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Abstract

The problem of deciding whether an observed behaviour is acceptable is theoracle problem. When

testing from a finite state machine (FSM) it is easy to solve the oracle problem and so it has received

relatively little attention for FSMs. However, if the system under test has physically distributed interfaces,

called ports, then in distributed testing we observe a localtrace at each port and we compare the set of

local traces with the set of allowed behaviours (global traces). This paper investigates the oracle problem

for deterministic and non-deterministic FSMs and for two alternative definitions of conformance for

distributed testing. We show that the oracle problem can be solved in polynomial time for the weaker

notion of conformance (⊑w) but is NP-hard for the stronger notion of conformance (⊑s), even if the FSM

is deterministic. However, when testing from a deterministic FSM with controllable input sequences the

oracle problem can be solved in polynomial time and similar results hold for nondeterministic FSMs.

Thus, in some cases the oracle problem can be efficiently solved when using⊑s and where this is not

the case we can use the decision procedure for⊑w as a sound approximation.

Index Terms

D2.4: Software Engineering/Software/Program Verification, D2.5: Software Engineering/Testing and

Debugging, H.3.4 [Systems and Software]: Distributed systems, finite state machine, nondeterminism,

test oracle, controllability, local observability.

I. INTRODUCTION

There is increasing interest in and use of distributed systems. Some of these systems have

physically distributed interfaces, often called ports, and an agent at a portp only observes the

sequence of interactions that occur atp, this being called a local trace. Examples of such systems

include web services but also cloud computing. As a result ofthere being physically distributed

ports, no individual agent observes the global trace of the system and a set of local traces can be

consistent with several global traces. The presence of distributed ports can thus have a significant

impact on testing (see, for example, [1], [2], [3], [4], [5],[6], [7], [8]). Typically, systems with

distributed ports are state-based and state-based systemsare usually specified using languages

based on finite state machines (FSMs) [9], [10], [11], [12], [13], [14], [15], [16] or input output

transition systems [17]. This has led to interest in testingsystems that have distributed interfaces

and are specified using FSMs [18], [9], [2], [3], [13], [4], [5], [19], [7], [8] and, more recently,

input output transition systems [20], [21].
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In this paper we are interested inblack-box testing, in which only inputs and outputs are

observed. When testing asystem under test (SUT)it is necessary to check that an observed

behaviour is consistent with the requirements or specification and this is called theoracle

problem. Ideally, we have an automated oracle and in many cases it is sufficient to use a model

or specification from which the SUT was developed. In this paper we assume that there is

an FSM model of the SUT. Normally this makes the oracle problem trivial since we check

that an observed trace is a trace of the model and this can be done in low order polynomial

time. However, if the SUT has physically distributed ports then we obtain different conformance

relations since the observation made is a set of local traces, one at each port, rather than a

global trace. As a result, it is no longer sufficient to check that a (global) trace is a trace of the

model. Instead, we need to check that the set of observations(local traces) is consistent with

the specification.

It has been known for over 20 years that the presence of physically distributed ports intro-

duces additional controllability and observability problems into testing and these can limit the

effectiveness of testing [2]. Let us suppose that we intend to apply input sequencex1x2 when

FSM M is in states, x1 is input at portp, andx2 is input at q 6= p. If, when in states, M

does not send output toq in response tox1 then the tester atq cannot know when to sendx2.

This creates a controllability problem as illustrated in MSC1 in Figure 1 in which each vertical

line represents a timeline, time progressing as we move downa line. A controllability problem

exists when a tester is required to send an input but was not involved in the previous transition

and so does not know when to send this input. If a sequence of transitions does not have this

problem it iscontrollable. However, there may be no controllable sequence that satisfies a test

objective such as executing a particular transition [7].

Now let us suppose thatx1x2 is to be input whenM is in states and x1 andx2 are input

at portp. Suppose further thatx1 is expected to lead to outputy at portp andy′ at portq 6= p

andx2 is expected to lead to outputy at p only. Thenx1yx2y should be observed at portp and

y′ should be observed atq. These local traces are still observed ify is produced in response to

x1 and y and y′ are produced in response tox2, in which case there is fault masking. These

two scenarios are illustrated by MSC2 and MSC3 in Figure 2. These transitions could lead to

failures if used within adifferent sequence.

Since the presence of multiple ports affects the ability of both testers and users to observe
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Tester at p SUT Tester at q

x1

y

x2

msc MSC1

Fig. 1. A controllability problem

system behaviour, we need to define conformance relations for distributed systems: if we test

using the wrong conformance relation then we may obtain the wrong verdict (the result of testing

is incorrect) or testing may be inefficient. An incorrect verdict may be produced since we might

declare a behaviour faulty even when the users cannot distinguish between this and a correct

behaviour. Inefficiency might occur through producing tests to find ‘faulty’ behaviours that are

indistinguishable from correct behaviours and so do not actually represent failures. Most previous

work has used traditional conformance relations designed for systems that have a single interface

and has attempted to produce input sequences that do not havecontrollability or observability

problems. The resultant test generation algorithms lack generality, since these problems cannot

always be overcome. Even worse, since the wrong conformancerelation is used, the system

under test may fail such a testeven though it cannot be distinguished from a correct systemin

use.

