194,313 research outputs found

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Boosted Beta regression.

    Get PDF
    Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures

    Functional linear regression analysis for longitudinal data

    Full text link
    We propose nonparametric methods for functional linear regression which are designed for sparse longitudinal data, where both the predictor and response are functions of a covariate such as time. Predictor and response processes have smooth random trajectories, and the data consist of a small number of noisy repeated measurements made at irregular times for a sample of subjects. In longitudinal studies, the number of repeated measurements per subject is often small and may be modeled as a discrete random number and, accordingly, only a finite and asymptotically nonincreasing number of measurements are available for each subject or experimental unit. We propose a functional regression approach for this situation, using functional principal component analysis, where we estimate the functional principal component scores through conditional expectations. This allows the prediction of an unobserved response trajectory from sparse measurements of a predictor trajectory. The resulting technique is flexible and allows for different patterns regarding the timing of the measurements obtained for predictor and response trajectories. Asymptotic properties for a sample of nn subjects are investigated under mild conditions, as n→∞n\to \infty, and we obtain consistent estimation for the regression function. Besides convergence results for the components of functional linear regression, such as the regression parameter function, we construct asymptotic pointwise confidence bands for the predicted trajectories. A functional coefficient of determination as a measure of the variance explained by the functional regression model is introduced, extending the standard R2R^2 to the functional case. The proposed methods are illustrated with a simulation study, longitudinal primary biliary liver cirrhosis data and an analysis of the longitudinal relationship between blood pressure and body mass index.Comment: Published at http://dx.doi.org/10.1214/009053605000000660 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Varying-coefficient functional linear regression

    Full text link
    Functional linear regression analysis aims to model regression relations which include a functional predictor. The analog of the regression parameter vector or matrix in conventional multivariate or multiple-response linear regression models is a regression parameter function in one or two arguments. If, in addition, one has scalar predictors, as is often the case in applications to longitudinal studies, the question arises how to incorporate these into a functional regression model. We study a varying-coefficient approach where the scalar covariates are modeled as additional arguments of the regression parameter function. This extension of the functional linear regression model is analogous to the extension of conventional linear regression models to varying-coefficient models and shares its advantages, such as increased flexibility; however, the details of this extension are more challenging in the functional case. Our methodology combines smoothing methods with regularization by truncation at a finite number of functional principal components. A practical version is developed and is shown to perform better than functional linear regression for longitudinal data. We investigate the asymptotic properties of varying-coefficient functional linear regression and establish consistency properties.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ231 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Regression with Distance Matrices

    Full text link
    Data types that lie in metric spaces but not in vector spaces are difficult to use within the usual regression setting, either as the response and/or a predictor. We represent the information in these variables using distance matrices which requires only the specification of a distance function. A low-dimensional representation of such distance matrices can be obtained using methods such as multidimensional scaling. Once these variables have been represented as scores, an internal model linking the predictors and the response can be developed using standard methods. We call scoring the transformation from a new observation to a score while backscoring is a method to represent a score as an observation in the data space. Both methods are essential for prediction and explanation. We illustrate the methodology for shape data, unregistered curve data and correlation matrices using motion capture data from an experiment to study the motion of children with cleft lip.Comment: 18 pages, 7 figure
    • …
    corecore