7,754 research outputs found

    Testing real-time multi input-output systems

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tioco-M theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtioco^M relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtioco^

    Testing multi input-output real-time systems (Extended version)

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tiocoM theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtiocoM relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtiocoM

    A test generation framework for quiescent real-time systems

    Get PDF
    We present an extension of Tretmans theory and algorithm for test generation for input-output transition systems to real-time systems. Our treatment is based on an operational interpretation of the notion of quiescence in the context of real-time behaviour. This gives rise to a family of implementation relations parameterized by observation durations for quiescence. We define a nondeterministic (parameterized) test generation algorithm that generates test cases that are sound with respect to the corresponding implementation relation. Also, the test generation is exhaustive in the sense that for each non-conforming implementation a test case can be generated that detects the non-conformance

    Inputs and outputs in CSP : a model and a testing theory

    Get PDF
    This article addresses refinement and testing based on CSP models, when we distinguish input and output events. In a testing experiment, the tester (or the environment) controls the inputs, and the system under test controls the outputs. The standard models and refinement relations of CSP, however, do not differentiate inputs and outputs and are not, therefore, entirely suitable for testing. Here, we consider an alphabet of events partitioned into inputs and outputs, and we present a novel refusal-testing model for CSP with a notion of input-output refusal-traces refinement. We compare that with the ioco relation often used in testing, and we find that it is more widely applicable and stronger. This means that mistakes found using traditional ioco testing do indicate mistakes in the development. Finally, we provide a CSP testing theory that takes into account inputs and outputs. With our theory, it becomes feasible to develop techniques and tools for automatic generation of realistic and sound tests from CSP models. Our work reconciles the normally disparate areas of refinement and (formal) testing by identifying how ioco testing can be used to inform refinement-based results and vice-versa

    Test Derivation from Timed Automata

    Get PDF
    A real-time system is a discrete system whose state changes occur in real-numbered time [AH97]. For testing real-time systems, specification languages must be extended with constructs for expressing real-time constraints, the implementation relation must be generalized to consider the temporal dimension, and the data structures and algorithms used to generate tests must be revised to operate on a potentially infinite set of states

    Testing Transition Systems: An Annotated Bibliography

    Get PDF

    A theory of delay-insensitive systems

    Get PDF
    xiii+134hlm.;24c
    corecore