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Abstract When exploring a sample composed with a set of bivariate den-
sity functions, the question of the visualisation of the data has to front with
the choice of the relevant level set(s). The approach proposed in this paper
consists in defining the optimal level set(s) as being the one(s) allowing for
the best reconstitution of the whole density. A fully data-driven procedure
is developed in order to estimate the link between the level set(s) and their
corresponding density, to construct optimal level set(s) and to choose auto-
matically the number of relevant level set(s). The method is based on recent
advances in functional data analysis when both response and predictors are
functional. After a wide description of the methodology, finite sample stud-
ies are presented (including both real and simulated data) while theoretical
studies are reported to a final appendix.

Keywords Additive Functional Model; Bivariate Density Representation;
Functional Data Analysis; Function on Function Regression; Optimal Level
Set.

1 Introduction

An usual way for visualizing a bivariate density function consists in plotting,
for various levels α1, . . . , αJ , the corresponding level sets Cα1 , . . . , CαJ . How-
ever, the question of deciding which values for the parameters αj have to be
selected is a crucial one, since some value may highlight interesting feature of
the density that could be hidden by using other values. This appears clearly
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from the example depicted in Figure 1. Parts a) and b) of Figure 1 show two
densities exhibiting rather different structural shapes: one is clearly unimodal
while the second one presents two different modes. Parts c) and d) of Figure 1
represent the same two densities by means of 6 level sets (those having prob-
ability content αi are 0.02, .1, .25, .50, .75, .95). In this example, high level
sets (α = .95 or .75) do not let appear any difference between both densities
and middle level sets (α = 0.5 or 0.25) show a small difference but still do not
detect the main structural difference between both densities since both seem
to have a single mode. In counterpart, small level sets (α = 0.1 or 0.02) are
clearly depicting these main structural changes. This simple example shows
the importance of the choice of the level(s) when representing a bivariate den-
sity function. Data-driven ways for driving this choice for depicting a single
density have been studied in the literature and various methods have been
proposed (see [6] for general discussion).

The purpose of this paper is to address this question in the situation when
not only a single density function f has to be represented but when a sam-
ple f1, . . . , fN of densities has to be analysed. While apparently the problem
looks similar there are at least three major differences. First of all note that
the question of representing a sample of densities by level sets is even more
important than for a single density, since in an obvious way there is no means
for making interpretable any joint representation of surfaces like the ones de-
picted in parts a) and b) of Figure 1. Secondly, plots presenting many different
level sets (like the plots c) and d) in Figure 1) become totally uninformative
when one has to represent jointly various densities, and so the question of
how choosing in an automatic way a few levels sets of interest is even more
crucial than for representing a single density. Last but not least point to be
highlighted, is the fact that the question of data-driven levels cannot be solved
in a simple and naive way just by applying repeatedly existing methods for
a single density representation, because in order to detect possible differences
and/or similarities between some of the fi it is necessary to find probability
contents αj which are common to the whole sample. As far as we know, this
question of optimal level sets representation for a family of densities has not
been widely studied in the literature (see however [6] for a first approach).

The route followed in this paper consists in modelling the links between a
level set Cα and its underlying density function f as a regression problem. If
one wishes to select only one level, this is a regression problem with functional
response (namely, the density f) and a single functional covariate (namely, the
set Cα). In the general framework when one wishes to use various level sets,
this is also a functional regression model but with multi-functional covariates
(namely, Cα1 , . . . , CαJ ). This regression problem involves variables being of a
high degree of complexity, and has therefore to be modelled in a flexible nonlin-
ear way and nonparametric modelling is a natural candidate for that. Moreover
as motivated in earlier literature for multivariate data in [23] the presence of
more than one covariable may do necessary the use of additive structure for
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Fig. 1 Two bivariate density functions (plots a and b), and their level sets representations
(plots c and d).

dealing with possible sparseness effects. Recent advances on functional data
analysis allow to develop as well nonparametric ideas to propose flexible mod-
els for one functional covariable (see [11], [12]) as well as additive ideas to
deal with multi-functional problems (see e.g. [1], [13] or [14]). These ideas will
allow for estimating the regression link between the sets Cα1

, . . . , CαJ and the
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density f and then in solving the problem of data-driven selection of the levels
by choosing the values (α1, . . . , αJ) for which the regression estimates lead
to the best prediction of the density f . Of course, the number of level sets J
plays a crucial role since it should be sufficiently high to reflect as much as
possible informations on the densities but also sufficiently small for providing
interpretable plots. In a natural way, the additive structure proposed in this
paper allows to use penalised least squares techniques for constructing a data-
driven choice of J .

The paper is organised as follows. In a first attempt, after having stated a
precise definition for a single optimal level set, the methodology for estimating
it is developed in Section 2. Then, this is extended in Section 3 by means of
functional additive ideas for estimating various optimal levels (α1, . . . , αJ). As
pointed in Subsection 3.3, one will also derive data-driven estimation of the
dimensional parameter J , and as far as we know this is the first paper in which
a solution to this problem is proposed. We decided to put the mathematical
study of the asymptotic properties of the estimates into a final Appendix, and
to emphasise rather on the computational issues (see Section 4) and on the
finite sample behaviour of the methods (see Section 5). To improve the reading,
the paper is firstly presented in the simplest situations when the densities
f1, . . . , fN are fully known, but it is available for set of estimated densities.
More precisely, Section 6 will discuss how the methodology directly extends
to situation when each density is itself obtained by a preliminary smoothing
procedure. In Section 7 a real data example is introduced in the context of
electoral data in Spain: the joint density of two relevant variables (participation
in an election contest, and proportion of votes cast for a particular option) is
represented by level curves in several municipalities, and one applies all the
previous methodology to these Spanish electoral data.

2 Data-driven optimal level set

In this section one starts with the simple problem of choosing a single level
set Cα for depicting densities data (one will address in Section 3 the more
general question of deciding whether more than one levels, and how many,
can be of interest and how estimating them). We are in the situation in which
one has a sample of bivariate densities available: fi, i = 1, . . . , N . For each
value of α ∈]0, 1[ we denote by Cα,i the level set with probability content
α associated with each density fi, and by Cα the level set with probability
content α associated with an other generic density f . Precisely, Cα satisfies
the probability condition ∫

Cα

f = α

and can be written, for some ψ (depending on α) on the form:

Cα = {(x1, x2) ∈ R2, f(x1, x2) > ψ}.
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The idea is to find a functional link between the set Cα and the corresponding
density f , and then to use this functional link for choosing the most relevant
value of α. This section is structured in the following way. Section 2.1 fixes
some general notations while Section 2.2 presents the methodology for selecting
in a data-driven way the most relevant value (let say α̂). Theoretical study of
the procedure is reported to Section A in the Appendix.

2.1 Some notation

In a standard way, each level set Cα is supposed to be an element of

C = {compact subsets of R2},

and a way for measuring the proximity between two elements C1 and C2 of C
consists in using the semi-metric

dλ(C1, C2) = λ(C1∆C2),

λ being the Lebesgue measure on R2. In an other hand, each density function
f is supposed to be an element of

D ⊂ {Bivariate densities on R2 having compact level sets}.

