5,927 research outputs found

    Persistence of political partisanship : evidence from 9/11

    Get PDF
    This paper empirically examines whether the act of deciding to support a political party can impact partisan leanings years later. We use the discontinuity in the probability of being registered to vote around the 18th birthday to look at the impact of registration after the 9/11/01 attacks on party of registration. We first show that 9/11 increased Republican registration by approximately 2%. Surprisingly, these di¤erences in registration patterns fully persist over the two year period from 2006 to 2008, even for a group of registrants who moved and changed their registration address. We find full persistence for those registered in zip codes within two miles of a four year university, suggesting that persistence is unlikely to be explained by lack of easy access to or inability to process information. Instead, we suggest an interpretation of our findings based upon either cognitive or social biases

    Combining Functional Data Registration and Factor Analysis

    Full text link
    We extend the definition of functional data registration to encompass a larger class of registered functions. In contrast to traditional registration models, we allow for registered functions that have more than one primary direction of variation. The proposed Bayesian hierarchical model simultaneously registers the observed functions and estimates the two primary factors that characterize variation in the registered functions. Each registered function is assumed to be predominantly composed of a linear combination of these two primary factors, and the function-specific weights for each observation are estimated within the registration model. We show how these estimated weights can easily be used to classify functions after registration using both simulated data and a juggling data set.Comment: The paper was updated with a better real data exampl

    A surgical system for automatic registration, stiffness mapping and dynamic image overlay

    Full text link
    In this paper we develop a surgical system using the da Vinci research kit (dVRK) that is capable of autonomously searching for tumors and dynamically displaying the tumor location using augmented reality. Such a system has the potential to quickly reveal the location and shape of tumors and visually overlay that information to reduce the cognitive overload of the surgeon. We believe that our approach is one of the first to incorporate state-of-the-art methods in registration, force sensing and tumor localization into a unified surgical system. First, the preoperative model is registered to the intra-operative scene using a Bingham distribution-based filtering approach. An active level set estimation is then used to find the location and the shape of the tumors. We use a recently developed miniature force sensor to perform the palpation. The estimated stiffness map is then dynamically overlaid onto the registered preoperative model of the organ. We demonstrate the efficacy of our system by performing experiments on phantom prostate models with embedded stiff inclusions.Comment: International Symposium on Medical Robotics (ISMR 2018

    Hierarchical Bayesian auto-regressive models for large space time data with applications to ozone concentration modelling

    No full text
    Increasingly large volumes of space-time data are collected everywhere by mobile computing applications, and in many of these cases temporal data are obtained by registering events, for example telecommunication or web traffic data. Having both the spatial and temporal dimensions adds substantial complexity to data analysis and inference tasks. The computational complexity increases rapidly for fitting Bayesian hierarchical models, as such a task involves repeated inversion of large matrices. The primary focus of this paper is on developing space-time auto-regressive models under the hierarchical Bayesian setup. To handle large data sets, a recently developed Gaussian predictive process approximation method (Banerjee et al. [1]) is extended to include auto-regressive terms of latent space-time processes. Specifically, a space-time auto-regressive process, supported on a set of a smaller number of knot locations, is spatially interpolated to approximate the original space-time process. The resulting model is specified within a hierarchical Bayesian framework and Markov chain Monte Carlo techniques are used to make inference. The proposed model is applied for analysing the daily maximum 8-hour average ground level ozone concentration data from 1997 to 2006 from a large study region in the eastern United States. The developed methods allow accurate spatial prediction of a temporally aggregated ozone summary, known as the primary ozone standard, along with its uncertainty, at any unmonitored location during the study period. Trends in spatial patterns of many features of the posterior predictive distribution of the primary standard, such as the probability of non-compliance with respect to the standard, are obtained and illustrated

    Joint Modeling and Registration of Cell Populations in Cohorts of High-Dimensional Flow Cytometric Data

    Get PDF
    In systems biomedicine, an experimenter encounters different potential sources of variation in data such as individual samples, multiple experimental conditions, and multi-variable network-level responses. In multiparametric cytometry, which is often used for analyzing patient samples, such issues are critical. While computational methods can identify cell populations in individual samples, without the ability to automatically match them across samples, it is difficult to compare and characterize the populations in typical experiments, such as those responding to various stimulations or distinctive of particular patients or time-points, especially when there are many samples. Joint Clustering and Matching (JCM) is a multi-level framework for simultaneous modeling and registration of populations across a cohort. JCM models every population with a robust multivariate probability distribution. Simultaneously, JCM fits a random-effects model to construct an overall batch template -- used for registering populations across samples, and classifying new samples. By tackling systems-level variation, JCM supports practical biomedical applications involving large cohorts

    Spatial-temporal data mining procedure: LASR

    Full text link
    This paper is concerned with the statistical development of our spatial-temporal data mining procedure, LASR (pronounced ``laser''). LASR is the abbreviation for Longitudinal Analysis with Self-Registration of large-pp-small-nn data. It was motivated by a study of ``Neuromuscular Electrical Stimulation'' experiments, where the data are noisy and heterogeneous, might not align from one session to another, and involve a large number of multiple comparisons. The three main components of LASR are: (1) data segmentation for separating heterogeneous data and for distinguishing outliers, (2) automatic approaches for spatial and temporal data registration, and (3) statistical smoothing mapping for identifying ``activated'' regions based on false-discovery-rate controlled pp-maps and movies. Each of the components is of interest in its own right. As a statistical ensemble, the idea of LASR is applicable to other types of spatial-temporal data sets beyond those from the NMES experiments.Comment: Published at http://dx.doi.org/10.1214/074921706000000707 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore