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Abstract

The problem of deciding whether an observed behaviour ismable is theracle problemWhen
testing from a finite state machine (FSM) it is easy to soleedhacle problem and so it has received
relatively little attention for FSMs. However, if the systainder test has physically distributed interfaces,
called ports, then in distributed testing we observe a lbeale at each port and we compare the set of
local traces with the set of allowed behaviours (globaldgcThis paper investigates the oracle problem
for deterministic and non-deterministic FSMs and for tweemdative definitions of conformance for
distributed testing. We show that the oracle problem candbeed in polynomial time for the weaker
notion of conformanceX,,) but is NP-hard for the stronger notion of conformarice)( even if the FSM
is deterministic. However, when testing from a determiaiEEM with controllable input sequences the
oracle problem can be solved in polynomial time and simiéauits hold for nondeterministic FSMs.
Thus, in some cases the oracle problem can be efficienthedolhen usingc, and where this is not

the case we can use the decision proceduréfpras a sound approximation.

Index Terms

D2.4: Software Engineering/Software/Program Verificatio2.5: Software Engineering/Testing and
Debugging, H.3.4 [Systems and Software]: Distributed esyst, finite state machine, nondeterminism,

test oracle, controllability, local observability.

. INTRODUCTION

There is increasing interest in and use of distributed syste&Some of these systems have
physically distributed interfaces, often called portsgd @m agent at a pogt only observes the
sequence of interactions that occupathis being called a local trace. Examples of such systems
include web services but also cloud computing. As a resutheffe being physically distributed
ports, no individual agent observes the global trace of yiséesn and a set of local traces can be
consistent with several global traces. The presence aflaistd ports can thus have a significant
impact on testing (see, for example, [1], [2], [3], [4], [3®], [7], [8]). Typically, systems with
distributed ports are state-based and state-based syatemsually specified using languages
based on finite state machines (FSMs) [9], [10], [11], [12B][ [14], [15], [16] or input output
transition systems [17]. This has led to interest in testiygfems that have distributed interfaces
and are specified using FSMs [18], [9], [2], [3], [13], [4].]1319], [7], [8] and, more recently,

input output transition systems [20], [21].



In this paper we are interested black-box testingin which only inputs and outputs are
observed. When testing system under test (SUT) is necessary to check that an observed
behaviour is consistent with the requirements or speddicaénd this is called theracle
problem Ideally, we have an automated oracle and in many cases uffisient to use a model
or specification from which the SUT was developed. In thisgpape assume that there is
an FSM model of the SUT. Normally this makes the oracle pmobtevial since we check
that an observed trace is a trace of the model and this can me idolow order polynomial
time. However, if the SUT has physically distributed pohsrt we obtain different conformance
relations since the observation made is a set of local trames at each port, rather than a
global trace. As a result, it is no longer sufficient to chea&tta (global) trace is a trace of the
model. Instead, we need to check that the set of observatiocal traces) is consistent with
the specification.

It has been known for over 20 years that the presence of mdlysidistributed ports intro-
duces additional controllability and observability prefls into testing and these can limit the
effectiveness of testing [2]. Let us suppose that we intendpply input sequence;z, when
FSM M is in states, z; is input at portp, and z, is input atq # p. If, when in states, M
does not send output pin response tac; then the tester aj cannot know when to send,.
This creates a controllability problem as illustrated in ®™Sin Figure 1 in which each vertical
line represents a timeline, time progressing as we move dolume. A controllability problem
exists when a tester is required to send an input but was wolved in the previous transition
and so does not know when to send this input. If a sequencewsitions does not have this
problem it iscontrollable However, there may be no controllable sequence that sstiaftest
objective such as executing a particular transition [7].

Now let us suppose that;z, is to be input whenV/ is in states and x; andz, are input
at portp. Suppose further that; is expected to lead to outpytat portp andy’ at portq # p
andz, is expected to lead to outpytat p only. Thenz,yz,y should be observed at pgstand
vy’ should be observed at These local traces are still observed,ifs produced in response to
x1 andy andy’ are produced in response ig, in which case there is fault masking. These
two scenarios are illustrated by MSC2 and MSC3 in Figure Zs€htransitions could lead to
failures if used within aifferentsequence.

Since the presence of multiple ports affects the ability ofhbtesters and users to observe
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Fig. 1. A controllability problem

system behaviour, we need to define conformance relatiandistributed systems: if we test
using the wrong conformance relation then we may obtain ttemgvverdict (the result of testing
is incorrect) or testing may be inefficient. An incorrectdiet may be produced since we might
declare a behaviour faulty even when the users cannot gissh between this and a correct
behaviour. Inefficiency might occur through producing sest find ‘faulty’ behaviours that are
indistinguishable from correct behaviours and so do natadlgt represent failures. Most previous
work has used traditional conformance relations desigaedyfstems that have a single interface
and has attempted to produce input sequences that do notchatellability or observability
problems. The resultant test generation algorithms lacleigdity, since these problems cannot
always be overcome. Even worse, since the wrong conformeglagon is used, the system
under test may fail such a tesven though it cannot be distinguished from a correct system
use

Recent work has defined what it means for an input sequencastmgliish two states
or deterministic FSMs (DFSMs) when restricting testing tput sequences that cause no
controllability problems and has defined a correspondingfarmance relation [4]. This has
been extended to more general conformance relations, thatised in this paper, for both
DFSMs and nondeterministic FSMs (NFSMs) [22]. This has &lsen extended to input output

transition systems [20]. These conformance relationsateftee inability of a tester or user to
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Fig. 2. An observability problem

observe the global trace. Interestingly, the notion of mghocal observations has been explored
in the context of refinement and CSP, although the techrssaleis are different [23]. However,
the oracle problem has not previously been considered &setltonformance relations and this
is the problem studied here.

Previous work has aimed to determine the global trace thetiroed in testing or to check
properties of this. Examples include work on run-time vesifion (see, for example, [24]). In

addition, there are approaches in which the testers conuatgnin order to determine the global



trace that occurred (see, for example, [25], [26]). Thers &Bo been a significant amount
of work on monitoring, in which we wish to determine the glblktate of the SUT (see, for
example, [27], [28], [29], [30], [31]). In contrast to thesee are concerned with black-box
testing and we are interested in conformance relationsdiyaiiure the observational power of
potential users. There is another line of work that has defeenformance relations such as
mioco for systems with distributed interfaces but this assumas global traces are observed;
it differs from traditional conformance relations suchiaso by allowing the SUT to block all
input at a given port (see, for example, [32], [33], [34]).

