506,807 research outputs found
Distance-regular graphs
This is a survey of distance-regular graphs. We present an introduction to
distance-regular graphs for the reader who is unfamiliar with the subject, and
then give an overview of some developments in the area of distance-regular
graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A.,
Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page
Geometric aspects of 2-walk-regular graphs
A -walk-regular graph is a graph for which the number of walks of given
length between two vertices depends only on the distance between these two
vertices, as long as this distance is at most . Such graphs generalize
distance-regular graphs and -arc-transitive graphs. In this paper, we will
focus on 1- and in particular 2-walk-regular graphs, and study analogues of
certain results that are important for distance regular graphs. We will
generalize Delsarte's clique bound to 1-walk-regular graphs, Godsil's
multiplicity bound and Terwilliger's analysis of the local structure to
2-walk-regular graphs. We will show that 2-walk-regular graphs have a much
richer combinatorial structure than 1-walk-regular graphs, for example by
proving that there are finitely many non-geometric 2-walk-regular graphs with
given smallest eigenvalue and given diameter (a geometric graph is the point
graph of a special partial linear space); a result that is analogous to a
result on distance-regular graphs. Such a result does not hold for
1-walk-regular graphs, as our construction methods will show
Another construction of edge-regular graphs with regular cliques
We exhibit a new construction of edge-regular graphs with regular cliques
that are not strongly regular. The infinite family of graphs resulting from
this construction includes an edge-regular graph with parameters . We
also show that edge-regular graphs with -regular cliques that are not
strongly regular must have at least vertices.Comment: 7 page
Local algorithms, regular graphs of large girth, and random regular graphs
We introduce a general class of algorithms and supply a number of general
results useful for analysing these algorithms when applied to regular graphs of
large girth. As a result, we can transfer a number of results proved for random
regular graphs into (deterministic) results about all regular graphs with
sufficiently large girth. This is an uncommon direction of transfer of results,
which is usually from the deterministic setting to the random one. In
particular, this approach enables, for the first time, the achievement of
results equivalent to those obtained on random regular graphs by a powerful
class of algorithms which contain prioritised actions. As examples, we obtain
new upper or lower bounds on the size of maximum independent sets, minimum
dominating sets, maximum and minimum bisection, maximum -independent sets,
minimum -dominating sets and minimum connected and weakly-connected
dominating sets in -regular graphs with large girth.Comment: Third version: no changes were made to the file. We would like to
point out that this paper was split into two parts in the publication
process. General theorems are in a paper with the same title, accepted by
Combinatorica. The applications of Section 9 are in a paper entitled
"Properties of regular graphs with large girth via local algorithms",
published by JCTB, doi 10.1016/j.jctb.2016.07.00
On highly regular strongly regular graphs
In this paper we unify several existing regularity conditions for graphs,
including strong regularity, -isoregularity, and the -vertex condition.
We develop an algebraic composition/decomposition theory of regularity
conditions. Using our theoretical results we show that a family of non rank 3
graphs known to satisfy the -vertex condition fulfills an even stronger
condition, -regularity (the notion is defined in the text). Derived from
this family we obtain a new infinite family of non rank strongly regular
graphs satisfying the -vertex condition. This strengthens and generalizes
previous results by Reichard.Comment: 29 page
Distance-regular Cayley graphs with small valency
We consider the problem of which distance-regular graphs with small valency
are Cayley graphs. We determine the distance-regular Cayley graphs with valency
at most , the Cayley graphs among the distance-regular graphs with known
putative intersection arrays for valency , and the Cayley graphs among all
distance-regular graphs with girth and valency or . We obtain that
the incidence graphs of Desarguesian affine planes minus a parallel class of
lines are Cayley graphs. We show that the incidence graphs of the known
generalized hexagons are not Cayley graphs, and neither are some other
distance-regular graphs that come from small generalized quadrangles or
hexagons. Among some ``exceptional'' distance-regular graphs with small
valency, we find that the Armanios-Wells graph and the Klein graph are Cayley
graphs.Comment: 19 pages, 4 table
Strongly walk-regular graphs
We study a generalization of strongly regular graphs. We call a graph
strongly walk-regular if there is an such that the number of walks of
length from a vertex to another vertex depends only on whether the two
vertices are the same, adjacent, or not adjacent. We will show that a strongly
walk-regular graph must be an empty graph, a complete graph, a strongly regular
graph, a disjoint union of complete bipartite graphs of the same size and
isolated vertices, or a regular graph with four eigenvalues. Graphs from the
first three families in this list are indeed strongly -walk-regular for
all , whereas the graphs from the fourth family are -walk-regular
for every odd . The case of regular graphs with four eigenvalues is the
most interesting (and complicated) one. Such graphs cannot be strongly
-walk-regular for even . We will characterize the case that regular
four-eigenvalue graphs are strongly -walk-regular for every odd ,
in terms of the eigenvalues. There are several examples of infinite families of
such graphs. We will show that every other regular four-eigenvalue graph can be
strongly -walk-regular for at most one . There are several examples
of infinite families of such graphs that are strongly 3-walk-regular. It
however remains open whether there are any graphs that are strongly
-walk-regular for only one particular different from 3
- …