To measure the similarities between two density functions one can use standard
functional distances. For seek of simplicity of presentation, in this paper we
only consider L2-type measures of proximity by considering, for a given known
link operator φ1, the following metric on the space F ⊂ φ(D),

d(g1, g2) =

(∫
R2

(g1(x)− g2(x))2dx

)1/2

,∀g1, g2 ∈ F ,

that can also be denoted by ||g1−g2||. Examples of operators φ and guidelines
for choosing it in practice will be given in Section 4.

2.2 Data-driven optimal level set choice

Let us for the moment fix the value of α. Looking for the link between a
level set with probability content α and its corresponding density f can be
addressed by means of a regression model

g = Rα(Cα) + εα, (2.1)

where g = φ(f) for a fixed known operator φ, εα is a random element of L2(R2)
with zero mean, and Rα : C → L2(R2). The main feature is to be a functional

1 Note that the choice of this operator belongs to the user. Letting this choice open
increases the flexibility of the method. From a mathematical point of view, φ should be a
one to one correspondence such that F = φ(D) ⊂ L2(R2). An example of natural choice is
φ = log with D such that for any f ∈ D one has that log(f) ∈ L2(R2).
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on functional regression problem, in the sense that both the explanatory vari-
able (i.e., the level set Cα) and the response (i.e. the function g) are complex
mathematical objects lying into infinite dimensional spaces. Identifiability of
the model is reported to Section A in the Appendix.

Our wish is to estimate the value of α0 leading to the best representation of
the density function, then it is natural to construct estimates of the operators
Rα and then to look for the value α for which the corresponding estimate
gives the best prediction of the response g. Precisely, each nonlinear regression
operator Rα is estimated by means of the following functional kernel regressor.
Given the sample of densities {fi, i = 1, . . . , N} we consider the corresponding
pairs (gi, Cα,i), and the operator Rα is estimated at any new element c ∈ C by

R̂h,α(c) =

∑N
i=1 giK(

dλ(Cα,i,c)
h )∑N

i=1K(
dλ(Cα,i,c)

h )
, (2.2)

which is the weighted average of the gi for which the corresponding level
set Cα,i is closed from c, closeness having to be understood with respect
to the semi-distance dλ between level sets. The form of the weights is de-
fined by means of an univariate real kernel function K, while the parameter
h = h(n) > 0 acts as a smoothing parameter. Comments including practical
guidelines for choosing the various parameters of these estimates will be given
along Section 4.

Technical conditions ensuring good asymptotic properties of these esti-
mates are recalled in the Appendix, but it is worth being pointed at this stage
that (as in any nonparametric problem) the quality of the estimate is directly
linked with the smoothing parameter (i.e. with the bandwidth h). That means
that the choice of α will be strongly impacted by the smoothing parameter
h. Therefore, both quantities h and α must be selected simultaneously. If we
denote by ΘN = HN⊗AN the set of possible values for the pair (h, α), natural
choices for h and α are defined to be those (assumed to exist) leading to the
smallest error when estimating the operator R by the kernel one R̂h,α, namely:

(h1, α1) = arg min
(h,α)∈ΘN

Err(h, α)

where

Err(h, α) =

N∑
i=1

||R(Cα,i)− R̂h,α(Cα,i)||2W (Cα,i),

W being some given weight function. Practical guidelines for choosing the
various parameters entering in this method (namely W , HN and AN ) will be
given along Section 4.

Unfortunately, the values (h1, α1) are uncomputable in practice and the
main challenge is to be able to construct data-driven approximations of (h1, α1).



Choosing the most relevant level sets for depicting a sample of densities 7

As previously described in [15], a way for choosing parameters in nonparamet-
ric regression is to use cross-validation ideas (these ideas have been recently
extended for choosing h in the functional setting which is our purpose in this
paper). Because the level α has to be selected jointly with the bandwidth h,
one do that in the following way:

(ĥ, α̂) = arg min
(h,α)∈Θn

CV(h, α), (2.3)

with

CV(h, α) =

N∑
i=1

||gi − R̂−ih,α(Cα,i)||2W (Cα,i).

In this formula R̂−ih,α is the leave-one-out version of the estimate R̂. The theo-
retical assesment of this procedure will be given in Theorem 1 (see Section A
in the Appendix) which states that the cross-validated probability content α̂
gives (asymptotically) the same minimal error as the uncomputable value α1.
As a direct consequence of this result one will get the consistency of the data-
driven selected probability content α̂ towards the true theoretical optimal one
α0 (see Corollary 2 in Section A of Appendix).

3 Choosing more than one level set

At this stage, the methodology described in Section 2 before provides an auto-
matic way for choosing an optimal level set for representing the density sample
f1, . . . , fN . In order to improve the representation of these densities, one wishes
to use more than one level sets (let say α1, . . . , αJ) and the aim of this Section
3 is to extend the previous methodology to this setting. The main difficulty
comes from the fact that, in regression problems with multi-covariates the
nonparametric modelling suffers from sparseness effects and new models have
to be developed. We will describe in Section 3.1 how additive models ideas
can be useful for this purpose, while Section 3.2 will construct optimal data-
driven choices for the probability contents α1, . . . , αJ . Finally, and this is not
the least point, the visualisation constraints put in force the importance of the
dimensional parameter J . A good choice of J has to balance both the need for
high degree of informations about the densities (that means that J should be
large enough) and the wish for insuring interpretable plots (J should be small
enough for that). Based on functional adaptation of model selection ideas,
Section 3.3 will present an optimal data-driven way for estimating J .

3.1 The methodology

Additive ideas have been developed in multivariate nonparametric analysis
in order to balance the trade-off between flexibility of the model and sparse-
ness of the data (see for instance [23]). Here, because the problem is a multi-
functional one, additive modelling becomes a natural candidate for modelling
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in a nonparametric way the fact that more than one level set may lead to
better reconstruction of the response g than a single one. The model is defined
as follows:

g = RJ(Cα1,...,αJ ) + ε =

J∑
j=1

Rjαj (Cαj ) + ε. (3.1)

Identifiability will be discussed in Section B of the Appendix. Estimation in
this additive model can be performed in some iterative way by using a kernel
operatorial estimate at each step like the one defined in (2.2). Specifically, given
J, and given some vector of probability contents (α1, . . . , αJ) as well as some
vector of bandwidths (h1, . . . , hJ), the additive estimates are constructed by
putting R̂1

h1,α1 as defined in (2.2), and then by regressing successive residuals
in the following way:

R̂jhj ,αj (c) =

∑N
i=1Q

j−1
i K(

dλ(Cαj,i,c)

hj )∑N
i=1K(

dλ(Cαj,i,c)

hj )
, (3.2)

with

Qj−1i = gi −
j−1∑
k=1

R̂khk,αk(Cαk,i)

In a functional framework, this procedure is proposed in [13], in which var-
ious asymptotic properties of the estimates of the additive components are
given. In this paper the reader will find asymptotic results concerning each
functional additive estimated component R̂jhj ,αj . Here, our wish is to discuss
briefly how the methodology presented before in this paper may lead directly
to a data-driven way for estimating the number of terms to be involved into
the additive model. Of course, the data-driven choice of this dimensionality
parameter cannot be addressed without taking into consideration the question
of choosing the various bandwidths hj and the various probability contents αj .