This paper investigates the oracle problem in the contexesting a black-box SUT with
physically distributed ports against a (possibly nondeteistic) FSM. We need different oracles
for different conformance relations so it considers the fweviously defined conformance
relations for testing from an FSM with distributed ports [2%/e give an algorithm for the
weaker conformance relatian,, and prove that this operates in low order polynomial time. We
give two algorithms for the other conformance relation a general algorithm and an algorithm
for the special case where we are testing from a DFSM with &raltable input sequenéeWhile
it transpires that the algorithm for using controllableuhgequences when testing from DFSMs
operates in low order polynomial time, the general algamitihas exponential time complexity.
We then prove that the general oracle problem for testing faoDFSM withC, is NP-hard and
this problem is NP-hard for NFSMs even if we restrict attemtio controllable input sequences.
We then give sufficient conditions, on the input sequencerothe NFSM, under which the
oracle problem for NFSMs can be solved in polynomial timeit i6 not feasible to solve the
oracle problem forC, then we can instead use an oracle fof, and this provides a sound
approximation: it will never declare an SUT that conformghe specification to be faulty but
may miss failures.

The paper is structured as follows. Section Il providesiprielary definitions while Section
Il shows how the oracle problem can be solved fqy. Section IV then explores properties of
C, and Section V gives algorithms for solving the oracle probfer C,. Section VI then gives
the complexity results for the oracle problem with) and finally Section VII gives conclusions

and describes avenues for future work.

In Section Il we formally define what it means for an input seuge to be controllable.



[I. PRELIMINARIES
A. Basic definitions

Given setsdA and B, A <> B denotes the set of relations betweérand B. Given a setd we
let A* denote the set of finite sequences of elementd ahd givena € A we leta* denote the
set{a}*. Given a sequence, pre(o) is the set of prefixes of and given a sef of sequences
we letpre(Z) denote the set of prefixes of sequences ftomNe usec to represent the empty
sequence.

In this paper we consider systems that have multiple ponterfaces). If there are: ports
then we represent these with integers and so let th@ st ports equal1, ..., m}. Typically
we will usez, to denote input at pogt andy, to denote output at pogt, in each case possibly

priming names.

B. Finite state machines

A (completely specified) multi-port finite state machihewith m ports is defined by a tuple
(S, 50, X, Y, h) in which:

1) S is a finite set of states;

2) sp € S is the initial state;

3) X = X;U...UX,, is the finite input alphabet in which for all € P, X,, is the set of

inputs that can be received at For allp, ¢ € P with p # ¢, X, N X, = 0;

4) Y = (YLUu{-}) x...x (Y, U{-}) is the finite output alphabet, where for alk P, Y,
denotes the outputs the SUT can send to poftyy,...,y,) € Y denotes the valug,
being sent to porp for all p € P while — denotes no output being produced; and

5) h is the transition relation of typ& x X < S x Y.

As a consequence of the definition, an FSM can respond to am with at most one output
at each port. In this paper we only consider completely $ieecFSMs: if an FSMM is not
completely specified then typically it is possible to conl&/ by either adding an error state
or by adding self-loop transitions, that do not change thgstwith no output. Since this paper
concerns systems with multiple ports, a multi-port finitatstmachine will be called &nite
state machine (FSMand when we wish to refer to an FSM with one port we call giagle-
port FSM Note that while we require th&, and also the’, to be disjoint, this can always be

achieved by labelling an input or output with the correspoggort number.

7



st1/(r1,m2) ba/(r1,r2)

Stg/(T‘l ,T‘Q)

v

@<

ai/(r1,r2)

a’z/(_a_)
bi/(r1,r2)

b1/(=-)

az/(a,a)
az/(r1,r2)

a1/(a,a)

b2/ (b,b)

Fig. 3. Finite State Machiné/,

Figure 3 gives an example of an FSM with two ports. This is aps&model of a voting
system in which two agents vote eitheror b and if they agree then the result is returned to
them. Either party can start the process, sending a stasagest; at port1 and st, at port
2) and in response the model sends a requgdb portp (p € {1,2}). Each agent can then
vote eithera (inputsa;,ay at portsl and 2 respectively) orb (inputs by, b, at ports1 and 2
respectively). If the two votes are the same then output é &e each agent confirming the
vote and otherwise the system returns to a state from whiehagfents can vote and requests
them to vote. In order to simplify Figure 3 we have not incld@dl of the transitions; where no
transition from state; with an inputz is shown there is an implicit transition froma to s; with
input z and output(—, —). In addition, in Figure 3 we have included two copies of stgteone
defines the transitions leaving and the other defines the transitions that endyinFigure 3 is

based on an input output transition system given in [21].



If (s',y) € h(s,z) then this means that if/ receives input: when in states then it can move
to states’ and produce output. This defines a transition= (s, s’, x/y). Consider, for example,
the FSM M, shown in Figure 3. Heré(so, st1) = {(s1,(r1,72))} and so if M, receives input
st; when in states, then it moves to state; and outputs-; to port1 andr, to port2. This
defines the transitiofisy, s1, st1/(r1,72)).

FSM M is a deterministic FSM (DFSMjf for all s € S andz € X, we have that
|h(s,z)| = 1. Clearly M, is deterministic. A sequence of consecutive transitions ¢, ...,

t; = (si, 8i41,%i/y:), IS apaththat hadabelo = = /y1, . . ., x;/y, andstarting states;. The label

of p is said to be an input/output sequence and algtobal trace In addition, theinput portion

of ¢ is the input sequence,, ..., z;. For example, patlisg, s1, st1/(r1,72))(s1, S2,a1/(—, —))

of M, has labelst,/(r1,7r2)a;/(—, —), which has input portiost,a;, and starting state,. The
FSM M defines the regular languadg M) of labels of paths with starting statg. Similarly,

Ly (s) is the set of labels of paths with starting statelf w is an input sequence then we
let M(w) denote the set of global traces (M) that have input portionv. For example,
My(stiar) = {st1/(r1,m2)a1/(—,—)}. An FSM N with the same input and output alphabets
as M is said to be aeductionof M if L(N) C L(M). FSMs M and N are equivalentif
L(N) = L(M) and a DFSMM is minimal if no DFSM with fewer states is equivalent to
M. When testing from a single-port FSW it is normal to use the conformance relation that
requires the implementation FSM to be a reduction\bf

We can define the projection of a global trace. Givea (y1,...,y,) € Y andp € P we
let 7,(y) denotey, if y, # — and otherwiser,(y) = ¢. We can extend this to global traces in

the following way.

mp(e) = ¢
() (Y1, - ym))o) = mylo) if o & X, Ay, = —
(@) (W, ym))o) = amy(o) if x€ X, Ay, =—
(/Y ym))o) = ypmy(o) i o Xp Ay, # —
m((2/ (Y1, - ym))o) = zypmp(o) if € Xp Ay, # —

For exampler (st1/(r1,r9)a1/(—, —)) = styria; andmy(st1/(r1,r9)ar/(—, —)) = ro.