Recent work has defined what it means for an input sequence to distinguish two states

or deterministic FSMs (DFSMs) when restricting testing to input sequences that cause no

controllability problems and has defined a corresponding conformance relation [4]. This has

been extended to more general conformance relations, that are used in this paper, for both

DFSMs and nondeterministic FSMs (NFSMs) [22]. This has alsobeen extended to input output

transition systems [20]. These conformance relations reflect the inability of a tester or user to
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Tester at p SUT Tester at q

x1

y
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y y′

msc MSC3

Fig. 2. An observability problem

observe the global trace. Interestingly, the notion of making local observations has been explored

in the context of refinement and CSP, although the technical issues are different [23]. However,

the oracle problem has not previously been considered for these conformance relations and this

is the problem studied here.

Previous work has aimed to determine the global trace that occurred in testing or to check

properties of this. Examples include work on run-time verification (see, for example, [24]). In

addition, there are approaches in which the testers communicate in order to determine the global
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trace that occurred (see, for example, [25], [26]). There has also been a significant amount

of work on monitoring, in which we wish to determine the global state of the SUT (see, for

example, [27], [28], [29], [30], [31]). In contrast to these, we are concerned with black-box

testing and we are interested in conformance relations thatcapture the observational power of

potential users. There is another line of work that has defined conformance relations such as

mioco for systems with distributed interfaces but this assumes that global traces are observed;

it differs from traditional conformance relations such asioco by allowing the SUT to block all

input at a given port (see, for example, [32], [33], [34]).

This paper investigates the oracle problem in the context oftesting a black-box SUT with

physically distributed ports against a (possibly nondeterministic) FSM. We need different oracles

for different conformance relations so it considers the twopreviously defined conformance

relations for testing from an FSM with distributed ports [22]. We give an algorithm for the

weaker conformance relation⊑w and prove that this operates in low order polynomial time. We

give two algorithms for the other conformance relation⊑s: a general algorithm and an algorithm

for the special case where we are testing from a DFSM with a controllable input sequence1. While

it transpires that the algorithm for using controllable input sequences when testing from DFSMs

operates in low order polynomial time, the general algorithm has exponential time complexity.

We then prove that the general oracle problem for testing from a DFSM with⊑s is NP-hard and

this problem is NP-hard for NFSMs even if we restrict attention to controllable input sequences.

We then give sufficient conditions, on the input sequence or on the NFSM, under which the

oracle problem for NFSMs can be solved in polynomial time. Ifit is not feasible to solve the

oracle problem for⊑s then we can instead use an oracle for⊑w and this provides a sound

approximation: it will never declare an SUT that conforms tothe specification to be faulty but

may miss failures.

The paper is structured as follows. Section II provides preliminary definitions while Section

III shows how the oracle problem can be solved for⊑w. Section IV then explores properties of

⊑s and Section V gives algorithms for solving the oracle problem for ⊑s. Section VI then gives

the complexity results for the oracle problem with⊑s and finally Section VII gives conclusions

and describes avenues for future work.

1In Section II we formally define what it means for an input sequence to be controllable.
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II. PRELIMINARIES

A. Basic definitions

Given setsA andB, A ↔ B denotes the set of relations betweenA andB. Given a setA we

let A∗ denote the set of finite sequences of elements ofA and givena ∈ A we leta∗ denote the

set{a}∗. Given a sequenceσ, pre(σ) is the set of prefixes ofσ and given a setZ of sequences

we let pre(Z) denote the set of prefixes of sequences fromZ. We useǫ to represent the empty

sequence.

In this paper we consider systems that have multiple ports (interfaces). If there arem ports

then we represent these with integers and so let the setP of ports equal{1, . . . , m}. Typically

we will usexp to denote input at portp andyp to denote output at portp, in each case possibly

priming names.

B. Finite state machines

A (completely specified) multi-port finite state machineM with m ports is defined by a tuple

(S, s0, X, Y, h) in which:

1) S is a finite set of states;

2) s0 ∈ S is the initial state;

3) X = X1 ∪ . . . ∪Xm is the finite input alphabet in which for allp ∈ P, Xp is the set of

inputs that can be received atp. For all p, q ∈ P with p 6= q, Xp ∩Xq = ∅;

4) Y = (Y1 ∪ {−})× . . .× (Ym ∪ {−}) is the finite output alphabet, where for allp ∈ P, Yp

denotes the outputs the SUT can send to portp. (y1, . . . , ym) ∈ Y denotes the valueyp

being sent to portp for all p ∈ P while − denotes no output being produced; and

5) h is the transition relation of typeS ×X ↔ S × Y .

As a consequence of the definition, an FSM can respond to an input with at most one output

at each port. In this paper we only consider completely specified FSMs: if an FSMM is not

completely specified then typically it is possible to complete M by either adding an error state

or by adding self-loop transitions, that do not change the state, with no output. Since this paper

concerns systems with multiple ports, a multi-port finite state machine will be called afinite

state machine (FSM)and when we wish to refer to an FSM with one port we call it asingle-

port FSM. Note that while we require theXp and also theYp to be disjoint, this can always be

achieved by labelling an input or output with the corresponding port number.
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Fig. 3. Finite State MachineM0

Figure 3 gives an example of an FSM with two ports. This is a simple model of a voting

system in which two agents vote eithera or b and if they agree then the result is returned to

them. Either party can start the process, sending a start message (st1 at port 1 and st2 at port