3.2 Data-driven choices of the relevant levels

In a first attempt, we select the parameters (hj , αj) jointly step by step by
means of the cross-validation ideas presented above in Section 2.2. Specifically,
the first probability content and the first bandwidth are chosen as defined in
(2.3), and subsequently at each step the pair (hj , αj) is chosen as:

(ĥj , α̂j) = arg min
(h,α)∈ΘN

CVj(h, α), (3.3)

with

CVj(h, α) =

N∑
i=1

||Qj−1i − R̂−i
ĥj−1,α̂j−1

(Cα,i)||2W (Cα,i).

In this formula, for any k, R̂−i
hk,αk

is the leave-one-out version of the estimate

R̂khk,αk . In Section B of the Appendix (see Theorem 3) one states the consis-
tency of this data-driven selected level.
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3.3 Data-driven choice of the number of relevant levels

A naive way for choosing the number of relevant levels would consist in min-
imising (now, over J) once again an error criterion, but this would lead to
obvious over-estimation of J0 and would avoid for easy interpretation of the
outputs. This phenomenon is typical of any dimensionality estimation prob-
lem (see for instance [24] for a general discussion in the standard multivariate
analysis) and an usual way to solve the problem is to introduce some dimen-
sional penalty. Precisely in our problem, one may use a penalised version of
the cross-validation criterion defined before, and this leads to choosing J in
the following way

Ĵ = arg min
J≥1

PCV(J), (3.4)

where
PCV(J) = CVJ(ĥJ , α̂J)(1 + JλN ).

The dimensionality penalty parameter λN must tend to 0 to prevent the good
asymptotic behaviour of the cross-validation criterion from being affected. So
we assume that:

lim
N→∞

λN = 0. (3.5)

Practical guidelines for choosing this penalty in practice are described along
Section 4 while theoretical assessment of the procedure is provided along Sec-
tion B of the Appendix (see Corollary 4).

4 Computational issues

4.1 Choosing the parameters of the nonparametric estimates

As in any nonparametric problem, the behaviour of kernel estimates does not
depend so much on the weighting function K and the usual Epanechnkow
kernel

K(u) =
3

4
(1− u2), u ∈ [−1,+1] (4.1)

can be used, while the choice of the bandwidth needs much more attention.
While cross-validation is known to be an optimal tool for data-driven band-
width choice in functional data situations (see [19]), the choice of the set HN

on which the selection has to be made (see Section 2.2) is a crucial point,
since it should be sufficiently large to capture easily the optimal bandwidth
but should not be too large for trivial implementation reasons. The way for
balancing this trade-off is to use k-NN (i.e. k nearest neighbours) ideas. As it
has been theoretically proved in [17] the estimate (2.2) has the same asymp-
totic behaviour as the following k-NN one:

R̂hk,α(c) =

∑N
i=1 giK(

dλ(Cα,i,c)
hk

)∑N
i=1K(

dλ(Cα,i,c)
hk

)
, (4.2)



10 Pedro Delicado, Philippe Vieu

where hk = min{h,#{i = 1, . . . , N, dλ(Cα,i, c) ≤ h} = k}, in such a way that
looking for an optimal value of h can be reduced to the question of choosing
an optimal value of k which is a much easier problem in the sense that k is a
discrete parameter lying into a finite set KN . In a concrete way, the criterion
CV (see again Section 2.2) has to be minimised over

HN = {hk, k ⊂ KN} for some KN ⊂ {1, . . . , N}.

Note that KN can be chosen as being rather small. For instance, for a sample
of size N = 50 one could reasonably use

HN = {4, 7, 10, 13, 16}. (4.3)

The same k-NN procedure can be obviously used for the kernel additive re-
gressors defined in (3.2).

4.2 Chosing other parameters

The other parameters to be chosen are not really statistical parameters but
depend more on the results one wishes to have. For instance the size of the set
AN of possible probability contents does not need to be very large to provide
interpretable results. As a matter of example, for a size N = 50 a reasonable
choice can be

AN = {.05, .15, .25, .35, .45, .55, .65, .75}. (4.4)

As it is usual with cross-validation methods, the weight functions W (.) have
no strong influence on the results, and we used the simplest choice

W (C) = 1 if dλ(C, ∅) ≤ dλ(C1, ∅) and W (C) = 0 if not,

where C1 is the common support of the simulated density functions. Finally,
concerning the operator φ, its choice depends really on the goals of the study
and on the features of the densities that one wishes to highlight. The simplest
choice is φ(h) = f . In other problems, if one is more interested in the variations
of the densities than on their exact values, other choices can be to use derivative
operators φ(f) = dkf/dk. An other natural choice, is to look at logarithms of
densities and in this case one can take

φ(f) = log f. (4.5)

4.3 Choosing the penalization

As motivated in a general multivariate analysis in [24], least square penali-
sation is an usual way for dealing with dimensionality choices. The question
when applying a penalised cross-validation criterion such as in (3.3) is the
choice of the penalty term λN . While this can be a difficult task in very high
dimensional problems and specific sophisticated penalty have to be introduced



Choosing the most relevant level sets for depicting a sample of densities 11

such as the usual SCAD’one2 defined in [7] or [8] (see also [5] or [22] for recent
advances), it is much more easy to deal with in the purpose of this paper since
for obvious interpretability reasons the number J of relevant levels has neces-
sarily to be very small. This is why we decided to use the simplest choice, as
already used in other dimensionality problems involving functional data (see
for instance [9] and references therein):

λN = γ/(logN), for some γ > 0. (4.6)

5 Finite sample size studies

5.1 Some simulated samples of densities

We have simulated a random sample of N bivariate densities, each of them
being the density of the mixture of two bivariate normal random variables,
truncated at the square [−3.035, 3.035]×[−3.035, 3.035]. The simulation model
is rather general in order to cover various different situations and it is defined
from the following generic expression for the generated densities (before trun-
cation):

f(x, y) = νϕ(x, y;µ1, µ2, I2)+(1−ν)ϕ(x, y;µ1+ρ cos θ, µ2+ρ sin θ, σI2), (5.1)

where ϕ is the density function of a bivariate normal random variable (with ob-
vious notation) and I2 is the identity matrix of size 2. The various parameters
of the model insure a very wide scope of possible shapes for the generated den-
sities, covering for instance as well standard unimodal Gaussian functions like
the one depicted in part a) of Figure 1 (in this case, ν = 1 and µ1 = µ2 = 0)
as bimodal densities like the one depicted in part b) of Figure 1 (in this case,
ν = .92, µ1 = 1, µ2 = 2, σ = .25, ρ = 1 and θ = π/4).