Two global traces are indistinguishable if their projenti@re identical at each port. More for-
mally, global traces; ando, are indistinguishable, writtety, ~ o5, if for all p € P we have that
mp(01) = m,(02). FOr examplest, /(ry,ra)ar/(—, —)as/(a,a) ~ st1/(r1,m2)az/(—, —)a1/(a, a).

Clearly ~ is an equivalence relation.

C. Controllability problems

It is well known that the presence of multiple ports can leactantrollability problems in
testing. Essentially, a controllability problem occursemhthe tester at a poft € P is meant
to apply an inputz but cannot know when to do this based on the observationshtwa been
made atp. For DFSMs, this has been characterised in terms of globeé# being controllable

(see, for example, [4]).

Definition 1 A pathp = ¢ ...t t; = (si, Siv1, i /yi), IS controllableif for all 1 < i < k we
have that the porp € P such thatz; € X, satisfies the condition that,(x;_;/y;—1) # €. We

also say that the label g is controllable

It is straightforward to see that the pdif, si, st1/(r1,72)) (51, S2, a2/(—, —))(S2, S0, a1/(a, a))
of M, is not controllable since the third input is at pdrtout the second transition does not

have either input or output dt

Definition 2 Given a DFESMM an input sequence = x1, ..., x; IS said to becontrollable for

M if the trace M (w) is controllable. WhenV/ is clear we simply say thab is controllable

Recent work [22] has looked at testing from a possibly nosaeinistic FSM /. Here, we
need a slightly different definition of what it means for amuih sequence to be controllable
since an input sequence may be capable of triggering more dha path through/. The
corresponding global traces might lead to different pdesibservations at a popte P and we
require that irrespective of which trace occurs, the teater must be able to determine when
to apply its input.

Consider, for example, an FSM with two ports and input segeen = z,x;x5, in which
x1 is at portl andz, is at port2, that can lead to traces, /(y1, —)x1/(—, y2)z2/(y1,y2) and
x1/(—=,y2)x1/(—,y2)x2/(y1,y2). Here both traces are controllable but after obserwnghe

tester at por2 does not know whether to wait for anothgr, which is required if the second
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trace occurs, or apply input,, which is required if the first trace occurs. Here, a condtality
problem occurs because a tester must make a decision megastien to send an input but
cannot do this on the basis of its own observations. This ép there are two possible traces
o1 ando, such that the tester at pgrtshould send input after;, it should not send input after
o9 (or should send a different input) and yet the testep aannot distinguish between and

oy (mp(01) = m,(02)). This can only happen i#, ando, have different numbers of inputs. The
following defines what it means for an input sequence to berctiable for an FSM that might

be nondeterministic and is based on a definition in [22].

Definition 3 Given FSMM an input sequence is controllablefor M if there does not exist
01,09 € pre(M(w)) that have different numbers of inputs such that the nexttitppbe applied
after o, is to be applied at a porp € P such thatr,(o1) = 7,(02). Wherel is clear from the

context we say thab is controllable

The following gives an alternative characterisation.

Proposition 1 Given FSMM an input sequence is controllable for M if there does not exist
inputz, € X, ando,, 0o € M(w) with prefixess; and o, respectively such that,(o}) = m,(c%)
and the following hold:

1) There existg € Y such thato}z,/y € pre(M(w)); and

2) There does not exist € Y such thato)z,/y € pre(M(w)).

[1l. WEAK CONFORMANCE AND LOCAL ORACLES

In some situations the agents at the separate ports of thev@8lUTever interact with one
another or share information with other agents that carrantewvith one another. If this is the
case then it is sufficient that the local behaviour obsertedd@ortp is a local behaviour ofi/.

This situation is captured by the following conformancetiein [22].

Definition 4 Given FSMsN and M with the same input and output alphabets and the same
set of ports,N C, M if for every global traces € L(N) and portp € P there exists some
o' € L(M) such thatr,(¢’) = m,(c). FSM N is then said toveakly conformto FSM M.

In testing on the basis of,, it is sufficient to place a local tester at each port and give

each local tester its own local oracle. This allows eachlloester to return a verdict: pass
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if the behaviour it observes is consistent with its localctgaand otherwise fail. Since for
each transition there is only one port that provides inp&WE are not the best formalism for
describing these local oracles and instead we use finitereiéo
A finite automaton (FA) is defined by a tuplé®, g0, A, 0, Q) in which @ is a finite set
of statesy, € @ is the initial state A is the finite input alphabet is the state transfer relation
of type @ x (AU{7}) +> @, andQr C @ is the set of final states. Hereis used to represent
empty/silent transitions that require no input.Af receivesa € A when in stateg € @ then
it moves to a state i(q,a). If §(q,7) is defined andy € (¢, 7) then whenF is in stateq
it is possible for it to move to stat¢ spontaneously without receiving input. We can use the
following notation to represent the possible stateg'cdifter receiving an input sequence.
1) ¢ 5 ¢ if ¢ €6(q,a)forac (AU{r))
2) ¢ = (¢ if there exists stateg, . .., q., With ¢; = g andg;, = ¢/, such that for alll <i < k
we have thai; = ¢,.,. Note that for all stateg we have thay = q.

3) ¢ = ¢ for a € A if there exists stateg,, ¢, such thaty = ¢;, ¢; — ¢, andg, = ¢/.

4) Giveno = ay,...,a, € A* we write ¢ = ¢ if there existq, ..., g1 With ¢; = ¢ and
ge+1 = ¢’ such that for alll < i < k we have thay; = ¢, 1.

Essentially, for a sequenee = a4, ...,a, € A*, ¢ = ¢ holds if and only if it is possible
to move from state; to stateq’ using input sequence. FA F' defines the languagg(F') of
sequences that can takéfrom its initial state to a final state. More formallj(F') is the set
of sequences € A* such that there is a statec ) such thaty, = q.

Algorithm 1 takes an FSMV/ and portp and builds a local oraclé/,. It achieves this by
replacing each transition af/, of the formt = (s, ', z/y), by a path froms to s’ in M, with
label m,(z/y). There are essentially three cases to considet,(if/y) is the empty sequence
then we add a transition from to s’ with label 7. If 7,(x/y) contains one element (an input
or an output) then we add a transition fromto s with this element as its label. Finally, if
m,(x/y) = xy, for somey, € Y, then we add an intermediate state a transition froms to
s; with label z and a transition frons, to s’ with label y,. We makeS the set of final states
in order to avoid the languagk(/,) including the label of a path that ends at one of the new
intermediate states and thus that includes the input ofreitran but not the output.

