506,807 research outputs found

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Geometric aspects of 2-walk-regular graphs

    Full text link
    A tt-walk-regular graph is a graph for which the number of walks of given length between two vertices depends only on the distance between these two vertices, as long as this distance is at most tt. Such graphs generalize distance-regular graphs and tt-arc-transitive graphs. In this paper, we will focus on 1- and in particular 2-walk-regular graphs, and study analogues of certain results that are important for distance regular graphs. We will generalize Delsarte's clique bound to 1-walk-regular graphs, Godsil's multiplicity bound and Terwilliger's analysis of the local structure to 2-walk-regular graphs. We will show that 2-walk-regular graphs have a much richer combinatorial structure than 1-walk-regular graphs, for example by proving that there are finitely many non-geometric 2-walk-regular graphs with given smallest eigenvalue and given diameter (a geometric graph is the point graph of a special partial linear space); a result that is analogous to a result on distance-regular graphs. Such a result does not hold for 1-walk-regular graphs, as our construction methods will show

    Another construction of edge-regular graphs with regular cliques

    Full text link
    We exhibit a new construction of edge-regular graphs with regular cliques that are not strongly regular. The infinite family of graphs resulting from this construction includes an edge-regular graph with parameters (24,8,2)(24,8,2). We also show that edge-regular graphs with 11-regular cliques that are not strongly regular must have at least 2424 vertices.Comment: 7 page

    Local algorithms, regular graphs of large girth, and random regular graphs

    Full text link
    We introduce a general class of algorithms and supply a number of general results useful for analysing these algorithms when applied to regular graphs of large girth. As a result, we can transfer a number of results proved for random regular graphs into (deterministic) results about all regular graphs with sufficiently large girth. This is an uncommon direction of transfer of results, which is usually from the deterministic setting to the random one. In particular, this approach enables, for the first time, the achievement of results equivalent to those obtained on random regular graphs by a powerful class of algorithms which contain prioritised actions. As examples, we obtain new upper or lower bounds on the size of maximum independent sets, minimum dominating sets, maximum and minimum bisection, maximum kk-independent sets, minimum kk-dominating sets and minimum connected and weakly-connected dominating sets in rr-regular graphs with large girth.Comment: Third version: no changes were made to the file. We would like to point out that this paper was split into two parts in the publication process. General theorems are in a paper with the same title, accepted by Combinatorica. The applications of Section 9 are in a paper entitled "Properties of regular graphs with large girth via local algorithms", published by JCTB, doi 10.1016/j.jctb.2016.07.00

    On highly regular strongly regular graphs

    Get PDF
    In this paper we unify several existing regularity conditions for graphs, including strong regularity, kk-isoregularity, and the tt-vertex condition. We develop an algebraic composition/decomposition theory of regularity conditions. Using our theoretical results we show that a family of non rank 3 graphs known to satisfy the 77-vertex condition fulfills an even stronger condition, (3,7)(3,7)-regularity (the notion is defined in the text). Derived from this family we obtain a new infinite family of non rank 33 strongly regular graphs satisfying the 66-vertex condition. This strengthens and generalizes previous results by Reichard.Comment: 29 page

    Distance-regular Cayley graphs with small valency

    Full text link
    We consider the problem of which distance-regular graphs with small valency are Cayley graphs. We determine the distance-regular Cayley graphs with valency at most 44, the Cayley graphs among the distance-regular graphs with known putative intersection arrays for valency 55, and the Cayley graphs among all distance-regular graphs with girth 33 and valency 66 or 77. We obtain that the incidence graphs of Desarguesian affine planes minus a parallel class of lines are Cayley graphs. We show that the incidence graphs of the known generalized hexagons are not Cayley graphs, and neither are some other distance-regular graphs that come from small generalized quadrangles or hexagons. Among some ``exceptional'' distance-regular graphs with small valency, we find that the Armanios-Wells graph and the Klein graph are Cayley graphs.Comment: 19 pages, 4 table

    Strongly walk-regular graphs

    Get PDF
    We study a generalization of strongly regular graphs. We call a graph strongly walk-regular if there is an >1\ell >1 such that the number of walks of length \ell from a vertex to another vertex depends only on whether the two vertices are the same, adjacent, or not adjacent. We will show that a strongly walk-regular graph must be an empty graph, a complete graph, a strongly regular graph, a disjoint union of complete bipartite graphs of the same size and isolated vertices, or a regular graph with four eigenvalues. Graphs from the first three families in this list are indeed strongly \ell-walk-regular for all \ell, whereas the graphs from the fourth family are \ell-walk-regular for every odd \ell. The case of regular graphs with four eigenvalues is the most interesting (and complicated) one. Such graphs cannot be strongly \ell-walk-regular for even \ell. We will characterize the case that regular four-eigenvalue graphs are strongly \ell-walk-regular for every odd \ell, in terms of the eigenvalues. There are several examples of infinite families of such graphs. We will show that every other regular four-eigenvalue graph can be strongly \ell-walk-regular for at most one \ell. There are several examples of infinite families of such graphs that are strongly 3-walk-regular. It however remains open whether there are any graphs that are strongly \ell-walk-regular for only one particular \ell different from 3
    corecore