Let us point several characteristics of densities f(x, y) defined by (5.1).
Observe that (excepted when ν = 0 or 1) they are a mixture of two unimodal
densities, being bimodal for ρ sufficiently large (or σ small). Figure 2 represents
the general form of such densities, highlighting the role of each parameter
entering in the model, the level sets being used for the representation of f
being at this stage arbitrarily chosen to be those with probability contents α
equal to 0.02, 0.1, 0.25, 0.5, 0.75 and 0.95.
Note that two of these densities with common parameter ρ can be transformed
into each other by a rotation and a translation. Given two of these densities
differing only in parameter θ (a rotation with centre (µ1, µ2) transforms one
into the other), their level sets with probability content α ≥ 0.75 are almost
equal, while those corresponding to small values of α (say α ≤ 0.1) present
large differences. On the other hand, two densities f and f ′ with location
parameters µ = (µ1, µ2) and µ′ = (µ′1, µ

′
2), with ‖µ − µ′‖ moderate or large

(say ‖µ− µ′‖ ≥ 1) will present large differences in level sets corresponding to
large values of α (say α ≥ 0.5), but level sets corresponding to small values

2 Smoothly Clipped Absolute Deviation
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Fig. 2 General shape of a density function of the form of (5.1).

of α may not be so large (for instance, the level sets with probability content
α = 0.05 of f and f ′ are almost coincident when µ1 = −1, µ′1 = 1, µ2 = µ′2 = 0,
ρ = ρ′ = 1, θ = 0, θ′ = π, because both have their highest mode at (0, 0)).

5.2 Presentation of the models

In order to cover a large variety of situations we have considered 7 different
models, obtained in the following way. We have generated random samples of
densities according to (5.1) by taking random values of θ, µi, i = 1, 2, and
ρ (the other parameters being fixed to ν = 0.05 and σ = 0.25). Specifically,
θ ∼ U(0, 2π), ρ ∼ U(1− r, 1 + r) and µi ∼ U(1−m, 1 +m), i = 1, 2. We have
considered 7 different cases (or models) to generate random densities according
to (5.1), corresponding to specific choices of r and m as summarised in Table
1.

Table 1 The 7 different models for two bivariate normal densities samples

Model 1 2 3 4 5 6 7
r 0 0 0 0 0.25 0.25 0.25
m 0 0.1 0.25 1 0.1 0.25 1

One may observe that in the simplest case (Model 1) the densities only differ
in θ, while in Models 2, 3 and 4 differences in location and orientation are
allowed (but ρ is still fixed to be equal to 1 in these three models). Finally,
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Models 5, 6 and 7 describe more complex situations in which all parameters
may vary from one density to each other.

5.3 Presentation of the study

One aims is to show the finite sample behaviour of the methods presented
before in this paper. So, for each among these 7 models, a random sample of
N = 50 density functions has been generated, and this learning sample is used
to compute the various different estimates. Moreover to assess the validity
of the method we have also generated an independent second test sample
fts
i , i = 1, . . . , Nts of size Nts. Because the role of Nts is of small interest

for our purpose we just took as size for this testing sample the simplest one
Nts = N . Then in each case, five additive models (one for each J ∈ {1, . . . , 5};
see equation (3.1)) are fitted for each of the 7 samples, as explained in Section
3. Observe that the additive model corresponding to J = 1 coincides with
the nonparametric model (2.1) described in Section 2. All along the study the
various parameters entering into the statistical procedures have been chosen
automatically according to the guidelines described along Section 4 before.

5.4 The additive methodology in action

As motivated in Section 4.1 the various kernels entering into our procedure
have been chosen according to (4.1) and the operator φ is the one defined in
(4.5). For each model, we compute the estimates based on the learning sample.
This includes the following calculations:

- α̂j , k̂j , according to the guidelines described in (4.3) and (4.4). Observe
that for any J ∈ {1, . . . , 5} the value of j goes from 1 to J , and that α̂j

and k̂j are the same for all J ≥ j.
- CVj(k̂j , α̂j)/N : The cross-validation (leave-one-out) estimate of the mean

squared prediction error. The quantity CVj(k̂j , α̂j) has been defined in
equation (3.3).

- R2
cv,j = 1− CVj(k̂j , α̂j)/TSScv,j , where

TSScv,j =

N∑
i=1

‖Qj−1i − (1/(N − 1))
∑
l 6=i

Qj−il ‖
2

is the total sum of squares estimated by leave-one-out (Qj−1i is defined in
equation (3.2)).

Then, to see how the various fitted additive models behave, we have applied
these estimates to the testing sample, and we have computed the following
quantities:
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- MSPEts,J = (1/Nts)
∑Nts
i=1 ‖gts

i − ĝts,J
i ‖2, the mean squared prediction

error in the testing sample.
- R2

ts,J = 1−MSPEts,J/MSSts, where

MSSts = (1/Nts)

Nts∑
i=1

‖gts
i − (1/N)

N∑
l=1

gl‖2

is the mean sum of squares estimated in the test sample.

Observe that, for J = 1, the statistics CV1(k̂1, α̂1)/N is able to estimate
the mean squared prediction error of the nonparametric functional regression
model (2.1) for new independent densities, but this does not remain true for the

statistics CVj(k̂j , α̂j)/N , j = 2, . . . , J , when J ≥ 2, because CVj(k̂j , α̂j) cor-
responds to intermediate kernel regressions where the responses are no longer
the densities. This is an additional reason for having introduced a second test-
ing sample, and so MSPEts,J is an estimate of the mean squared prediction
error for additive models for any J and can therefore be used as a tool for
comparing the behavior of the various fitted models.

The results obtained for these various statistics are presented in Table 2.

5.5 Comments on the results

A summary of the main conclusions of the results in Table 2 can be drawn
as follows. First of all, we can observe that the optimal α values increase
with the variability in µi, i = 1, 2, as was expected: larger level sets indicate
large differences in location more clearly. Secondly, the effect of randomness
in parameter ρ is limited: cases 5, 6 and 7 are similar to cases 2, 3 and 4,
respectively. Thirdly, in case 1, almost all the variability between densities
is explained by using only one level set (that with probability content α =
0.25), while in cases 2, 3, 5 and 6, Ĵ = 2 components are required in the
additive model: the first optimal probability content α̂1 is large (0.65 or 0.75)
and explains the differences in location between densities; then the level sets
corresponding to α̂2 are smaller (0.05 ≤ α̂2 ≤ 0.25) and detect the orientation
of the highest mode with respect to the lowest one. For cases 4 and 7 (maximum
variability in µi, i = 1, 2), it may be Ĵ = 3, with α̂1 = α̂2 = 0.75 (using a

different number of neighbours: k̂1 6= k̂2) and α̂3 equal to 0.15 or 0.05.

5.6 Controlling the dimensionality

Finally, the question of graphical representation of the densities sample is
strongly linked with the choice of the dimensional parameter J , too large
value of J leading to unexploitable plots while too small ones would not reflect
enough information on the densities. As motivated in Section 3.3, estimating
J can be performed by means of penalised least square criterion. Precisely, we
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Table 2 Mixture of two bivariate normal densities. The left hand side of the table shows the
parameters r and m used to generate the 7 different types of mixtures densities. A summary
of the results from the fitted additive models are shown on the right-hand side of the table.