2) and in response the model sends a requestrp to port p (p ∈ {1, 2}). Each agent can then

vote eithera (inputs a1, a2 at ports1 and 2 respectively) orb (inputs b1, b2 at ports1 and 2

respectively). If the two votes are the same then output is sent to each agent confirming the

vote and otherwise the system returns to a state from which the agents can vote and requests

them to vote. In order to simplify Figure 3 we have not included all of the transitions; where no

transition from statesi with an inputx is shown there is an implicit transition fromsi to si with

input x and output(−,−). In addition, in Figure 3 we have included two copies of states0; one

defines the transitions leavings0 and the other defines the transitions that end ins0. Figure 3 is

based on an input output transition system given in [21].
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If (s′, y) ∈ h(s, x) then this means that ifM receives inputx when in states then it can move

to states′ and produce outputy. This defines a transitiont = (s, s′, x/y). Consider, for example,

the FSMM0 shown in Figure 3. Hereh(s0, st1) = {(s1, (r1, r2))} and so ifM0 receives input

st1 when in states0 then it moves to states1 and outputsr1 to port 1 and r2 to port 2. This

defines the transition(s0, s1, st1/(r1, r2)).

FSM M is a deterministic FSM (DFSM)if for all s ∈ S and x ∈ X, we have that

|h(s, x)| = 1. Clearly M0 is deterministic. A sequence of consecutive transitionsρ = t1 . . . tk,

ti = (si, si+1, xi/yi), is apaththat haslabelσ = x1/y1, . . . , xk/yk andstarting states1. The label

of ρ is said to be an input/output sequence and also aglobal trace. In addition, theinput portion

of σ is the input sequencex1, . . . , xk. For example, path(s0, s1, st1/(r1, r2))(s1, s2, a1/(−,−))

of M0 has labelst1/(r1, r2)a1/(−,−), which has input portionst1a1, and starting states0. The

FSM M defines the regular languageL(M) of labels of paths with starting states0. Similarly,

LM(s) is the set of labels of paths with starting states. If w is an input sequence then we

let M(w) denote the set of global traces inL(M) that have input portionw. For example,

M0(st1a1) = {st1/(r1, r2)a1/(−,−)}. An FSM N with the same input and output alphabets

as M is said to be areduction of M if L(N) ⊆ L(M). FSMs M and N are equivalentif

L(N) = L(M) and a DFSMM is minimal if no DFSM with fewer states is equivalent to

M . When testing from a single-port FSMM it is normal to use the conformance relation that

requires the implementation FSM to be a reduction ofM .

We can define the projection of a global trace. Giveny = (y1, . . . , ym) ∈ Y and p ∈ P we

let πp(y) denoteyp if yp 6= − and otherwiseπp(y) = ǫ. We can extend this to global traces in

the following way.

πp(ǫ) = ǫ

πp((x/(y1, . . . , ym))σ) = πp(σ) if x 6∈ Xp ∧ yp = −

πp((x/(y1, . . . , ym))σ) = xπp(σ) if x ∈ Xp ∧ yp = −

πp((x/(y1, . . . , ym))σ) = ypπp(σ) if x 6∈ Xp ∧ yp 6= −

πp((x/(y1, . . . , ym))σ) = xypπp(σ) if x ∈ Xp ∧ yp 6= −

For exampleπ1(st1/(r1, r2)a1/(−,−)) = st1r1a1 andπ2(st1/(r1, r2)a1/(−,−)) = r2.
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Two global traces are indistinguishable if their projections are identical at each port. More for-

mally, global tracesσ1 andσ2 are indistinguishable, writtenσ1 ∼ σ2, if for all p ∈ P we have that

πp(σ1) = πp(σ2). For example,st1/(r1, r2)a1/(−,−)a2/(a, a) ∼ st1/(r1, r2)a2/(−,−)a1/(a, a).

Clearly∼ is an equivalence relation.

C. Controllability problems

It is well known that the presence of multiple ports can lead to controllability problems in

testing. Essentially, a controllability problem occurs when the tester at a portp ∈ P is meant

to apply an inputx but cannot know when to do this based on the observations thathave been

made atp. For DFSMs, this has been characterised in terms of global traces being controllable

(see, for example, [4]).

Definition 1 A path ρ = t1 . . . tk, ti = (si, si+1, xi/yi), is controllableif for all 1 < i ≤ k we

have that the portp ∈ P such thatxi ∈ Xp satisfies the condition thatπp(xi−1/yi−1) 6= ǫ. We

also say that the label ofρ is controllable.

It is straightforward to see that the path(s0, s1, st1/(r1, r2))(s1, s2, a2/(−,−))(s2, s0, a1/(a, a))

of M0 is not controllable since the third input is at port1 but the second transition does not

have either input or output at1.

Definition 2 Given a DFSMM an input sequencew = x1, . . . , xk is said to becontrollable for

M if the traceM(w) is controllable. WhenM is clear we simply say thatw is controllable.

Recent work [22] has looked at testing from a possibly nondeterministic FSMM . Here, we

need a slightly different definition of what it means for an input sequence to be controllable

since an input sequence may be capable of triggering more than one path throughM . The

corresponding global traces might lead to different possible observations at a portp ∈ P and we

require that irrespective of which trace occurs, the testerat p must be able to determine when

to apply its input.

