44 research outputs found

    Regular Expression Types for XML

    Get PDF
    We propose regular expression types as a foundation for statically typed XML processing languages. Regular expression types, like most schema languages for XML, introduce regular expression notations such as repetition (*), alternation (|), etc., to describe XML documents. The novelty of our type system is a semantic presentation of subtyping, as inclusion between the sets of documents denoted by two types. We give several examples illustrating the usefulness of this form of subtyping in XML processing. The decision problem for the subtype relation reduces to the inclusion problem between tree automata, which is known to be EXPTIME-complete. To avoid this high complexity in typical cases, we develop a practical algorithm that, unlike classical algorithms based on determinization of tree automata, checks the inclusion relation by a top-down traversal of the original type expressions. The main advantage of this algorithm is that it can exploit the property that type expressions being compared often share portions of their representations. Our algorithm is a variant of Aiken and Murphy\u27s set-inclusion constraint solver, to which are added several new implementation techniques, correctness proofs, and preliminary performance measurements on some small programs in the domain of typed XML processing

    Regular Expression Subtyping for XML Query and Update Languages

    Full text link
    XML database query languages such as XQuery employ regular expression types with structural subtyping. Subtyping systems typically have two presentations, which should be equivalent: a declarative version in which the subsumption rule may be used anywhere, and an algorithmic version in which the use of subsumption is limited in order to make typechecking syntax-directed and decidable. However, the XQuery standard type system circumvents this issue by using imprecise typing rules for iteration constructs and defining only algorithmic typechecking, and another extant proposal provides more precise types for iteration constructs but ignores subtyping. In this paper, we consider a core XQuery-like language with a subsumption rule and prove the completeness of algorithmic typechecking; this is straightforward for XQuery proper but requires some care in the presence of more precise iteration typing disciplines. We extend this result to an XML update language we have introduced in earlier work.Comment: ESOP 2008. Companion technical report with proof

    Ensuring Query Compatibility with Evolving XML Schemas

    Get PDF
    During the life cycle of an XML application, both schemas and queries may change from one version to another. Schema evolutions may affect query results and potentially the validity of produced data. Nowadays, a challenge is to assess and accommodate the impact of theses changes in rapidly evolving XML applications. This article proposes a logical framework and tool for verifying forward/backward compatibility issues involving schemas and queries. First, it allows analyzing relations between schemas. Second, it allows XML designers to identify queries that must be reformulated in order to produce the expected results across successive schema versions. Third, it allows examining more precisely the impact of schema changes over queries, therefore facilitating their reformulation

    Optimised determinisation and completion of finite tree automata

    Get PDF
    Determinisation and completion of finite tree automata are important operations with applications in program analysis and verification. However, the complexity of the classical procedures for determinisation and completion is high. They are not practical procedures for manipulating tree automata beyond very small ones. In this paper we develop an algorithm for determinisation and completion of finite tree automata, whose worst-case complexity remains unchanged, but which performs far better than existing algorithms in practice. The critical aspect of the algorithm is that the transitions of the determinised (and possibly completed) automaton are generated in a potentially very compact form called product form, which can reduce the size of the representation dramatically. Furthermore, the representation can often be used directly when manipulating the determinised automaton. The paper contains an experimental evaluation of the algorithm on a large set of tree automata examples

    A Tree Logic with Graded Paths and Nominals

    Full text link
    Regular tree grammars and regular path expressions constitute core constructs widely used in programming languages and type systems. Nevertheless, there has been little research so far on reasoning frameworks for path expressions where node cardinality constraints occur along a path in a tree. We present a logic capable of expressing deep counting along paths which may include arbitrary recursive forward and backward navigation. The counting extensions can be seen as a generalization of graded modalities that count immediate successor nodes. While the combination of graded modalities, nominals, and inverse modalities yields undecidable logics over graphs, we show that these features can be combined in a tree logic decidable in exponential time

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Covariance and Controvariance: a fresh look at an old issue (a primer in advanced type systems for learning functional programmers)

    Full text link
    Twenty years ago, in an article titled "Covariance and contravariance: conflict without a cause", I argued that covariant and contravariant specialization of method parameters in object-oriented programming had different purposes and deduced that, not only they could, but actually they should both coexist in the same language. In this work I reexamine the result of that article in the light of recent advances in (sub-)typing theory and programming languages, taking a fresh look at this old issue. Actually, the revamping of this problem is just an excuse for writing an essay that aims at explaining sophisticated type-theoretic concepts, in simple terms and by examples, to undergraduate computer science students and/or willing functional programmers. Finally, I took advantage of this opportunity to describe some undocumented advanced techniques of type-systems implementation that are known only to few insiders that dug in the code of some compilers: therefore, even expert language designers and implementers may find this work worth of reading
    corecore