Case r m J = 1 J = 2 J = 3 J = 4 J = 5

1 0 0 α̂j , k̂j .25, 4 .05, 10 .35, 16 .35, 16 .35,16

CVj(k̂j , α̂j)/N .0096 .0023 .0016 .0015 .0015
R2

cv,j .9482 -.0105 -.2324 -.2646 -.2790

MSPEts,J .0173 .0130 .0125 .0122 .0120

R2
ts,J .9127 .9344 .9371 .9384 .9393

2 0 .1 α̂j , k̂j .65, 7 .05, 13 .75, 16 .25, 16 .75, 16

CVj(k̂j , α̂j)/N .2054 .0463 .0311 .0288 .0257
R2

cv,j .8005 .3128 -.0134 -.2127 -.20934

MSPEts,J .2193 .1516 .1397 .1309 .1273

R2
ts,J .8145 .8717 .8818 .8893 .8923

3 0 .25 α̂j , k̂j .75, 7 .05, 10 .65, 16 .55, 16 .75, 16

CVj(k̂j , α̂j)/N .4276 .1407 .0808 .0734 .0659
R2

cv,j .9267 .3069 .0019 -.2002 -.2362

MSPEts,J .3662 .2705 .2520 .2468 .2364

R2
ts,J .9291 .9476 .9512 .9522 .9542

4 0 1 α̂j , k̂j .75, 7 .75, 4 .15, 16 .75, 16 .25, 16

CVj(k̂j , α̂j)/N 3.4968 1.2958 .2996 .2485 .2382
R2

cv,j .9560 .1424 -.1165 -.2000 -.2371

MSPEts,J 3.5649 1.5322 1.4718 1.4159 1.3912

R2
ts,J .9567 .9814 .9821 .9828 .9831

5 .25 .1 α̂j , k̂j .65, 7 .05, 7 .75, 16 .75, 16 .25, 16

CVj(k̂j , α̂j)/N .2210 .0439 .0204 .0190 .0181
R2

cv,j .7319 .3974 -.0216 -.2320 -.2599

MSPEts,J .2820 .1869 .1697 .1645 .1579

R2
ts,J .6945 .7976 .8162 .8218 .8290

6 .25 .25 α̂j , k̂j .75, 7 .25, 10 .75, 16 .05, 16 .75, 16

CVj(k̂j , α̂j)/N .4700 .1432 .0780 .0681 .0452
R2

cv,j .8849 .3253 -.0932 -.1581 -.2092

MSPEts,J .5335 .3751 .3338 .3024 .2870

R2
ts,J .9132 .9390 .9457 .9508 .9533

7 .25 1 α̂j , k̂j .75, 7 .75, 4 .05, 16 .65, 16 .65, 16

CVj(k̂j , α̂j)/N 2.9903 1.1448 .2745 .1286 .1255
R2

cv,j .9646 .0780 -.1033 -.2170 -.2539

MSPEts,J 3.9657 1.8748 1.8355 1.8175 1.7951

R2
ts,J .9528 .9777 .9782 .9784 .9786

have used the penalised cross-validation technique by following the practical
guidelines described in Section 4.3 for choosing the penalty (i.e. λN was se-
lected as in (4.6) with γ = 1. 3

3 Other choices of γ have been tested and the method turns not to be too much sensitive
on this parameter. For instance, in the situation depicted in Figure 3, any value of γ ≤ 0.6
leads to the same minimum J = 3.
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Fig. 3 CV and its penalised version as functions of J

To see more on this question of choosing J , let us look more in detail on
the specific Model 3 (other models have been analysed in the same way and
behave similarly). For this model, Figure 3 gives more insight on choosing J .
This figure plots both the standard criterion and its penalised version.

The decreasing form of the criterion CV is decreasing, as expected, and if
the dimension was selected by this criterion one would have taken higher values
of J leading to a very small gain in terms of prediction (see Table 2) and to
hardly representable results. By means of the penalised approach the criterion
PCV exhibits a clear global minimum leading to a selected dimension Ĵ = 2.
This value allows for a good representation of the densities (as attested by the
low prediction error appearing in Table 2), as well as an easy visualization of
the outputs (this will be commented later in Section 5.7). The next Figure
4 shows that the Mean Square Prediction Error in the second testing sample
as a function of J (MSPEts,J) and its penalised version (PMSPEts,J) exhibit
roughly the same shape as CV(J) and PCV(J), respectively (up to a vertical
shift). The curves are decaying rather fast until the optimal value. Then the
penalized versions grow up (PCV growing slower MSPE) while the standard
versions do not grow but are rather stable after the optimal value. These facts
highlight the good behaviour of cross-validation for approximating the true
unknown error and show also how penalised cross-validation is efficient for
choosing J . In particular the penalization avoids for selecting a too high and
uninformative dimension.
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5.7 Visualisation of the results

Again for Model 3, we present in Figure 5 the representation of the sample of
50 densities. As discussed before, the dimension was selected to be Ĵ = 2 and
the corresponding relevant levels were 0.75 and 0.05.

Clearly the pair of selected levels (α̂1, α̂2) = (0.75, 0.05) provides a good
representation of the sample. The high probability level set C0.75 looks similar
for all densities generated by Model 3 and so reflects the main common feature
in the sample (remind that in this model one has ρ = 1 for all densities). In
counterpart, the small probability level set C0.05 detects the main difference
between the densities in this sample, that is the different location of the main
peak (remind that in this Model 3, the angle parameter θ changes from a
density to each other).

6 What about samples of estimated densities?

In some practical situations it may be the case that the densities fi are not
known but are rather estimated by means of some usual preliminary bivariate
nonparametric smoothers. The aim of this short Section 6 is to show how the
general methodology, presented before along Sections 2 and 3 for known den-
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Fig. 5 Representation of a sample of N = 50 densities according to Model 3 using J = 2
data-driven level sets.

sities, behave similarly for estimated densities.

Assume that each fi is estimated by means of a finite number of observed
pairs Xi,j ∈ R2, j = 1, . . . , ni. In practice one often has unbalanced data in
the sense that the densities fi are built from samples not necessarily having
the same size. For a simple presentation of the following, we put forward the
following hypothesis:

∀i = 1, . . . , N, ni ∼ Kin.

Similarly, for each α, the level set Cα,i of the density fi is not observed but
rather estimated by means of the plug-in estimator derived from each esti-
mated density. We will denote by fi,n the estimate of each unknown density
function fi and by Cα,i,n the i-th estimated set with probability content α.

Basically, applying the functional nonparametric methods (both the single
method in Section 2.2 and the additive one presented in Section 3) to the
new data (fi,n, Cα,i,n) rather than to the theoretical ones (fi, Cα,i) will have
no influence on the theoretical properties of the estimated parameters. The
reason for this is rather simple: since the smoothing procedures leading to the
construction of (fi,n, Cα,i,n) are bi-dimensional nonparametric problems, they
induce an estimation error which is of much smaller order than the method it-
self (since this is subsequently an infinite dimensional nonparametric problem).
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Technical assumptions quantifying these ideas are presented and commented
along Section C in the Appendix, along which we will give some general result
(see Theorem 5) stating the asymptotic properties of the procedure.

7 An application to real electoral data

The most important way of political participation for people in democratic
countries is certainly to vote in electoral calls. Nevertheless the participation
in elections is usually far from 100%: many people decide not going to vote
for several reasons. A relevant question is if there exists some relationship
between the political ideology of a given voter and its decision of going or not
to vote in a particular election. In Spain it is given as a fact that potential
left-wing parties voters usually participate in elections less than right-wing
parties voters. We analyze the relationship between position on the left-right
wing political dimension and the willingness to vote. Given that individual
data are not available we use aggregated data at level of polling stations (lists
of around 1000 people that vote at the same ballot box because they live in
the same small area). Specifically we use electoral results from 2011 Spanish
general elections.