Consider again FSM/, and portl. Then transition(s;, ss, a1 /(—, —)) would be represented

by a transition(sy, so,a1). Transition (si, s5,b2/(—, —)) would be represented by transition
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(s1, 5, 7). For transition(so, s1, st1/(r1,72)) we would have to add an intermediate staje
and two transitiong sy, s;, st1) and (s, s1,71). States, is not a final state since otherwise it

would suggest that in statg it is possible for the input oft; to not produce output at pott

Algorithm 1 Building the local oraclelz,
Input FSM M = (S, 59, X, Y, h) and portp
Let X, denote the set of inputs atandY), denote the set of outputs at
Let S":=5;:=0
for all ((s;,z),(s;,y)) € h with y, = m,(y) do
if x € X, andy, # — then
Define a new state, and letS’ := 5" U {s;}; d := d U {((s4,2), s¢), ((St,9p),5;) }

else
if € X, andy, = — then
0:=30U{((ss,2),55)}
else
if 2 ¢ X, andy, # — then
6 =06 U{((5i,9p),55)}
else
if z¢& X,Ay,=— then
d:=08U{((s:,7),55)}
end if
end if
end if
end if
end for
Output FA M, = (', 50, X, U Y, U {7},4, 5)

Proposition 2 Algorithm 1 is correct in the sense that, when given F&Mand portp it returns

FA M, such thatL(M,) = {o,|30 € L(M).0, = m,(0)}.
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Proof: We will prove thato, € L(M,) if and only if there existsr € L(M) such that
o, = my(0).

First assume that, € L(M,) and thus that there is a path from the initial states, of M,
that has labeb,. We will use proof by induction on the length of the shortastis path. The
base case, which is the empty path (andrse- €) holds immediately. Lep, denote a shortest
path of M, with label o, and assume that the result holds for all shorter paths (ithective
hypothesis). Lep, = p,,p;, such thaly is the shortest non-empty prefix pf that ends in a final
state (a state fron§) and let this state be denotedLet o, ando, denote the labels of, and
respectively. By the definition af/,, there is a path i/ from s, to s with label z/y such that
o, = m(z/y). Let M, denoteM with s as its initial state. By the inductive hypothesis applied to
sequencer, and M, there is some” € L(M,) such thatr,(c”) = o,. Thus,o, = m,(z/y)o,,

o, = mp(c”) for somes” € L(M,) and soo, = m,(x/yc") andx/yc” € L(M) as required.

Now assume that € L(M) and we require to prove that, = m,(c) € L(M,). We will
use proof by induction on the length ef The result holds immediately for the base case with
length 0. Inductive hypothesis: for every sequengewith length less thark we have that if
o € L(M) theno, = m,(c) € L(M,). Leto = z1/y1, ..., zx/yr and lets denote a state reached
by the first transition in a path that has starting statg and labels. By construction, there is a
path in M, from s, to s with labelr,(z,/y,). The result thus follows by applying the inductive
hypothesis tors /ys, . . ., z2/y2 and M;. [ ]

The following result says that if the local tester at ppmbserves a local trace that is not in
L(M,) then we know that the SUT has produced a global trace thattisllwved.

Proposition 3 If Algorithm 1 returns FAM, when given FSMM and portp € P and the
SUT N has a global traces such thatr,(c) ¢ L(M,) then we do not have thay C,, M. In
addition, if for all o € L(N) and p € P we have thatr,(c) € L(M,) thenN C,, M.

Proof: First assume that Algorithm 1 returns EA, when given FSMM and portp € P
and the SUTN has a global trace such thatr,(c) ¢ L(M,). By Proposition 2, this means
that there does not exist € L(A) such thatr,(c’) = m,(c). By Definition 4, this means that
we do not have thalv C,, M as required.

Now assume that for atr € L(N) andp € P we have thatr,(0) € L(M,). By Proposition
2, this means that for at € L(N) andp € P there exists’ € L(M) such thatr,(o’) = 7m,(0).
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By Definition 4, this means that we have th¥tC,, M as required. [ |
Thus, in order to solve the oracle problem for an F8Mand a set of local traces, ..., 0,,,

when usingC,, it is sufficient to solve the oracle problem for eakh, ando,. Thus, the oracle

problem forC,, reduces to solvingn instances of the membership problem for finite automata

and so can be solved in low order polynomial time.

IV. A STRONGER FORM OF CONFORMANCE

We have seen that thé&/, returned by Algorithm 1 can be used as oracles when test-
ing with C,,. However, in some situations the traces observed at therelift ports can be
brought together afterwards, possibly through the agelaised at these ports interacting with
other agents. Consider, for example, the FSK) shown in Figure 4. This, for example, con-
tains the tracest,/(r1,r2)a1/(—, —)b2/(a,b). This clearly is not equivalent to any trace of
My under ~ and should correspond to an incorrect behaviour: each us@ves that other
party has agreed to their vote. However, if we consider thmeptions of this trace we find
that 7 (st1/(r1,72)a1/(—, —)b2/(a,b)) = stiriaia = m(st1/(r1,m9)a1/(—, —)as/(a,a)) and
mo(st1/(r1,r2)ar/(—, —)ba/(a,b)) = starabeb = mi(st1/(r1,72)b1/(—, —)b2/(b,b)). Thus, nei-
ther tester observes a failure.

In order to overcome this issue we get the following notioncohformance in which we
require every global trace of the implementation to be imuligiishable from a global trace of

the specification [22].

Definition 5 Given FSMsN and M with the same input and output alphabets and the same

set of ports,N C, M if for all o € L(N) there exists some’ € L(M) such thate’ ~ o.

We can test for_, by placing local testers at each port and bringing togetherabserved
local traces after testing. While the testers cannot symmabe during testing they can send their
observations to a single agent after testing.

The conformance relation, places stronger constraints on the SUT than Proposition 5
below says that it is possible for the verdicts returned thasethe local oracles to be pass and
yet the set of local traces to not be consistent with any behawf M and thus proves that

C,. Is weaker thar_,.
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Fig. 4. Finite State Machiné/,

Proposition 4 Given an FSMM with m ports and a tracers, let us suppose that for every port
p € P we have thatr,(c) € L(M,) for the FA M, returned by Algorithm 1 when giveld and
p. It is possible that there is no global tracé € L(M) such thato’ ~ o.

Proof: It is sufficient to consideM, and the tracest,/(ry,r2)a1/(—, —)b2/(a,b) of M.
|

Proposition 5 Given FSMsN and M with the same input and output alphabets and the same
set of ports, ifN T, M thenN C, M. The converse is not the case in the sense that it is
possible thatv' =, M but we do not have thaV =, M.

Proof: For the first part, assume that T, M, o € L(N), andp € P. It is sufficient to
prove that there exists’ € L(M) such thatr,(o) = m,(c’). But, sinceN T, M, there exists

o' € L(M) such thats ~ ¢’ and so the result follows.
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For the second part, consider an FS¥ with one state and two ports in which the response
to inputz at port1 is eithery; at1 andy, at2 or y; at 1 andy, at 2. Further, assume thatis
the only input. Now letNV denote an FSM with one state and two ports in which the regpons
to inputx at portl is y; at1 andy, at2. We do not have thaV' =, M since the non-empty
traces of NV are not equivalent to traces 6f under~. Further, for every trace of N and port
p we have thatr,(o) is a projection of a trace af/: the trace with the same number of inputs
that always takes the transition that has the same outputaatthe transition inV. Thus, we
have thatV  C,, M as required. [ |
Thus, we know thatC,, and C, differ in general. It is natural to ask how they relate to one
another and to the reduction relation if we have only one.pastwe would expect, if there is

only one port then these three conformance relations areadgnt.

