1,983 research outputs found

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models

    Efficient multitemporal change detection techniques for hyperspectral images on GPU

    Get PDF
    Hyperspectral images contain hundreds of reflectance values for each pixel. Detecting regions of change in multiple hyperspectral images of the same scene taken at different times is of widespread interest for a large number of applications. For remote sensing, in particular, a very common application is land-cover analysis. The high dimensionality of the hyperspectral images makes the development of computationally efficient processing schemes critical. This thesis focuses on the development of change detection approaches at object level, based on supervised direct multidate classification, for hyperspectral datasets. The proposed approaches improve the accuracy of current state of the art algorithms and their projection onto Graphics Processing Units (GPUs) allows their execution in real-time scenarios

    NOVA INFORMACIJSKA TEHNOLOGIJA PROCJENE KORISTI IZDVAJANJA CESTA POMOĆU SATELITSKIH SNIMKI VISOKE REZOLUCIJE TEMELJENE NA PCNN I C-V MODELU

    Get PDF
    Road extraction from high resolution satellite images has been an important research topic for analysis of urban areas. In this paper road extraction based on PCNN and Chan-Vese active contour model are compared. It is difficult and computationally expensive to extract roads from the original image due to presences of other road-like features with straight edges. The image is pre-processed using median filter to reduce the noise. Then road extraction is performed using PCNN and Chan-Vese active contour model. Nonlinear segments are removed using morphological operations. Finally the accuracy for the road extracted images is evaluated based on quality measures.Izdvajanje cesta pomoću satelitskih slika visoke rezolucije je važna istraživačka tema za analizu urbanih područja. U ovom radu ekstrakcije ceste se uspoređuju na PCNN i Chan-Vese aktivnom modelu. Teško je i računalno skupo izdvojiti ceste iz originalne slike zbog prisutnosti drugih elemenata ravnih rubova sličnih cestama. Slika je prethodno obrađena korištenjem filtera za smanjenje smetnji. Zatim se ekstrakcija ceste izvodi pomoću PCNN i Chan-Vese aktivnog modela konture. Nelinearni segmenti su uklonjeni primjenom morfoloških operacija. Konačno, točnost za ceste izdvojene iz slika se ocjenjuje na temelju kvalitativnih mjera
    corecore