For each polling station the available information allows us to define these
two variables: participation (proportion of potential voters that finally vote)
and proportion of votes for right-wing parties. Observe that this last variable
is not exactly the same as the proportion of potential voters with right-wing
political ideology. Unfortunately we only know what do vote the people who
actually vote. Nevertheless, if the size of the polling station is small compared
with the size of the city it is sensible to believe that both quantities should
be similar. This is because in big cities, conditioning on the polling station of
a voter is almost equivalent to conditioning on many economical, educational
and sociological variables that simultaneously determine both decisions: to
vote or not to vote? and what to vote?.

We formally need the following assumption:

The political orientation (left-right wing) of a potential voter and his/her
decision of voting or not are conditionally independent, given the polling
station where he/she votes.

This assumption allows us to use observed aggregated data at the level of
polling stations to study the joint distribution of political orientation and par-
ticipation.

We consider the 100 cities in Spain with the largest number of polling
stations (82 or more). For each of these cities we have a list of observations
of the bivariate random variable (proportion of votes for right-wing parties,
participation), an observation for each polling station. We use then a bivariate
kernel density estimator to obtain from this list an estimation of the joint
distribution of these two variables at each of the 100 cities considered in our
study. Therefore we have a functional dataset of length 100 consisting on
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Table 3 Results for the electoral data example. Maximums of R2
ts,J in J are in bold face

type.

Data set J = 1 J = 2 J = 3 J = 4 J = 5

Raw data α̂j .95 .65 .15 .95 .05

k̂j 7 4 7 7 10
R2

ts,J .5972 .5910 .5784 .5684 .5638

Centered data α̂j .95 .65 .15 .85 .75

k̂j 10 4 4 4 4
R2

ts,J .6953 .7333 .7226 .7225 .7188

bivariate densities. As a matter of illustration, Figure 6 shows the density level
sets corresponding to the 6 municipalities with the largest numbers of polling
stations. In top plots probability content is α = 0.5 which is the recommended
level set by the quick rule given in [6] when using only one level set, while in
bottom plots one has α1 = 0.25 and α2 = 0.75 as recommended by the quick
rule given in [6] when using two level sets.

For applying our procedure, we divide the set of 100 density functions
in two subsets: a learning sample with the N = 50 cities with odd numbers
in the list of municipalities sorted by number of polling stations, and a test
sample with the other. Five additive models (one for each J ∈ {1, . . . , 5}; see
equation 3.1) are fitted with the learning sample, as explained in Section 3.
The statistical procedures are similar to those used in Section 5. Then, for each
model, we compute the estimates based on the learning sample to determine
α̂j , k̂j , j = 1, . . . , J , J = 1, . . . , 5. At the end, to see how the various fitted
additive models behave, we have applied these estimates to the testing sample,
and we have computed R2

ts,J , J = 1, . . . , 5. All of these quantities have been

defined in Section 5, and the results obtained for these various statistics are
summarized in Table 3.

The first three rows of the table correspond to the raw data. It is appar-
ent that the best additive model includes only one level set with probability
content α = 0.95. This is a clear indication that the main differences between
densities are in their support, and they may reflects differences in location,
dispersion and/or shape. The upper panel of Figure 7 shows the density level
set with probability content α = 0.95 for the 6 cities with the largest numbers
of polling stations. These graphics show that these six densities are different in
location (compare Madrid and Barcelona, for instance), dispersion (Valencia
is more concentrated than Madrid, for instance) and shape (Sevilla is quite
different from the rest, but also Barcelona, Málaga and Valencia are quite dif-
ferent from Madrid and Zaragoza). These differences where less clear in the
upper panel of Figure 6 (here the main findings are the differences in location
and the different shape of Sevilla), where α = 0.5 is used, according to the
quick rule proposed in [6]. Other procedures proposed in that paper (namely,
those based on ranks of distances) lead to choose a probability content of at
least 0.9, in agreement with what we obtain here with the additive model (3.1).
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Fig. 6 Density level sets corresponding to the 6 municipalities with the largest number
of polling stations. In grey, the level sets corresponding to the whole country. Probability
contents have been chosen according to the quick rule proposed in [6]. Upper panel: Raw
data, the probability content is α = 0.50. Lower panel: Centred data, probability contents
are α1 = 0.25 and α2 = 0.75.
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In order to remove the “differences in location” effect from the analysis, we
consider the estimated density functions from the centred data at municipality
level, so that all the densities are centred at (0, 0). The last three rows in
Table 3 show the corresponding results. Now two level sets are required in
the additive model, having probability contents α1 = 0.95 and α2 = 0.65.
Again the presence of the largest allowed probability content indicates big
difference in density supports. Following the recommendation of the second
fitted additive model, the lower panel of Figure 7 shows the density level
sets with probability contents α1 = 0.95 and α2 = 0.65 corresponding to
the centred data of the 6 municipalities with the largest numbers of polling
stations. Now the differences among cities in dispersion (Valencia is the most
concentrated, and Sevilla the most dispersed) and shape (all the cities appear
to be different from the other) are emphasised, and they are clearer than
when following the quick rule proposed in [6] for 2 levels sets (α1 = .25 and
α2 = 0.75; see the lower panel of 6). When using the procedures based on
ranks of distances proposed in [6], the probability contents that are obtained
are α1 = 0.67 and α2 = 0.95, very close to those obtained here with the
additive model (3.1). The advantage of our proposals in this paper over those
in [6] is that now we have a rule for choosing the number J of required level
sets. In the present example this number is J = 2, according to Table 3.

8 Conclusions

This paper has used recent advances on nonparametric statistics for functional
variables and on dimension estimation, for constructing in a data-driven way
a reasonably small number of level sets for representing a family of bivariate
density functions. From an applied point of view, its is shown through a wide
scope of simulated models that the method combines both easiness of repre-
sentation of the outputs and visualisation of the main features of the densities.
This appealing finite sample behaviour goes together with theoretical optimal-
ity results. Finally it is worth being noted that this is, as far as we know, the
first paper using nonparametric functional data methodology for dealing with
objects being much more complicated than standard one dimensional curves.
In most of applications in functional regression the explanatory variable is a
one dimensional curve (see for instance [20], [21], [12], [16]) and the response
is scalar. The nonparametric methodology has been extended and used also
to responses being also a one dimensional curve (see eg [11] or [10]), but in
the situation depicted in this paper both the explanatory variables (which is
a compact two dimensional set) and the response one (which is a bivariate
density) are not simple one-dimensional curves.
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Fig. 7 Example of density level sets corresponding to the 6 municipalities with the largest
number of polling stations. In grey, the level sets corresponding to the whole country. Prob-
ability contents have been chosen according to the additive model (3.1); see also Table 3.
Upper panel: Raw data, the probability content is α = 0.95. Lower panel: Centred data,
probability contents are α1 = 0.95 and α2 = 0.65.
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A Asymptotic theory for the procedure in Section 2

Identifiability of the model and main theoretical result

The complexity of the data makes necessary to attack the problem in a much flexible way,
and this is the reason why we adopted a nonparametric strategy. Said with other words,
in the model (2.1) Rα is a nonlinear operator from C into F and εα is a functional error
εα = εα(x) satisfying

∀x ∈ R2, Eεα(x) = 0 and Eεα(x)2 <∞.