Consider, for example, an FSM with two ports and input sequence w = x1x1x2, in which

x1 is at port1 andx2 is at port2, that can lead to tracesx1/(y1,−)x1/(−, y2)x2/(y1, y2) and

x1/(−, y2)x1/(−, y2)x2/(y1, y2). Here both traces are controllable but after observingy2 the

tester at port2 does not know whether to wait for anothery2, which is required if the second
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trace occurs, or apply inputx2, which is required if the first trace occurs. Here, a controllability

problem occurs because a tester must make a decision regarding when to send an input but

cannot do this on the basis of its own observations. This happens if there are two possible traces

σ1 andσ2 such that the tester at portp should send input afterσ1, it should not send input after

σ2 (or should send a different input) and yet the tester atp cannot distinguish betweenσ1 and

σ2 (πp(σ1) = πp(σ2)). This can only happen ifσ1 andσ2 have different numbers of inputs. The

following defines what it means for an input sequence to be controllable for an FSM that might

be nondeterministic and is based on a definition in [22].

Definition 3 Given FSMM an input sequencew is controllablefor M if there does not exist

σ1, σ2 ∈ pre(M(w)) that have different numbers of inputs such that the next input to be applied

after σ1 is to be applied at a portp ∈ P such thatπp(σ1) = πp(σ2). WhereM is clear from the

context we say thatw is controllable.

The following gives an alternative characterisation.

Proposition 1 Given FSMM an input sequencew is controllable forM if there does not exist

inputxp ∈ Xp andσ1, σ2 ∈ M(w) with prefixesσ′

1 andσ′

2 respectively such thatπp(σ
′

1) = πp(σ
′

2)

and the following hold:

1) There existsy ∈ Y such thatσ′

1xp/y ∈ pre(M(w)); and

2) There does not existy ∈ Y such thatσ′

2xp/y ∈ pre(M(w)).

III. W EAK CONFORMANCE AND LOCAL ORACLES

In some situations the agents at the separate ports of the SUTwill never interact with one

another or share information with other agents that can interact with one another. If this is the

case then it is sufficient that the local behaviour observed at a portp is a local behaviour ofM .

This situation is captured by the following conformance relation [22].

Definition 4 Given FSMsN and M with the same input and output alphabets and the same

set of ports,N ⊑w M if for every global traceσ ∈ L(N) and portp ∈ P there exists some

σ′ ∈ L(M) such thatπp(σ
′) = πp(σ). FSMN is then said toweakly conformto FSMM .

In testing on the basis of⊑w it is sufficient to place a local tester at each port and give

each local tester its own local oracle. This allows each local tester to return a verdict: pass

11



if the behaviour it observes is consistent with its local oracle and otherwise fail. Since for

each transition there is only one port that provides input, FSMs are not the best formalism for

describing these local oracles and instead we use finite automata.

A finite automaton (FA)F is defined by a tuple(Q, q0, A, δ, QF ) in which Q is a finite set

of states,q0 ∈ Q is the initial state,A is the finite input alphabet,δ is the state transfer relation

of typeQ× (A ∪ {τ}) ↔ Q, andQF ⊆ Q is the set of final states. Hereτ is used to represent

empty/silent transitions that require no input. IfF receivesa ∈ A when in stateq ∈ Q then

it moves to a state inδ(q, a). If δ(q, τ) is defined andq′ ∈ δ(q, τ) then whenF is in stateq

it is possible for it to move to stateq′ spontaneously without receiving input. We can use the

following notation to represent the possible states ofF after receiving an input sequence.

1) q
a
→ q′ if q′ ∈ δ(q, a) for a ∈ (A ∪ {τ})

2) q
ǫ
⇒ q′ if there exists statesq1, . . . , qk, with q1 = q andqk = q′, such that for all1 ≤ i < k

we have thatqi
τ
→ qi+1. Note that for all statesq we have thatq

ǫ
⇒ q.

3) q
a
⇒ q′ for a ∈ A if there exists statesq1, q2 such thatq

ǫ
⇒ q1, q1

a
→ q2, andq2

ǫ
⇒ q′.

4) Givenσ = a1, . . . , ak ∈ A∗ we write q
σ
⇒ q′ if there existq1, . . . , qk+1 with q1 = q and

qk+1 = q′ such that for all1 ≤ i ≤ k we have thatqi
ai⇒ qi+1.

Essentially, for a sequenceσ = a1, . . . , ak ∈ A∗, q
σ
⇒ q′ holds if and only if it is possible

to move from stateq to stateq′ using input sequenceσ. FA F defines the languageL(F ) of

sequences that can takeF from its initial state to a final state. More formally,L(F ) is the set

of sequencesσ ∈ A∗ such that there is a stateq ∈ QF such thatq0
σ
⇒ q.

Algorithm 1 takes an FSMM and portp and builds a local oracleMp. It achieves this by

replacing each transition ofM , of the form t = (s, s′, x/y), by a path froms to s′ in Mp with

label πp(x/y). There are essentially three cases to consider. Ifπp(x/y) is the empty sequence

then we add a transition froms to s′ with label τ . If πp(x/y) contains one element (an input

or an output) then we add a transition froms to s′ with this element as its label. Finally, if

πp(x/y) = xyp for someyp ∈ Yp then we add an intermediate statest, a transition froms to

st with label x and a transition fromst to s′ with label yp. We makeS the set of final states

in order to avoid the languageL(Mp) including the label of a path that ends at one of the new

intermediate states and thus that includes the input of a transition but not the output.

Consider again FSMM0 and port1. Then transition(s1, s2, a1/(−,−)) would be represented

by a transition(s1, s2, a1). Transition (s1, s5, b2/(−,−)) would be represented by transition
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(s1, s5, τ). For transition(s0, s1, st1/(r1, r2)) we would have to add an intermediate statest

and two transitions(s0, st, st1) and (st, s1, r1). Statest is not a final state since otherwise it

would suggest that in states0 it is possible for the input ofst1 to not produce output at port1.