Proposition 6 Given single-port FSMg&V and M with the same input and output alphabets we
have thatV C, M if and only if V is a reduction of)M. In addition,N C, M if and only

if NV is a reduction ofM.

Proof: The first part follows from observing that when there is onhe @ort we have that
equivalence undet is just equality and s&vn =, M if and only if every global trace oN is
a trace ofM.
For the second part observe that when there is only one morevery traces we have that
m (o) = o. Thus, N C, M if and only if for every tracesr of N we have a trace’ of M
such thatr, (o) = m(¢’) and this holds if and only ifV is a reduction of). u
It is therefore interesting to consider haw, andC, relate to reduction for FSMs with more

than one port.

Proposition 7 Given FSMsN and M with the same input and output alphabets and the same

sets of ports, ifV is a reduction ofM then N T, M, but the converse is not true.

Proof: First assume thaV is a reduction of\/ and thato € L(N). It is sufficient to prove
that there is some’ ~ o such that’ € L(M). However, sinceV is a reduction ofd// we must
have thatr € L(M) and so we can simply choogé = o.

For the second part, consider the DFSWMsand N shown in Figure 5 that have two ports
1 and2. Here L(N) = ((z1/(y1, —) + x2/(—,y5))* and it is clear that all sequences ir{V)
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that start withz,/(—, y5) are also inL(M). It is also clear that all sequences iiV) that do
not contain inpute, are also inL(M) since these are all words in the langudge/(y1, —))*.
Finally, if a sequence froni.(N) is of the formo = (x1/(y1, —))"(x2/(—, y4))oo for somen
and oy € ((21/(y1.—)) + (22/(—, )" theno ~ (w2/(—,4))(x1/(y1, —))"o0 € L(M). Thus,
N C, M and yet itis clear thaf/ is minimal andN is not a reduction of\/. [ |

Proposition 8 Given FSMs/N and M with the same input and output alphabets and the same

sets of ports, ifV is a reduction ofM then N C, M, but the converse is not true.

Proof: First assume thad is a reduction ofM/, o € L(N), andp € P. It is sufficient to
prove that there is som& < L(M) such thatr,(¢') = 7,(c). However, sinceV is a reduction
of M we must have that € L(M) and so we can simply choosé = o.

For the second part, again consider the DFSMsand N shown in Figure 5. Since we have
that N T, M, from Proposition 7 we know tha¥ =, M. However, as established in the
proof of Proposition 7N is not a reduction of\/ and so the result follows. [ |

We now know thatc, is weaker than the conformance relation usually used wrstim¢efrom

an FSM. Since the reduction relation is an equivalenceioglavhen we consider (completely
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specified) DFSMs it is natural to ask whether is an equivalence relation on such DFSMs.

Proposition 9 The relationC, is not an equivalence relation on (completely specified) MES

Proof: Consider the two DFSM4/; and M, that are shown in Figure 6/, is at the top

and M, is at the bottom. In these FSMs there are three poytslenotes input at pogt € P and
yp (Or y,,y,) denotes output at poft, p € P. The differences in behaviour are only in response
to x5 and there are only differences after bathand x, have been received.

The traces of\/, that are not inl.(M/;) are those that start with an input sequence of the form
wyr2wazr w33 fOr some input sequences € %, we € {9, x3}*, andws € {1, x2}*. However,
for each tracer € L(M,) that has input portiomw; zowszqwszs for some suchwy, wsy, w3 there
is a traces’ € L(M;) with input portionw;z wyxswsxs such thate’ ~ o. Thus, M, C, M.
Since M, C, M, if C, was an equivalence relation, and so symmetric, we would tizae
M, T, M,. However, M, has the global trace = z5/y>x1 /y123/y% and there is ne’ € L(M,)

such thato’ ~ o. Thus, M; Z, M, and soC, is not an equivalence relation as required. &

Proposition 10 The relationC, is a pre-order.

Proof: It is clear thatC, is reflexive and thus it suffices to prove thaj is transitive: if

N, T, Noand N, T, N3thenN; C, N;. We therefore assume that; =, N, and
Ny E5 N3,

Since Ny T, N, for all 0 € L(N;) there existss’ € L(N,) such thate’ ~ o. Further,

sinceN, C, Nj, for all o' € L(N;) there existss” € L(N3) such thato” ~ ¢’. Thus, for all

o € L(N;) there existss” € L(N3) such thato” ~ ¢ and soN; C,; N; as required. u

V. THE ORACLE PROBLEM FORLC

In testing we need to determine whether an observed belragiawonsistent with the spec-
ification. This is trivial for testing from a single-port DE5since here the input sequence
defines a single input/output sequence and it is not much ahéfreult for an NFSM. We have
seen that it is also straightforward when testing with thefaonance relatior-,,: we simply
construct the),, and use these. In this section we explore the oracle probbem f.

Algorithm 2 takes an FSM// and observed local traces, . . ., 0,, and decides whether there

is someo’ € L(M) such thatr,(¢’) = o, for all p € P. This algorithm operates in the following
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Fig. 6. DFSMsM; and M

way. At each step it considers a current tuple containingagestand local traces, ..., 0.,
and determines whethév/ has any transitions that are consistent with this. Hereamsttion
t = (s,8',x/y) is consistent with this if we have that for every pprtr,(z/y) is a prefix ofo,,.
If transition ¢ is consistent with such a current tuple then we create a npie in which the
state iss’ and the local trace for a poytis defined by removing,(z/y) from the front ofo,,.
The algorithm processes one input in each iteration ancemtibni it forms a setZ; of tuples.

Each iteration leads to a set of tuples of the fafmoy, ..., 07,) such thato, is a suffix of

o, (p € P) and soo, = 0,0, for someo,. This tuple has the property that it is possible for
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M to move to states with a global tracer such that for allp € P we have thatr, (o) = o,
Given a setZ; of such tuples formed in the operation of Algorithm 2, thecaithm will return
True if there is somés, o1, ...,0..) in Z; such that inM there is a tracer from states with
mp(0) = o, for all p € P. In each iteration we therefore consider the set of sucretupghd for
each such(s,d!,...,0/,) we find the set of transitions from whose input/output/y has the
property that for allp € P we have thatr,(z/y) is a prefix ofo,. We then generate a new set
of tuples. Since there are inputs there aré: iterations. The global trace is consistent with
M if and only if we end with a tuple that is of the for(,e, ... ¢).