This regression model will serve for giving a precise definition of what is the best level.
Basically, the wish is to represent the density function f (or more generally its transformation
g = φ(f)) in an optimal way and this can be obtained by using as level α0 the one leading
to the smallest variance in the error term of the regression model. Precisely, one will define
an optimal probability content α0 in the following way:

∀α 6= α0, ∀x ∈ R2,Var(εα0 (x)) < Var(εα(x)). (A.1)

that, it is implicitly supposed that such a value α0 exists and is unique.

The next Theorem 1 states the asymptotic optimality of the procedure.

Theorem 1 Under the conditions (A.4)-(A.12) one has∣∣∣∣∣ Err(ĥ, α̂)

Err(h1, α1)

∣∣∣∣∣→ 1, a.s. (A.2)

As a direct consequence of this result, one has the following corollary which states the
main theoretical result of this section that is the consistency of the data-driven selected level
towards the true theoretical one.

Corollary 2 Under the conditions of Theorem 1 and if in addition (A.13) and (A.14)
hold, then one has

α̂→ α0, in probability. (A.3)

Commented assumptions for Theorem 1 and Corollary 2

The asymptotic properties of the estimated operator R̂h,α can be derived directly from the
recent advances obtained in nonparametric regression when both explanatory and response
variables are functional (see for instance [11] for asymptotic normality and [10] for uniform
rates of convergence). These consistency results are not our purpose here since we wish rather
to discuss how this method may allow us to select the probability content α. The technical
assumptions necessary for ensuring consistency properties of the estimated operator R̂h,α
are recalled below (see [10]).

– Conditions on the explanatory variable. There is a function F such that for t small
enough, one has

0 < c1F (t) < inf
{0≤α≤1,c∈C}

P (dλ(Cα, c)) ≤ t)

≤ sup
{0≤α≤1,c∈C}

P (dλ(Cα, c)) ≤ t) (A.4)

< c2F (t) < ∞,

and

∀s ∈ [0, 1], lim
t→0

F (st)

F (t)
exists. (A.5)
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– Conditions on the response variable. The response variable g has conditional moments
σkx,α(c) = E(|g(x)|k|Cα = c) satisfying:

∃B <∞, ∀x ∈ R2, ∀α ∈ [0, 1], ∀k > 0, σkx,α(.) ≤ Bk! <∞, (A.6)

σ2
x,α(.) is continuous and bounded from below, uniformly in x and α. (A.7)

– Conditions on the regression operator. The regression operators Rα are submitted to a
smooth nonparametric model that consists in the assumption that there exist A < ∞
and 0 < β ≤ 1 such that:

∀α ∈ [0, 1], ∀(c, c′) ∈ C2, ||Rα(c)−Rα(c′)|| ≤ Adλ(c, c′)β . (A.8)

– Conditions on the parameters of the estimate. The bandwidth h is assumed to be such
that for some 0 < δ < 1 and some D <∞:

lim
N→∞

h = 0 and lim
N→∞

F (h) ∼ DN−δ, (A.9)

while the kernel K should be such that for t small enough and for some 0 < c3 < c4 <∞:

0 < c3F (t) < inf
{0≤α≤1,c∈C}

E

(
K

(
dλ(Cα, c)

t

))
≤ sup
{0≤α≤1,c∈C}

E

(
K

(
dλ(Cα, c)

t

))
(A.10)

< c4F (t) <∞.

These conditions have been widely used and their high degree of generality was already
pointed out in the functional nonparametric literature discussed before. The main reason
for not discussing them here is that they are only needed in order to ensure the good asymp-
totic behaviour of the estimators R̂h,α . In other words, in what remains of the paper, the
set of conditions (A.4)-(A.10) could be changed into any other set of conditions ensuring

both asymptotic normality and almost sure convergence of the estimates R̂h,α .

These were conditions, for fixed α, to control the asymptotic behaviour of the estimate.
Now, additional conditions are necessary for ensuring the asymptotic optimality of the data-
driven procedure for selecting α. These are as follows: first of all, in order to preserve
generality, we let the cardinality of the set of possible levels to grow up to infinity with the
sample size N through the following condition:

∃τ > 0, card(ΘN ) = O(Nτ ). (A.11)

The weight function W satisfies, for some constants c5 and c6, the following usual conditions

0 < W (.) ≤ c5 <∞, and W (C) = 0 if dλ(C,∅) > c6. (A.12)

All these previous assumptions are needed to obtain Theorem 1, while in order to obtain
Corollary 2 one needs the following additional assumptions:

α0 ∈ AN , for N large enough. (A.13)

and
∀ε > 0,∃η > 0,∀α ∈ An, |α− α0| > η ⇒ E(Rα(C)−R(C))2 > ε. (A.14)

Condition A.13 just means that the set on which α is selected is sufficiently rich, while
Condition A.14 insures that two different levels contain sufficiently different information on
the underlying density.
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B Asymptotic theory for the procedure of Section 3

Identifiability of the model

To ensure the identifiability of the model (3.1, we introduce additive versions of the usual
uniqueness condition (A.1). We assume that there is some integer J0 ≥ 1 and some vector

(α1
0, . . . , α

J0
0 ) such that if either J 6= J0 or (α1, . . . , αJ0 ) 6= (α1

0, . . . , α
J0
0 ) then

Var(g −
J0∑
j=1

Rj
α
j
0

(C
α
j
0
)) < Var(g −

J∑
j=1

Rj
αj

(Cαj )) <∞. (B.1)

Of course, because of the additive structure, as long as J0 satisfies (B.1) then any integer
greater than J0 does so, too. To avoid this problem, it is assumed that J0 is the smallest
integer such that (B.1) holds.

In the next result, one sets the consistency of the data-driven selected level defined in
(3.3) towards the true theoretical optimal ones. Its proof consists in iterative using of the
results stated before when one single level set had to be selected (see Corollary 2).

Asymptotic behaviour of the procedure

Theorem 3 Consider the model defined by (B.1) and assume that the conditions (A.4)-

(A.7), (A.10)-(A.12) hold. If in addition, (A.8) holds for each operator Rj
αj

, if (A.9) holds

for each bandwidth hj and if (A.13) and (A.14) hold for any αj0, then one has

∀j, α̂j → αj0, in probability . (B.2)

Corollary 4 Under the conditions of Theorem 3, and if in addition (3.5) holds, then one
has

P
[
Ĵ ≥ J0

]
= 1, for N large enough. (B.3)

C Asymptotic theory for the procedure in Section 6

Commented assumptions for Theorem 5

We may quantify these ideas by means of the following general assumptions:

∀i = 1, . . . , N, ||fi,n − fi||2 = op

(
1

NF (h)

)
(C.1)

and

∀i = 1, . . . , N, ∀0 ≤ α ≤ 1, dλ(Cα,i,n, Cα,i) = op

(
1

NF (h)

)
. (C.2)

Of course, there is a doubly asymptotic problem to address (asymptotics on n and N). That
means that, to give sense to both conditions before, one has to assume that:

n ≡ nN →∞, as N →∞. (C.3)