Algorithm 1 Building the local oracleMp

Input FSMM = (S, s0, X, Y, h) and portp

Let Xp denote the set of inputs atp andYp denote the set of outputs atp

Let S ′ := S; δ := ∅

for all ((si, x), (sj, y)) ∈ h with yp = πp(y) do

if x ∈ Xp andyp 6= − then

Define a new statest and letS ′ := S ′ ∪ {st}; δ := δ ∪ {((si, x), st), ((st, yp), sj)}

else

if x ∈ Xp andyp = − then

δ := δ ∪ {((si, x), sj)}

else

if x 6∈ Xp andyp 6= − then

δ := δ ∪ {((si, yp), sj)}

else

if x 6∈ Xp ∧ yp = − then

δ := δ ∪ {((si, τ), sj)}

end if

end if

end if

end if

end for

Output FAMp = (S ′, s0, Xp ∪ Yp ∪ {τ}, δ, S)

Proposition 2 Algorithm 1 is correct in the sense that, when given FSMM and portp it returns

FA Mp such thatL(Mp) = {σp|∃σ ∈ L(M).σp = πp(σ)}.
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Proof: We will prove thatσp ∈ L(Mp) if and only if there existsσ ∈ L(M) such that

σp = πp(σ).

First assume thatσp ∈ L(Mp) and thus that there is a pathρp from the initial states0 of Mp

that has labelσp. We will use proof by induction on the length of the shortest such path. The

base case, which is the empty path (and soσp = ǫ) holds immediately. Letρp denote a shortest

path ofMp with label σp and assume that the result holds for all shorter paths (the inductive

hypothesis). Letρp = ρ′pρ
′′

p such thatρ′p is the shortest non-empty prefix ofρp that ends in a final

state (a state fromS) and let this state be denoteds. Let σ′

p andσ′′

p denote the labels ofρ′p andρ′′p

respectively. By the definition ofMp, there is a path inM from s0 to s with labelx/y such that

σ′

p = πp(x/y). Let Ms denoteM with s as its initial state. By the inductive hypothesis applied to

sequenceσ′′

p andMs, there is someσ′′ ∈ L(Ms) such thatπp(σ
′′) = σ′′

p . Thus,σp = πp(x/y)σ
′′

p ,

σ′′

p = πp(σ
′′) for someσ′′ ∈ L(Ms) and soσp = πp(x/yσ

′′) andx/yσ′′ ∈ L(M) as required.

Now assume thatσ ∈ L(M) and we require to prove thatσp = πp(σ) ∈ L(Mp). We will

use proof by induction on the length ofσ. The result holds immediately for the base case with

length 0. Inductive hypothesis: for every sequenceσ with length less thank we have that if

σ ∈ L(M) thenσp = πp(σ) ∈ L(Mp). Let σ = x1/y1, . . . , xk/yk and lets denote a state reached

by the first transition in a pathρ that has starting states0 and labelσ. By construction, there is a

path inMp from s0 to s with labelπp(x1/y1). The result thus follows by applying the inductive

hypothesis tox2/y2, . . . , x2/y2 andMs.

The following result says that if the local tester at portp observes a local trace that is not in

L(Mp) then we know that the SUT has produced a global trace that is not allowed.

Proposition 3 If Algorithm 1 returns FAMp when given FSMM and port p ∈ P and the

SUTN has a global traceσ such thatπp(σ) 6∈ L(Mp) then we do not have thatN ⊑w M . In

addition, if for all σ ∈ L(N) and p ∈ P we have thatπp(σ) ∈ L(Mp) thenN ⊑w M .

Proof: First assume that Algorithm 1 returns FAMp when given FSMM and portp ∈ P

and the SUTN has a global traceσ such thatπp(σ) 6∈ L(Mp). By Proposition 2, this means

that there does not existσ′ ∈ L(M) such thatπp(σ
′) = πp(σ). By Definition 4, this means that

we do not have thatN ⊑w M as required.

Now assume that for allσ ∈ L(N) andp ∈ P we have thatπp(σ) ∈ L(Mp). By Proposition

2, this means that for allσ ∈ L(N) andp ∈ P there existsσ′ ∈ L(M) such thatπp(σ
′) = πp(σ).
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By Definition 4, this means that we have thatN ⊑w M as required.

Thus, in order to solve the oracle problem for an FSMM and a set of local tracesσ1, . . . , σm,

when using⊑w it is sufficient to solve the oracle problem for eachMp andσp. Thus, the oracle

problem for⊑w reduces to solvingm instances of the membership problem for finite automata

and so can be solved in low order polynomial time.

IV. A STRONGER FORM OF CONFORMANCE

We have seen that theMp returned by Algorithm 1 can be used as oracles when test-

ing with ⊑w. However, in some situations the traces observed at the different ports can be

brought together afterwards, possibly through the agents placed at these ports interacting with

other agents. Consider, for example, the FSMM ′

0 shown in Figure 4. This, for example, con-

tains the tracest1/(r1, r2)a1/(−,−)b2/(a, b). This clearly is not equivalent to any trace of

M0 under∼ and should correspond to an incorrect behaviour: each user believes that other

party has agreed to their vote. However, if we consider the projections of this trace we find

that π1(st1/(r1, r2)a1/(−,−)b2/(a, b)) = st1r1a1a = π1(st1/(r1, r2)a1/(−,−)a2/(a, a)) and

π2(st1/(r1, r2)a1/(−,−)b2/(a, b)) = st2r2b2b = π1(st1/(r1, r2)b1/(−,−)b2/(b, b)). Thus, nei-

ther tester observes a failure.