Let us suppose that we wish to apply Algorithm 2 with and the local traces, = st1ria1a
and oy, = ryaqa. Initially we have Z, = {(so, stiraia,ma2a)}. The only transition consistent
with this one tuple i sy, s1, st1/(r1,72)). The new tuple is formed by changing the stateitp
removing (st /(r1,7r2)) = styry from the front ofo; and removingrs(sty/(r1,72)) = o from
the front of oy. Thus, after the first iteration we havg = {(si, a1a,a2a)}. The one tuple in
this set is consistent with two transitions:, s», a;/(—, —)) and (sy, s3,as/(—, —)) and so we
get Zy = {(s2,a, asa), (s3,a1a,a)}. The first tuple is consistent witts,, sg, a2/ (a,a)) and the
second tuple is consistent withs, sg, a1/(a,a)). In each case we obtain the tugle, ¢, ¢) and

so Z3 = {(so, €, €)}. Thus, the verdict is pass.

Proposition 11 Given FSMM and local tracesoy, ..., 0,,, Algorithm 2 returns True if and

only if there exists some € L(M) such thatr,(c) = o, for all p € P.

Proof: Consider iterationi of Algorithm 2 and the setZ; formed in this iteration. By

construction each elemefy, o}, ..., 0/ ) € Z; has the following properties:
1) There existry, ..., o, such thats, = 0,0, for all p € P and there is a path id/ from
so to s with a labelo such thatr, (o) = o, for all p € P

2) The set of local traces;, ..., o/, contain exactlyi fewer inputs tharry, ..., 0,,.

It is also clear by construction that, contains all such tuples. From the second property we

know that, sincesy,...,o0,, contain a finite number of inputs, the algorithm must terr@na
Finally, if o4, ..., 0, containk inputs then there exists € L(M) such thatr,(o) = o, for all
p € P if and only if Z, contains(s,e, ..., ¢) and so the result follows. [ |

Thus, the test oracle problem far, is decidable. We now consider the worst case complexity
of Algorithm 2.
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Algorithm 2 A test oracle forC,
Input FSM M = (S, s, X, Y, h) and local traces, ..., o, that containst inputs.

Let Zy := {(s0,01,02,...,0m)}
for all i:=1to k do
Let Z, :=0)
for all (s,0%,05,...,0.)€ Z;_1 do
for all p € P such that), starts with an inputr € X, and(s’,y) € h(s,x) do
if For allq € P, my(z/y) € pre(o;) then
For all¢ € P let o, be defined by, = 7,(z/y)o,
Let Z, .= Z, U{(s',0],05,...,0)}
end if
end for
end for
end for
if There existys,¢,...,€) € Z; then
Output True
else
Output False
end if

Proposition 12 Let us suppose that an FSW hasm > 1 ports and for each state and
input = there are at mosy transitions froms with inputz. Then Algorithm 2 operates in time
of O((max{m, k}q)**'m) when givenM and local tracess,, ..., s, that contain a total oft

inputs.

Proof: On each iteration of the outer loop, for each elemenZof, we have to consider
at mostmax{m, k} ports since here we are considering anythat starts with an input; there
are onlym ports andk inputs in total. Each such input defines at mggtansitions. For each
such transition we také&(m) time since we simply remove at most two elements from thetfron
of the m sequences (the,). Given a tuple inZ;_; with states and an inputz at the front of

someo,, at worst we include inzZ; one tuple for each transition leavingwith input  and
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there are at mosj such transitions. Since there are at mostz{m, k} inputs at the front of
the o, in a tuple inZ,_,, each tuple inZ;,_; results in at mostnax{m, k}q elements inZ;. As
a result, sinceZ, has sizel the size ofZ; ; is bounded above bymaz{m,k}q)"~'. Thus, in
iterationi we consider at mostnax{m, k}q)"~! elements ofZ;_, and, as seen above, for each
of these we consider at mostax{m, k}¢ transitions and each transition tak@$m) time. The
overall worst time complexity is thus @ (max{m, k}qm + (max{m, k}q)(maz{m, k}qm) +
..+ (maz{m, k}q)* " (max{m, k}qm)). This can be simplified t@(zle m(maz{m, k}q)").
It is now sufficient to observe tha&C"_ (maxz{m, k}q)" < (maxz{m, k}q)**+'. ]
We now consider the case in which we are testing against a D&SM) a controllable input
sequencav = x;...z;. Let us suppose that()M) contains the global trace; /v, ... zx/yx.
Sincew is controllable we have that for all < i < k, if x;,, is at portp thenn,(z;/y;) # €.
Algorithm 3 takes a DFSMM and oy, ..., 0, produced by applying a controllable input
sequencey, . .., x; and decides whether there is sores L(M) such thatr,(o’) = o, for all
peP.
Before proving the correctness of Algorithm 3 we prove a propof controllable traces.

Proposition 13 Let us suppose that is a controllable global trace inL,,(s) for DFSM M.

Then there is no global trace’ € L,,(s) such thato’ ~ o and o’ # o.

Proof: Proof by induction on the number of inputs in The result clearly holds for
sequences with no inputs (and so of leng}tand this forms the base case. Inductive hypothesis:
the result holds for every FSM/, states, and controllable global trace € L,,(s) with fewer
than k inputs ¢ > 0) and consider state and controllabler € L,,(s) with k& inputs. We will
assume that’ ~ o for someo’ € Ly,(s) and are required to prove that = o.

Leto = a1 /y1, ...,z /yx @aNd o’ = 2} /Y1, ..., x}/y,. Sinceo is controllable there can only
be one porp such thatr,(o) starts with an input. Thus, sineé ~ ¢ we must have that] = x;.
Further, sincel is deterministic we know thaj; = y;. The result now follows by noting that

T2 /Y2, ..., Tk /Yy, 1S controllable and by applying the inductive hypothesisci@ys, . . ., xx/yx

andzh /vy, . .., /Y. u
Proposition 14 If Algorithm 3 is given DFSMV/, local tracesoy, ..., 0,,, and a controllable
input sequence, ..., z; then it returns True if and only if there is a global traeec L(M)

with input portionzy, ..., z; that has the property that,(c) = o, for all p € P.
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Algorithm 3 An oracle forC, with controllable input sequences
Input DFESM M = (S, so, X,Y, h), local tracesoy, ..., o,, and controllable input sequence

Ty,..., Tk
Let s := sg
for all p € P do
Let o) := o,
end for
forall ::=1to k do
Let s’ andy; be defined by{ (s, y;)} = h(s, x;)
for all p € P do
it 7, (x;/y;) € pre(o)") then
Let o7 be defined by, = m,(z;/y:)0}
else
Output False and Terminate
end if
end for
end for
if For all p € P we have thav? = ¢ then
Output True
else
Output False
end if

Proof: We use proof by induction ok. The result clearly hold for the base case, which
is the empty sequence. Now assume that for every DBSNind controllable input sequence
x1,...,x; of length less that, we have that Algorithm 3 returns True if and only if there is a
global traces € L(M) with input portionz, ..., z; that has the property that,(c) = o, for
all p e P. Letzq,...,x, be a controllable input sequence.

