6 research outputs found

    A Review on Web Application Testing and its Current Research Directions

    Get PDF
    Testing is an important part of every software development process on which companies devote considerable time and effort. The burgeoning web applications and their proliferating economic significance in the society made the area of web application testing an area of acute importance. The web applications generally tend to take faster and quicker release cycles making their testing very challenging. The main issues in testing are cost efficiency and bug detection efficiency. Coverage-based   testing is the process of ensuring exercise of specific program elements. Coverage measurement helps determine the “thoroughness” of testing achieved. An avalanche of tools, techniques, frameworks came into existence to ascertain the quality of web applications.  A comparative study of some of the prominent tools, techniques and models for web application testing is presented. This work highlights the current research directions of some of the web application testing techniques

    PROGRAM SLICING TECHNIQUES AND ITS APPLICATIONS

    Get PDF
    Program understanding is an important aspect in Software Maintenance and Reengineering. Understanding the program is related to execution behaviour and relationship of variable involved in the program. The task of finding all statements in a program that directly or indirectly influence the value for an occurrence of a variable gives the set of statements that can affect the value of a variable at some point in a program is called a program slice. Program slicing is a technique for extracting parts of computer programs by tracing the programs’ control and data flow related to some data item. This technique is applicable in various areas such as debugging, program comprehension and understanding, program integration, cohesion measurement, re-engineering, maintenance, testing where it is useful to be able to focus on relevant parts of large programs. This paper focuses on the various slicing techniques (not limited to) like static slicing, quasi static slicing, dynamic slicing and conditional slicing. This paper also includes various methods in performing the slicing like forward slicing, backward slicing, syntactic slicing and semantic slicing. The slicing of a program is carried out using Java which is a object oriented programming language

    Regression Testing Ajax Applications: Coping with Dynamism

    Full text link

    Tests de régression dans les systèmes orientés objet : une approche basée sur les modèles

    Get PDF

    Regression Test Selection by Exclusion

    Get PDF
    This thesis addresses the research in the area of regression testing. Software systems change and evolve over time. Each time a system is changed regression tests have to be run to validate these changes. An important issue in regression testing is how to minimise reuse the existing test cases of original program for modied program. One of the techniques to tackle this issue is called regression test selection technique. The aim of this research is to signicantly reduce the number of test cases that need to be run after changes have been made. Specically, this thesis focuses on developing a model for regression test selection using the decomposition slicing technique. Decomposition slicing provides a technique that is capable of identifying the unchanged parts of the system. The model of regression test selection based on decomposition slicing and exclusion of test cases was developed in this thesis. The model is called Regression Test Selection by Exclusion (ReTSE) and has four main phases. They are Program Analysis, Comparison, Exclusion and Optimisation phases. The validity of the ReTSE model is explored through the application of a number of case studies. The case studies tackle all types of modication such as change, delete and add statements. The case studies have covered a single and combination types of modication at a time. The application of the proposed model has shown that signicant reductions in the number of test cases can be achieved. The evaluation of the model based on an existing framework and comparison with another model also has shown promising results. The case studies have limited themselves to relatively small programs and the next step is to apply the model to larger systems with more complex changes to ascertain if it scales up. While some parts of the model have been automated tools will be required for the rest when carrying out the larger case studies
    corecore