In order to overcome this issue we get the following notion ofconformance in which we

require every global trace of the implementation to be indistinguishable from a global trace of

the specification [22].

Definition 5 Given FSMsN and M with the same input and output alphabets and the same

set of ports,N ⊑s M if for all σ ∈ L(N) there exists someσ′ ∈ L(M) such thatσ′ ∼ σ.

We can test for⊑s by placing local testers at each port and bringing together the observed

local traces after testing. While the testers cannot synchronise during testing they can send their

observations to a single agent after testing.

The conformance relation⊑s places stronger constraints on the SUT than⊑w. Proposition 5

below says that it is possible for the verdicts returned based on the local oracles to be pass and

yet the set of local traces to not be consistent with any behaviour of M and thus proves that

⊑w is weaker than⊑s.
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Fig. 4. Finite State MachineM ′

0

Proposition 4 Given an FSMM with m ports and a traceσ, let us suppose that for every port

p ∈ P we have thatπp(σ) ∈ L(Mp) for the FAMp returned by Algorithm 1 when givenM and

p. It is possible that there is no global traceσ′ ∈ L(M) such thatσ′ ∼ σ.

Proof: It is sufficient to considerM0 and the tracest1/(r1, r2)a1/(−,−)b2/(a, b) of M ′

0.

Proposition 5 Given FSMsN andM with the same input and output alphabets and the same

set of ports, ifN ⊑s M thenN ⊑w M . The converse is not the case in the sense that it is

possible thatN ⊑w M but we do not have thatN ⊑s M .

Proof: For the first part, assume thatN ⊑s M , σ ∈ L(N), andp ∈ P. It is sufficient to

prove that there existsσ′ ∈ L(M) such thatπp(σ) = πp(σ
′). But, sinceN ⊑s M , there exists

σ′ ∈ L(M) such thatσ ∼ σ′ and so the result follows.
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For the second part, consider an FSMM with one state and two ports in which the response

to inputx at port1 is eithery1 at 1 andy2 at 2 or y′1 at 1 andy′2 at 2. Further, assume thatx is

the only input. Now letN denote an FSM with one state and two ports in which the response

to inputx at port1 is y1 at 1 andy′2 at 2. We do not have thatN ⊑s M since the non-empty

traces ofN are not equivalent to traces ofM under∼. Further, for every traceσ of N and port

p we have thatπp(σ) is a projection of a trace ofM : the trace with the same number of inputs

that always takes the transition that has the same output atp as the transition inN . Thus, we

have thatN ⊑w M as required.

Thus, we know that⊑w and⊑s differ in general. It is natural to ask how they relate to one

another and to the reduction relation if we have only one port. As we would expect, if there is

only one port then these three conformance relations are equivalent.

Proposition 6 Given single-port FSMsN andM with the same input and output alphabets we

have thatN ⊑s M if and only ifN is a reduction ofM . In addition,N ⊑w M if and only

if N is a reduction ofM .

Proof: The first part follows from observing that when there is only one port we have that

equivalence under∼ is just equality and soN ⊑s M if and only if every global trace ofN is

a trace ofM .

For the second part observe that when there is only one port, for every traceσ we have that

π1(σ) = σ. Thus,N ⊑w M if and only if for every traceσ of N we have a traceσ′ of M

such thatπ1(σ) = π1(σ
′) and this holds if and only ifN is a reduction ofM .

It is therefore interesting to consider how⊑w and⊑s relate to reduction for FSMs with more

than one port.

Proposition 7 Given FSMsN andM with the same input and output alphabets and the same

sets of ports, ifN is a reduction ofM thenN ⊑s M , but the converse is not true.

Proof: First assume thatN is a reduction ofM and thatσ ∈ L(N). It is sufficient to prove

that there is someσ′ ∼ σ such thatσ′ ∈ L(M). However, sinceN is a reduction ofM we must

have thatσ ∈ L(M) and so we can simply chooseσ′ = σ.

For the second part, consider the DFSMsM andN shown in Figure 5 that have two ports

1 and 2. HereL(N) = ((x1/(y1,−) + x2/(−, y′2))
∗ and it is clear that all sequences inL(N)
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Fig. 5. DFSMsM andN

that start withx2/(−, y′2) are also inL(M). It is also clear that all sequences inL(N) that do

not contain inputx2 are also inL(M) since these are all words in the language(x1/(y1,−))∗.

Finally, if a sequence fromL(N) is of the formσ = (x1/(y1,−))n(x2/(−, y′2))σ0 for somen

and σ0 ∈ ((x1/(y1,−)) + (x2/(−, y′2))
∗ thenσ ∼ (x2/(−, y′2))(x1/(y1,−))nσ0 ∈ L(M). Thus,

N ⊑s M and yet it is clear thatM is minimal andN is not a reduction ofM .

Proposition 8 Given FSMsN andM with the same input and output alphabets and the same

sets of ports, ifN is a reduction ofM thenN ⊑w M , but the converse is not true.

Proof: First assume thatN is a reduction ofM , σ ∈ L(N), andp ∈ P. It is sufficient to

prove that there is someσ′ ∈ L(M) such thatπp(σ
′) = πp(σ). However, sinceN is a reduction

of M we must have thatσ ∈ L(M) and so we can simply chooseσ′ = σ.