Since M is deterministic, the result of applying is uniquely defined and let us suppose that

h(so,x1) = {(s,y)}. Further,z,, ..., x; is controllable when applied from state Algorithm 3

24



returns True if and only if for alp € P we have thawv, = m,(z1/y)o, for somes;, such that
Algorithm 3 returns True when given DFSW with initial states, local tracesr, ..., o/, and

9 m

controllable input sequence, . . ., x;. The result now follows from the inductive hypothesms.

Proposition 15 Given a DFSMM with n transitions andm ports, a set of local traces and a

controllable input sequence of lengkh Algorithm 3 operates in time ad(mk + klog(n)).

Proof: The innermost nested loop iterates a totalmof times since the outermost loop
iteratesk times (once for each input) and for each such iteration tinermost loop has one
iteration for each port. Each iteration takes constant tand so this contribute®(mk). We
have to apply the functioh once for each input and so a total /otimes. If this is achieved by
searching through a table that represéntwhere the transition are listed in lexical order then
this can be achieved using a binary searciV{itog(n)). Thus, this contribute® (% log(n)) and

so the overall worst case time complexity @fmk + klog(n)). u

VI. THE COMPLEXITY OF THE ORACLE PROBLEM

We have seen that we can solve the oracle problem for ccaitellinput sequences with
DFSMs in low order polynomial time. However, the time conxiye given for Algorithm 2 is
exponential. It is thus natural to ask whether there miglgteolynomial time algorithms for
the general oracle problem. We now explore two cases: NFSMsD&ESMs when we are not
using controllable input sequences. We prove that bothesdetoracle problems are NP-hard by

showing that we can reduce the following problem to them.

Definition 6 Given boolean variables, ...,z let C1,...,C, denote sets of three literals,
where each literal is either a variable or its negation. The three-in-one SAT problem is: Does
there exist an assignment to the boolean variables suchehel C; contains exactly one true

literal.

The three-in-one SAT problem is motivated by a propositi@ng@ written in conjunctive
normal formC; A ... A Ci, each conjunct’; being the disjunction of three literals, and each
literal being either a variable or its negation. Thas= I;; V l;5 V [;3 for three literald;,, [;2, [;3.
This problem is known to be NP-hard [35]. We first consider dh&cle problem for NFSMs.
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Proposition 16 Given local tracess,...,0,, at m ports and an FSMM with m ports, the
problem of deciding whether there exists € L(M) such that for allp € P we have that
mp(0’) = o, is NP-hard.

Proof: We will show that we can reduce the three-in-one SAT problenthts problem.
We therefore suppose that we have variahles. ., z, and clauses’, ..., C,. We will define
an FSMM with r + k ports, inputszy, ..., z. at portsl, ... r and outputsy, ..., y.., at ports
1,...,r+k.

FSM M has one statg,. For an inputz; there are two transitions:

1) A transition that, for alll < j < k, sends outpuy,.; to portr + j if and only if C;
contains literalz; and otherwise sends no output to pert j. For all1 < p < r it also
sends outpuy, to portp.

2) A transition that, for alll < j < k, sends outpuy,,; to portr + j if and only if C;
contains literal-z; and otherwise sends no output to por- ;. For all1 < p < r it also
sends outpuy, to portp.

Now consider the local traces, . . ., 0, defined by, = 2 (y1)", 09 = yozo(y2)" %, ..., 0, =
(yr)" 12,9, and for alll < i < k we have that, ; = y,,,. Essentially, each inpu; is received
once by the FSM and a nondeterministic choice is made: e@heoutput is sent to all ports
that correspond to clauses that contain literabr output is sent to all ports that correspond
to clauses that contain literalz;. It is thus clear that there existd € L(M) such that for all
1 <p <r+k we have thatr,(¢') = o, if and only if there exist an assignment to the boolean
variablesz,, . .., z, such that eaclt’; contains exactly one true literal. The result thus follows
from the three-in-one SAT problem being NP-hard and the tflaat it is possible to construct
M and theo, in polynomial time. [ |

Note that the proof constructed an instance of the oraclelgno for an NFSM and set of
local traces that could correspond to the application of rrotiable input sequence and thus
the problem is NP-hard even if we restrict testing to usingticlable input sequences.

The above proof uses nondeterminism in the FSM to allow antingpresenting a variable
to lead to either a transition that corresponds to that kbgideing true or a transition that
corresponds to the variable being false. We cannot do thesSM and so we require some

other mechanism. However, we can reduce the three-in-ofiepggblem to the oracle problem
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for DFSMs.

Proposition 17 Given local tracess, ..., 0, at m ports and a DFSMM with m ports, the
problem of deciding whether there exists € L(M) such that for allp € P we have that
mp(0’) = o, is NP-hard.

Proof: Again we will show that we can reduce the three-in-one SATbf@m to this and

suppose that we have variables. .., z, and clauses’, ..., C,. We will define a DFSMM
with » + k + 1 ports, inputsz, 24, ..., 2. at ports0, 1,...,r and outputsy,, ...,y at ports
1,...,r+ k. Here we count ports frort rather thanl since the role of input at will be rather

different from the role of the other inputs.

DFSM M has two states, s;. For an inputz; with 1 < i < r there are two transitions:

1) From states, there is a transition that, for all < j < k, sends outpu, ; to portr + j if
and only ifC; contains literak; and otherwise sends no output to po#tj. The transition
sends no output to ports ..., r and does not change state.

2) From states; there is a transition that, for all < j < &, sends outpuy,_; to portr + j
if and only if C; contains literal-z; and otherwise sends no output to port j. The
transition sends no output to pofs. .., and does not change state.

If M receives input, in states, then it moves to state;, producing no output. I/ receives
zo When in states; there is no change in state and no output is produced. Inteffecinput of
the firstz, moves us from a state in which the output in response,td < i < r, corresponds
to z; being true to a state in which the response;taorresponds ta; being false.

Now consider the local traces, o4, . .., 0, defined by.oy = 29,01 = 21,01 = 22,...,0, =
z. and for all1 < < k we have thav,,; = y,.,;. Each inputz; is received once by the DFSM
and these could have been received in any order and so fdr €lli < » we do not know
whetherz; has been received beforg or after z,. If z; is received before, then an output is
sent to all ports that correspond to clauses that contaralit;. If z; is received after, then
an output is sent to all ports that correspond to clausesctidtin literal—z;. Thus there exists
o' € L(M) such that for allo < p <r + k we have thatr,(¢’) = o, if and only if there exist
an assignment to the boolean variablgs. . ., z. such that eacl’; contains exactly one true
literal. The result follows from the three-in-one SAT prefn being NP-hard and the fact that it

is possible to construct/ and theo; in polynomial time. [ |
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We have conditions under which the oracle problem can beedoir polynomial time for
DFSMs: we simply use controllable input sequences. Whiie dloes not work with NFSMs,

we can add a condition that makes is sufficient.