Theorem 5 states precisely that the parameters estimated when using the sampled densities
fi,n have asymptotic properties similar to those of the parameters that could have been
theoretically estimated when using the true unknown densities fi. However, before that, it
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is worth pointing out the high degree of generality of the conditions (C.1) and (C.2). The
functional nonparametric literature (see, for instance, the book by [12]) provides evidence
that in most cases one has F (h) = Op(h) (other cases being more of mathematical relevance
than really linked to practical purposes), while the standard quadratic errors in functional
literature (see, for instance, [11]) are known to be of the form

h2β +
1

NF (h)
, (C.4)

and so can be optimised (when F (h) ∼ Ch)) and becomes (because β ≤ 1)

N−
2
3 . (C.5)

On the other hand, the standard literature on bivariate nonparametric estimation shows
that most density smoothers (kernel, splines, wavelets, etc.) may reach, if each density has
for instance k continuous derivatives, the usual optimal rate of convergence

n
− 2k

2k+1 . (C.6)

Looking at (C.5) and (C.6), it is easy to see that (C.1) is satisfied as soon as each density
fi has more than 1 derivative. In the same way, the literature on level sets estimation
has established that under mild conditions limn dλ(Cα,i,n, Cα,i) = 0, almost surely or in
probability, and furthermore rates of convergence have already been derived ([2], [3], [4],
[18]). For instance, for bivariate density functions, [2] shows that the error of estimation has
the rate

n−η , for any 0 < η < κ/(4 + 2κ), (C.7)

when h is of exact order (logn/n)(1+κ)/(4+2κ), where κ > 0 is a parameter controlling the
steepness of the target density function f : assumption (F1) in [2] establishes that there
exists an interval [a, b] ⊆ (infx f(x), supx f(x)) and a positive constant K such that for all
c in [a, b]

P (|f(X)− c| < ε) ≤ Kεκ

when X is a random variable with density f . Intuition tells us that the steeper f is (large
κ), the faster the rates will be. Assuming that κ > 4 and looking at (C.5) and (C.7) one
also sees that (C.2) is satisfied.

Some asymptotics

In the next theorem one will see basically that, pending to the conditions discussed just
before, all the procedures studied before in this paper have the same asymptotic properties
in the situation of sample of estimated densities as those they have for samples of known
densities.

Theorem 5 Let us consider the model defined by (2.1) and (A.1) and denote by α̂n the
probability content obtained by minimising (2.3) when changing (fi, Cα,i) into (fi,n, Cα,i,n).
Under the conditions of Corollary 2, and if in addition (C.1), (C.2) and (C.3) hold, then
we have:

α̂n → α0, in probability as N →∞. (C.8)

Let us consider the model defined by (B.1), and denote by α̂jn and Ĵn the parameters
obtained by minimising (3.3) and (3.4) when changing (fi, Cα,i) into (fi,n, Cα,i,n). Under
the conditions of Corollary 4, and if in addition (C.1), (C.2) and (C.3) hold, then we have:

i) ∀j, α̂jn → αj0, in probability as N →∞, (C.9)

and

ii) P
[
Ĵn ≥ J0

]
= 1, for N large enough. (C.10)
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D Proofs

Proof of Theorem 1

We present the proof in a very synthetic way, simply emphasising the specificities linked
with the two main contributions in this paper, namely the functional nature of the response
and the double simultaneous choice of h and α. For a fixed x ∈ R2, results in [19] ensure
that the pointwise cross-validation criterion

CV(h, α)x =
N∑
i=1

(gi(x)− R̂−ih,α(Cα,i)(x))2W (Cα,i),

has the same asymptotic behaviour (up to a constant term independent on h and α) as the
pointwise theoretical error

Err(h, α)x =
N∑
i=1

(R(Cα,i)(x)− R̂h,α(Cα,i)(x))2W (Cα,i),

in the sense that, uniformly on h and α, one has

Err(h, α)x = CV(h, α)x +
1

N

N∑
i=1

(gi(x)−R(Cα0,i)(x))2W (Cα,i)

+ o(Err(h, α)x), a.s.. (D.1)

Note now that conditions (A.6) and (A.7) ensure that (D.1) is uniform on x, in such a way
that we finally arrive, uniformly on h and α, at

Err(h, α) = CV(h, α) +
1

N

N∑
i=1

E2
i + o(Err(h, α)), a.s., (D.2)

with

E2
i =

∫
(gi(x)−R(Cα0,i)(x))2dxW (Cα,i).

This is enough to obtain

sup
(h,α,h′,α′)∈Θ2

n

∣∣∣∣ (Err(h, α)− Err(h′, α′))− (CV(h, α)− CV(h′, α′))

Err(h, α)

∣∣∣∣→ 0, a.s.. (D.3)

It now suffices to take (h, α) = (h1, α1) and (h′, α′) = (ĥ, α̂) to arrive at the professed result
(A.2).

Proof of Corollary 2

The conditions (A.13) and (A.14) allow us to see that one has:

∀ε > 0, ∃η > 0, |α− α0| > ε⇒ Err(ĥ, α) > η.

By applying this with α = α̂, we obtain

∀ε > 0, ∃η > 0, P [|α̂− α0| > ε] ≤ P [Err(ĥ, α̂) > η].

On the other hand, by using the equivalence stated in Theorem 1, one obtains

∀η > 0, ∃η′ > 0, P [Err(ĥ, α̂) > η] ≤ P [Err(h1, α1) > η′].

Finally, standard results in functional regression (see [11]) lead to

∀η′ > 0, P [Err(h1, α1) > η′]→ 0.

The three last results are enough to prove Corollary 2.
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Proof of Theorem 3

This proof is omitted, since it consists only in performing successive iterations of the proof
of Corollary 2 stated before. Precisely one can state equivalence results for each direction
j = 1, . . . , J between the data-driven criterion CV j and its theoretical counterpart Errj

defined as

Errj(h, α) =

N∑
i=1

||Qji − R̂ĥj−1,α̂j−1 (Cα,i)||2W (Cα,i).

Then, by following the same lines as along Corollary 2 one could state that (B.2) holds for
the parameters that would have been selected by minimizing the theoretical errors Errj

and, because of the above mentioned equivalences, that it holds also for the cross-validated
parameters as claimed in Theorem 3.

Proof of Corollary 4

Because of (3.5) we can simply do the proof when λN = 0 without loss of generality. When
iterating the proof of Theorem 1 the results (D.2) become:

PCV(J) =

 1

N

N∑
i=1

gi − J∑
j=1

Rj
α
j
0

(C
α
j
0,i

)W (C
α
j
0,i

)

+ o(1)

 , a.s.. (D.4)

Finally, the condition (B.1) allows us to obtain

∀J < J0,PCV(J) > PCV(J0), a.s.,

and therefore one arrives at

P
[
Ĵ < J0

]
=

J0−1∑
J=1

P [Ĵ = J ]

≤
J0−1∑
J=1

P [PCV(J) ≤ PCV(J0)] = 0.

The proof of Theorem 3 is now complete.

Proof of Theorem 5

This proof follows line by line the proofs of Theorems 1 and 3. At each step one can change
(fi, Cα,i) into (fi,n, Cα,i,n). All the additional errors terms appearing with this change can
be seen to be negligible because of (C.1), (C.2) and (C.4).
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