For the second part, again consider the DFSMsM andN shown in Figure 5. Since we have

that N ⊑s M , from Proposition 7 we know thatN ⊑w M . However, as established in the

proof of Proposition 7,N is not a reduction ofM and so the result follows.

We now know that⊑s is weaker than the conformance relation usually used when testing from

an FSM. Since the reduction relation is an equivalence relation when we consider (completely
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specified) DFSMs it is natural to ask whether⊑s is an equivalence relation on such DFSMs.

Proposition 9 The relation⊑s is not an equivalence relation on (completely specified) DFSMs.

Proof: Consider the two DFSMsM1 andM2 that are shown in Figure 6;M1 is at the top

andM2 is at the bottom. In these FSMs there are three ports,xp denotes input at portp ∈ P and

yp (or y′p, y
′′

p) denotes output at portp, p ∈ P. The differences in behaviour are only in response

to x3 and there are only differences after bothx1 andx2 have been received.

The traces ofM2 that are not inL(M1) are those that start with an input sequence of the form

w1x2w2x1w3x3 for some input sequencesw1 ∈ x∗

3, w2 ∈ {x2, x3}
∗, andw3 ∈ {x1, x2}

∗. However,

for each traceσ ∈ L(M2) that has input portionw1x2w2x1w3x3 for some suchw1, w2, w3 there

is a traceσ′ ∈ L(M1) with input portionw1x1w
′

2x2w3x3 such thatσ′ ∼ σ. Thus,M2 ⊑s M1.

SinceM2 ⊑s M1 if ⊑s was an equivalence relation, and so symmetric, we would havethat

M1 ⊑s M2. However,M1 has the global traceσ = x2/y2x1/y1x3/y
′′

3 and there is noσ′ ∈ L(M2)

such thatσ′ ∼ σ. Thus,M1 6⊑s M2 and so⊑s is not an equivalence relation as required.

Proposition 10 The relation⊑s is a pre-order.

Proof: It is clear that⊑s is reflexive and thus it suffices to prove that⊑s is transitive: if

N1 ⊑s N2 and N2 ⊑s N3 then N1 ⊑s N3. We therefore assume thatN1 ⊑s N2 and

N2 ⊑s N3.

SinceN1 ⊑s N2, for all σ ∈ L(N1) there existsσ′ ∈ L(N2) such thatσ′ ∼ σ. Further,

sinceN2 ⊑s N3, for all σ′ ∈ L(N2) there existsσ′′ ∈ L(N3) such thatσ′′ ∼ σ′. Thus, for all

σ ∈ L(N1) there existsσ′′ ∈ L(N3) such thatσ′′ ∼ σ and soN1 ⊑s N3 as required.

V. THE ORACLE PROBLEM FOR⊑s

In testing we need to determine whether an observed behaviour is consistent with the spec-

ification. This is trivial for testing from a single-port DFSM since here the input sequencew

defines a single input/output sequence and it is not much moredifficult for an NFSM. We have

seen that it is also straightforward when testing with the conformance relation⊑w: we simply

construct theMp and use these. In this section we explore the oracle problem for ⊑s.

Algorithm 2 takes an FSMM and observed local tracesσ1, . . . , σm and decides whether there

is someσ′ ∈ L(M) such thatπp(σ
′) = σp for all p ∈ P. This algorithm operates in the following
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way. At each step it considers a current tuple containing a state s and local tracesσ′

1, . . . , σ
′

m

and determines whetherM has any transitions that are consistent with this. Here, a transition

t = (s, s′, x/y) is consistent with this if we have that for every portp, πp(x/y) is a prefix ofσ′

p.

If transition t is consistent with such a current tuple then we create a new tuple in which the

state iss′ and the local trace for a portp is defined by removingπp(x/y) from the front ofσ′

p.

The algorithm processes one input in each iteration and in iterationi it forms a setZi of tuples.

Each iteration leads to a set of tuples of the form(s, σ′

1, . . . , σ
′

m) such thatσ′

p is a suffix of

σp (p ∈ P) and soσp = σ′′

pσ
′

p for someσ′′

p . This tuple has the property that it is possible for
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M to move to states with a global traceσ such that for allp ∈ P we have thatπp(σ) = σ′′

p .

Given a setZi of such tuples formed in the operation of Algorithm 2, the algorithm will return

True if there is some(s, σ′

1, . . . , σ
′

m) in Zi such that inM there is a traceσ from states with

πp(σ) = σ′

p for all p ∈ P. In each iteration we therefore consider the set of such tuples and for

each such(s, σ′

1, . . . , σ
′

m) we find the set of transitions froms whose input/outputx/y has the

property that for allp ∈ P we have thatπp(x/y) is a prefix ofσ′

p. We then generate a new set

of tuples. Since there arek inputs there arek iterations. The global traceσ is consistent with

M if and only if we end with a tuple that is of the form(s, ǫ, . . . , ǫ).