Definition 7 The NFSMM = (S, so, X, Y, h) is locally observabléf for every states and input
x there exists a porp € P such that for all(s’, y) € h(s,z) we have thatr,(y) # — and for
all (s',y'),(s",y") € h(s,z) with (s',y') # (s",y") we have thatr,(y’) # m,(y").

The intuition behind this is that if an NFSM is locally obsable then we can look at the
output at one port, in response to an input, and determing thieaoverall output should have
been. This clearly simplifies the oracle problem: if an NFSMoically observable, we have a set
of local traces and we know which input was first then from th&t fbutput at the appropriate
port we can also determine what output must have been prddaceesponse to this input if
there was no failure. Thus, if we have a controllable inpujussce then we can repeat this

process.

Proposition 18 If Algorithm 2 is given a locally observable FSM with n transitions and a
set of local tracesry, ..., 0, with k inputs that was produced by applying a controllable input

sequence then it operates in time that isC{f(m + log(n))).

Proof: First observe that since a controllable input sequencengtihe: was used and/ is
locally observable, on each iteration the currentgetontains at most one tuple. We can assume
that when an input is considered from statewe know which local trace to study in order to
determine the output that must have been produced in resgonsand thus the computation
within the loop takedog(n) to locate the appropriate transition a@gm) to compute the value
to place inZ;. Since there aré iterations, the result thus follows. [ |

Thus, when testing from an NFSM with distributed ports it esidable to use controllable
input sequences and for the NFSM to be locally observableveder, this places a restriction
on the entire NFSM and instead it is sufficient for the inpudusnces used in testing to lead
to paths through the NFSM that have a similar property. Thieviing achieves this by placing

a condition on the input sequences used.

Definition 8 Given FSMM an input sequences, ..., x; is strongly controllabldor M if the

following hold:
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1) zq,...,x; is controllable forM; and

2) for all 1 <1 <k, if there is a path froms, to states with a label that has input portion
x1,...,2,_1 then there is a porp € P such that for all(s’,y) € h(s,z;) we have that
m,(y) # — and for all (s',v'), (s",y") € h(s,x;) with (s',y') # (s”,y") we have that
moly') # mp(y").

If an input sequence is strongly controllable then at eadhtpbe tester to apply the next
input is aware of when to apply the input since the input seqeies controllable. As a result,
when considering the oracle problem at each point we knowchvimput is applied next. In
addition, the next output produced at an appropriege? identifies the transition that occurred
and so in Algorithm 2 the new seéf; formed contains at most one tuple. As a result, the proof

of the following result is equivalent to that of Propositit8.

Proposition 19 If Algorithm 2 is given an FSMV/ with n transitions and a set of local traces
o1,...,0, With k inputs that was produced by applying a strongly controkaliput sequence

then it operates in time that is @ (k(m + log(n))).

The concepts of an input sequence being strongly conttellabd an FSM being locally

observable are related.

Proposition 20 If FSM M is locally observable then every controllable input sedqeems

strongly controllable for)/.

Proof: We will assume that\/ is locally observable and consider some controllable input
sequencer, ...,z it is sufficient to prove that this input sequence is strgrggintrollable for
M.

Let 1 <i < k and lets be such that there is a path frosp to states with a label that has
input portionzy,...,z;_1. Then it is sufficient to prove that there is a perte P such that
for all (s',y) € h(s,z;) we have thatr,(y) # — and for all (s',y'), (s",y") € h(s,z;) with
(s, y') # (s",y") we have thatr,(y') # m,(y"). SinceM is locally observable, for every state
and inputz there exists a pont € P such that for all(s’,y) € h(s,z) we have thatr,(y) # —
and for all (s, ¢/), (s”,y") € h(s,x) with (s',y") # (s”,y") we have thatr,(y') # m,(y"). The

result therefore follows. [
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The notion of an FSM being locally observable could potdigtine seen as a testability
property: a property that makes testing easier. Howeveerevisuch a property has not been
deliberately designed into a system it seems extremelyngtamd instead it is more likely that
we will be able to test using strongly controllable inputseces, the challenge being to produce

strongly controllable input sequences that satisfy a ghesh criterion.

VIlI. CONCLUSIONS

If a system has physically distributed interfaces, calledtyy then in testing and in use
observations are made locally. Thus, we observe a loca ateach interface rather than a global
trace. This form of observation is strictly weaker than whenobserve global traces and leads to
new notions of conformance. This paper has considereaggfstm a (possibly nondeterministic)
finite state machine (FSM) and two corresponding conformamtations. One conformance
relation C,, involves simply comparing each observed local trace withr@egtion of the
specification and represents the situation in which no agantreceive information regarding
observations made at more than one port. A stronger confareneelationC, corresponds to
the situation in which an agent might have access to the tome¢s observed at all of the ports.

The conformance relations,, and C, have previously been defined. However, in testing
we also need to determine whether an observation (set of fazes) is consistent with the
specification and this is the oracle problem. This paper asngalgorithms for solving the
oracle problem fori=,, andC,. We showed that the oracle problem can be solved in low order
polynomial time forC,, but is NP-hard foi=,. This result holds even if the FSM is deterministic.
We then investigated conditions under which the oraclelprolfor C, can be solved efficiently.
We proved that if we are testing from a deterministic FSM witput sequences that satisfy
the traditional notion of controllability then the oracleoplem can be solved in low order
polynomial time. We gave stronger sufficient conditions f@ndeterministic FSMs: either the
FSM is locally observable or the input sequence is stronghytrollable. When it is not feasible
to solve the oracle problem when using we can instead use the algorithm fgr, since this
provides a sound approximation.

There are many avenues for future work. First, while we havergconditions under which
the oracle problem foi_, can be solved in polynomial time, these are not necessanyitcmms.

It would therefore be interesting to develop weaker sufficeonditions. We have shown that an

30



oracle forC,, defines a conservative approximation for and there may be scope to develop
better conservative approximations. There has been workdapting theioco conformance
relation, traditionally used with input output transitiepstems (IOTSs), to the scenario in which
we only make local observations [20], [21] and it would beeresting to investigate the oracle
problem for such conformance relations. However, sinceS®tan have an infinite number of
states and input and output need not alternate, it seemly likat strong restrictions will be
required in order to allow polynomial time solutions to thede problem for IOTSs. Finally,
it would be interesting to extend this work to formalisms ihigh a transition is triggered by a

set of inputs rather than a single input (see, for exampl, [37]).
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