively. In
contrast to the case of rods, for platelets, the ghost model does
not give qualitatively similar behavior to the more realistic
core-shell model.

For a comparison to an irregular shape, we use a hexagonal
platelet that is an equiangular right prism with height l and
sides s1, s1, and s2 [see Fig. 1(d)]. The three corner-to-corner

diagonals are then d1 =

√
3s2

1 + s2
2, d1, and d2 = s1 + s2. The

single-particle measures (in terms of the sides s1 and s2) are
given by

Vc =

√
3

2
l
(
s2

1 + 2s1s2

)
, (19)

for the volume,

FIG. 2. Scaled percolation packing fraction φP of polygonal rods as a function of the aspect ratio ln/dn for (a) the ghost model and (b) the core-shell model, for
various numbers of polygonal sides n, where the case of n → ∞ corresponds to cylinders. The asymptotic factor used to scale the percolation threshold is (a)
2ln/dn and (b) 2ln∆/d2

n . In (b), the connectedness criterion is ∆/dn = 0.1 (solid curves) and ∆/dn = 1.0 (dashed curves).
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Sc =
√

3
(
s2

1 + 2s1s2

)
+ 4ls1 + 2ls2, (20)

for the surface area, and

Mc =
1
4

(2s1 + s2 + l) (21)

for the mean half-width. In the limit that d1, d2 � ∆, l, the
hexagonal platelet percolation threshold is

φ
ghost
P →

l
(
−4 + 10x2 + 6x

√
4 − 3x2

)
d1

[
x + 8x3 +

(
10x2 − 1

)√
4 − 3x2

] , (22)

for the ghost model, and

φP →
2
√

3l
[
−2 + x(5x + 3

√
4 − 3x2)

]

∆
[
h1(x) + h2(x, y)

] , (23)

for the core-shell model, and where for convenience we define
x = d2/d1, y = ∆/d1. We note that while the ratio between
the sides has the range s2/s1 ∈ [0, ∞), the ratio between the
diameters has the range x = d2/d1 ∈ [1/

√
3, 2/
√

3], where in
the subrange x ∈ (1, 2/

√
3), there are two values of s2/s1 for

each x. For simplicity and clarity, here we limit ourselves to
the solution with s2/s1 ≤ 3.

We also define

h1(x) = 8 − 11
√

3 + 2
√

3
(
x −

√
4 − 3x2

)
+ 2x

[(
22 + 27

√
3
)
x +

(
10 + 19

√
3
)√

4 − 3x2
]

(24)

and

h2(x, y) =

√
3

y

(
1 − 10x2

) (√
4 − 3x2

−

√
4 + 8y − 6xy + y2 − 2x2

)
. (25)

Notably, the core-shell model has an asymptotic dependence
on not only l/∆ but also on the ratio between the two diameters
x and y =∆/d1 =∆/l · l/d1. As before, we set the core (shell) vol-
ume as our unit of volume for the core-shell (ghost) model, by
setting d1 = V1/3[

√
3/32× l/d1(−4 + 10x2 + 6x

√
4 − 3x2)]−1/3.

In Fig. 3(a), we show the asymptotically scaled percola-
tion threshold as a function of aspect ratio l/d1 for the ghost
model. Here we vary the irregularity of the hexagonal platelets
by varying the ratio x = d2/d1, where x = 1 is a regular
hexagonal platelet. From studying the x dependence in the
limit l/d1 → 0 [Eq. (22)], we see that the percolation thresh-
old is non-monotonic in x with the minimal φP found when
x = 5/

√
21 ≈ 1.09 and the maximal when x = 1/

√
3 ≈ 0.58.

Within the ghost model we find that cylindrical disks have the
minimal percolation threshold, with hexagonal platelets hav-
ing a slight increase in φP for x = 1.0, 1.09, 1.15 and a more
pronounced increase for x = 0.58, 0.75.

