5,509 research outputs found

    Regression versus classification for neural network based audio source localization

    Get PDF
    International audienceWe compare the performance of regression and classification neural networks for single-source direction-of-arrival estimation. Since the output space is continuous and structured, regression seems more appropriate. However, classification on a discrete spherical grid is widely believed to perform better and is predominantly used in the literature. For regression, we propose two ways to account for the spherical geometry of the output space based either on the angular distance between spherical coordinates or on the mean squared error between Cartesian coordinates. For classification, we propose two alternatives to the classical one-hot encoding framework: we derive a Gibbs distribution from the squared angular distance between grid points and use the corresponding probabilities either as soft targets or as cross-entropy weights that retain a clear probabilis-tic interpretation. We show that regression on Cartesian coordinates is generally more accurate, except when localized interference is present, in which case classification appears to be more robust

    Towards End-to-End Acoustic Localization using Deep Learning: from Audio Signal to Source Position Coordinates

    Full text link
    This paper presents a novel approach for indoor acoustic source localization using microphone arrays and based on a Convolutional Neural Network (CNN). The proposed solution is, to the best of our knowledge, the first published work in which the CNN is designed to directly estimate the three dimensional position of an acoustic source, using the raw audio signal as the input information avoiding the use of hand crafted audio features. Given the limited amount of available localization data, we propose in this paper a training strategy based on two steps. We first train our network using semi-synthetic data, generated from close talk speech recordings, and where we simulate the time delays and distortion suffered in the signal that propagates from the source to the array of microphones. We then fine tune this network using a small amount of real data. Our experimental results show that this strategy is able to produce networks that significantly improve existing localization methods based on \textit{SRP-PHAT} strategies. In addition, our experiments show that our CNN method exhibits better resistance against varying gender of the speaker and different window sizes compared with the other methods.Comment: 18 pages, 3 figures, 8 table

    Acoustic localization of people in reverberant environments using deep learning techniques

    Get PDF
    La localización de las personas a partir de información acústica es cada vez más importante en aplicaciones del mundo real como la seguridad, la vigilancia y la interacción entre personas y robots. En muchos casos, es necesario localizar con precisión personas u objetos en función del sonido que generan, especialmente en entornos ruidosos y reverberantes en los que los métodos de localización tradicionales pueden fallar, o en escenarios en los que los métodos basados en análisis de vídeo no son factibles por no disponer de ese tipo de sensores o por la existencia de oclusiones relevantes. Por ejemplo, en seguridad y vigilancia, la capacidad de localizar con precisión una fuente de sonido puede ayudar a identificar posibles amenazas o intrusos. En entornos sanitarios, la localización acústica puede utilizarse para controlar los movimientos y actividades de los pacientes, especialmente los que tienen problemas de movilidad. En la interacción entre personas y robots, los robots equipados con capacidades de localización acústica pueden percibir y responder mejor a su entorno, lo que permite interacciones más naturales e intuitivas con los humanos. Por lo tanto, el desarrollo de sistemas de localización acústica precisos y robustos utilizando técnicas avanzadas como el aprendizaje profundo es de gran importancia práctica. Es por esto que en esta tesis doctoral se aborda dicho problema en tres líneas de investigación fundamentales: (i) El diseño de un sistema extremo a extremo (end-to-end) basado en redes neuronales capaz de mejorar las tasas de localización de sistemas ya existentes en el estado del arte. (ii) El diseño de un sistema capaz de localizar a uno o varios hablantes simultáneos en entornos con características y con geometrías de arrays de sensores diferentes sin necesidad de re-entrenar. (iii) El diseño de sistemas capaces de refinar los mapas de potencia acústica necesarios para localizar a las fuentes acústicas para conseguir una mejor localización posterior. A la hora de evaluar la consecución de dichos objetivos se han utilizado diversas bases de datos realistas con características diferentes, donde las personas involucradas en las escenas pueden actuar sin ningún tipo de restricción. Todos los sistemas propuestos han sido evaluados bajo las mismas condiciones consiguiendo superar en términos de error de localización a los sistemas actuales del estado del arte

    Interaction intermodale dans les réseaux neuronaux profonds pour la classification et la localisation d'évènements audiovisuels

    Get PDF
    La compréhension automatique du monde environnant a de nombreuses applications telles que la surveillance et sécurité, l'interaction Homme-Machine, la robotique, les soins de santé, etc. Plus précisément, la compréhension peut s'exprimer par le biais de différentes taches telles que la classification et localisation dans l'espace d'évènements. Les êtres vivants exploitent un maximum de l'information disponible pour comprendre ce qui les entoure. En s'inspirant du comportement des êtres vivants, les réseaux de neurones artificiels devraient également utiliser conjointement plusieurs modalités, par exemple, la vision et l'audition. Premièrement, les modèles de classification et localisation, basés sur l'information audio-visuelle, doivent être évalués de façon objective. Nous avons donc enregistré une nouvelle base de données pour compléter les bases actuellement disponibles. Comme aucun modèle audio-visuel de classification et localisation n'existe, seule la partie sonore de la base est évaluée avec un modèle de la littérature. Deuxièmement, nous nous concentrons sur le cœur de la thèse: comment utiliser conjointement de l'information visuelle et sonore pour résoudre une tâche spécifique, la reconnaissance d'évènements. Le cerveau n'est pas constitué d'une "simple" fusion mais comprend de multiples interactions entre les deux modalités. Il y a un couplage important entre le traitement de l'information visuelle et sonore. Les réseaux de neurones offrent la possibilité de créer des interactions entre les modalités en plus de la fusion. Dans cette thèse, nous explorons plusieurs stratégies pour fusionner les modalités visuelles et sonores et pour créer des interactions entre les modalités. Ces techniques ont les meilleures performances en comparaison aux architectures de l'état de l'art au moment de la publication. Ces techniques montrent l'utilité de la fusion audio-visuelle mais surtout l'importance des interactions entre les modalités. Pour conclure la thèse, nous proposons un réseau de référence pour la classification et localisation d'évènements audio-visuels. Ce réseau a été testé avec la nouvelle base de données. Les modèles précédents de classification sont modifiés pour prendre en compte la localisation dans l'espace en plus de la classification.Abstract: The automatic understanding of the surrounding world has a wide range of applications, including surveillance, human-computer interaction, robotics, health care, etc. The understanding can be expressed in several ways such as event classification and its localization in space. Living beings exploit a maximum of the available information to understand the surrounding world. Artificial neural networks should build on this behavior and jointly use several modalities such as vision and hearing. First, audio-visual networks for classification and localization must be evaluated objectively. We recorded a new audio-visual dataset to fill a gap in the current available datasets. We were not able to find audio-visual models for classification and localization. Only the dataset audio part is evaluated with a state-of-the-art model. Secondly, we focus on the main challenge of the thesis: How to jointly use visual and audio information to solve a specific task, event recognition. The brain does not comprise a simple fusion but has multiple interactions between the two modalities to create a strong coupling between them. The neural networks offer the possibility to create interactions between the two modalities in addition to the fusion. We explore several strategies to fuse the audio and visual modalities and to create interactions between modalities. These techniques have the best performance compared to the state-of-the-art architectures at the time of publishing. They show the usefulness of audio-visual fusion but above all the contribution of the interaction between modalities. To conclude, we propose a benchmark for audio-visual classification and localization on the new dataset. Previous models for the audio-visual classification are modified to address the localization in addition to the classification
    corecore