In Fig. 3(b), we show the asymptotically scaled percola-
tion threshold as a function of aspect ratio l/d1 for the core-shell
model, with two connectedness criteria ∆/l = 0.1, 1.0. We see
that the scaled percolation threshold for thin platelets l/d1� 1
is only very slightly lower for regular hexagonal platelets
(x = 1) compared with disks, as noted before. However, the
percolation threshold decreases more significantly for the
irregular hexagonal platelets with x , 1, with once again the
percolation threshold having a non-monotonic dependence on
x. The lowest percolation threshold out of the platelets studied
here is found for x = 1.15 (an elongated platelet with s2 = 3s1).
However, we caution that although the second-virial theory
has had predictive power in describing platelets, we cannot
be certain that the approximation gives accurate results in this
limit.

FIG. 3. Scaled percolation packing fraction φP of hexagonal platelets (n = 6) with diameters d1, d2 and diameter ratio x = d2/d1 and disks (n → ∞) with
diameter d1 as a function of the aspect ratio l/d1 for (a) the ghost model and (b) the core-shell model for the connectedness criteria ∆/l = 0.1 (solid curves) and
∆/l = 1.0 (dashed curves). Illustration above figures shows the shape of the hexagonal face for various irregularities x.
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IV. DISCUSSION AND CONCLUSIONS

In this paper, we apply connectedness percolation theory
within the second-virial approximation, together with a pow-
erful result from integral geometry, to analytically calculate
percolation thresholds of hard convex bodies in the isotropic
phase. We find that at fixed single particle volume, the percola-
tion threshold is minimized by maximizing the particle surface
area (times the mean-half width).

We first apply this result to regular polyhedral rods, which
may be relevant to, e.g., systems of cellulose nanocrystals
which have a rectangular cross section. We find that the per-
colation threshold decreases with lowering the number of
polygonal sides. The long-rod asymptotic scaling of the per-
colation threshold is lowered by a factor sec(π/n) with respect
to cylinders of the same aspect ratio and volume, which for the
case of rectangular prisms (n = 4) is a factor of

√
2 ≈ 1.4.

In addition, we compare regular and irregular hexagonal
platelets to cylindrical disks, which are relevant to systems of
graphene sheets. Within the core-shell model, we also find
that the regular hexagonal platelets have a lower percola-
tion threshold with respect to disks, although in the platelet
limit, the dependence on the number of sides is much weaker
than in the rod limit. However, we find a larger effect on the
percolation threshold for irregular hexagonal platelets which
can have a significantly lowered percolation threshold due to
their increased surface area. In the platelike limit, we empha-
size that the ghost model no longer gives qualitatively similar
behavior to the core-shell model.

Idealized cylindrical rod and disk models are often used
to model real nanofillers, and the effect of the actual parti-
cle shape has largely been neglected. In Ref. 25, we recently
studied the effect of kink and bend defects on systems of rod-
like particles and found very little effect on the percolation
threshold, up to moderate deformations. However, these defor-
mations, unless extreme, did little to change the surface area
of the particles. Therefore in light of the results presented
here, this is not unexpected. In Ref. 55, the excluded vol-
ume was written using single-particle measures analogously
to our “ghost” (ideal) model here, for various shapes such as
rectangular prisms, cylinders, platonic solids, and spheroids.
However, the authors’ focus was on the scaling behavior of the
percolation threshold as a function of the number of dimen-
sions54,55 and not the effect of the precise nanofiller cross
section in three dimensions, as we examine here.

Although we restricted ourselves to fairly simple parti-
cle types, any hard convex body (in the isotropic phase) can
be considered using this approach. In addition, this formal-
ism is readily applicable to binary mixtures or polydisperse
systems, as Eq. (4) gives the excluded volume between two
arbitrarily shaped convex bodies. Furthermore, the form for
the percolation threshold in the second-virial closure is known
for bidisperse and polydisperse systems.9,10 This would be an
interesting future step, as polydispersity is known to be very
important in describing percolation.8–17
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