Let us suppose that we wish to apply Algorithm 2 withM0 and the local tracesσ1 = st1r1a1a

andσ2 = r2a2a. Initially we haveZ0 = {(s0, st1r1a1a, r2a2a)}. The only transition consistent

with this one tuple is(s0, s1, st1/(r1, r2)). The new tuple is formed by changing the state tos1,

removingπ1(st1/(r1, r2)) = st1r1 from the front ofσ1 and removingπ2(st1/(r1, r2)) = r2 from

the front ofσ2. Thus, after the first iteration we haveZ1 = {(s1, a1a, a2a)}. The one tuple in

this set is consistent with two transitions:(s1, s2, a1/(−,−)) and (s1, s3, a2/(−,−)) and so we

get Z2 = {(s2, a, a2a), (s3, a1a, a)}. The first tuple is consistent with(s2, s0, a2/(a, a)) and the

second tuple is consistent with(s3, s0, a1/(a, a)). In each case we obtain the tuple(s0, ǫ, ǫ) and

soZ3 = {(s0, ǫ, ǫ)}. Thus, the verdict is pass.

Proposition 11 Given FSMM and local tracesσ1, . . . , σm, Algorithm 2 returns True if and

only if there exists someσ ∈ L(M) such thatπp(σ) = σp for all p ∈ P.

Proof: Consider iterationi of Algorithm 2 and the setZi formed in this iteration. By

construction each element(s, σ′

1, . . . , σ
′

m) ∈ Zi has the following properties:

1) There existσ′′

1 , . . . , σ
′′

m such thatσp = σ′′

pσ
′

p for all p ∈ P and there is a path inM from

s0 to s with a labelσ such thatπp(σ) = σ′′

p for all p ∈ P

2) The set of local tracesσ′

1, . . . , σ
′

m contain exactlyi fewer inputs thanσ1, . . . , σm.

It is also clear by construction thatZi contains all such tuples. From the second property we

know that, sinceσ1, . . . , σm contain a finite number of inputs, the algorithm must terminate.

Finally, if σ1, . . . , σm containk inputs then there existsσ ∈ L(M) such thatπp(σ) = σp for all

p ∈ P if and only if Zk contains(s, ǫ, . . . , ǫ) and so the result follows.

Thus, the test oracle problem for⊑s is decidable. We now consider the worst case complexity

of Algorithm 2.
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Algorithm 2 A test oracle for⊑s

Input FSMM = (S, s0, X, Y, h) and local tracesσ1, . . . , σm that containsk inputs.

Let Z0 := {(s0, σ1, σ2, . . . , σm)}

for all i := 1 to k do

Let Zi := ∅

for all (s, σ′

1, σ
′

2, . . . , σ
′

m) ∈ Zi−1 do

for all p ∈ P such thatσ′

p starts with an inputx ∈ Xp and (s′, y) ∈ h(s, x) do

if For all q ∈ P, πq(x/y) ∈ pre(σ′

q) then

For all q ∈ P let σ′′

q be defined byσ′

q = πq(x/y)σ
′′

q

Let Zi := Zi ∪ {(s′, σ′′

1 , σ
′′

2 , . . . , σ
′′

m)}

end if

end for

end for

end for

if There exists(s, ǫ, . . . , ǫ) ∈ Zk then

Output True

else

Output False

end if

Proposition 12 Let us suppose that an FSMM has m > 1 ports and for each states and

input x there are at mostq transitions froms with input x. Then Algorithm 2 operates in time

of O((max{m, k}q)k+1m) when givenM and local tracesσ1, . . . , σm that contain a total ofk

inputs.

Proof: On each iteration of the outer loop, for each element ofZi−1 we have to consider

at mostmax{m, k} ports since here we are considering anyσp that starts with an input; there

are onlym ports andk inputs in total. Each such input defines at mostq transitions. For each

such transition we takeO(m) time since we simply remove at most two elements from the front

of the m sequences (theσp). Given a tuple inZi−1 with states and an inputx at the front of

someσp, at worst we include inZi one tuple for each transition leavings with input x and
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there are at mostq such transitions. Since there are at mostmax{m, k} inputs at the front of

the σp in a tuple inZi−1, each tuple inZi−1 results in at mostmax{m, k}q elements inZi. As

a result, sinceZ0 has size1 the size ofZi−1 is bounded above by(max{m, k}q)i−1. Thus, in

iterationi we consider at most(max{m, k}q)i−1 elements ofZi−1 and, as seen above, for each

of these we consider at mostmax{m, k}q transitions and each transition takesO(m) time. The

overall worst time complexity is thus ofO(max{m, k}qm+ (max{m, k}q)(max{m, k}qm) +

. . .+(max{m, k}q)k−1(max{m, k}qm)). This can be simplified toO(
∑k

i=1m(max{m, k}q)i).

It is now sufficient to observe that
∑k

i=1(max{m, k}q)i ≤ (max{m, k}q)k+1.

We now consider the case in which we are testing against a DFSMusing a controllable input

sequencew = x1 . . . xk. Let us suppose thatL(M) contains the global tracex1/y1 . . . xk/yk.

Sincew is controllable we have that for all1 ≤ i < k, if xi+1 is at portp thenπp(xi/yi) 6= ǫ.

Algorithm 3 takes a DFSMM and σ1, . . . , σm produced by applying a controllable input

sequencex1, . . . , xk and decides whether there is someσ′ ∈ L(M) such thatπp(σ
′) = σp for all

p ∈ P.

Before proving the correctness of Algorithm 3 we prove a property of controllable traces.

Proposition 13 Let us suppose thatσ is a controllable global trace inLM(s) for DFSM M .

Then there is no global traceσ′ ∈ LM(s) such thatσ′ ∼ σ and σ′ 6= σ.

Proof: Proof by induction on the number of inputs inσ. The result clearly holds for

sequences with no inputs (and so of length0) and this forms the base case. Inductive hypothesis:

the result holds for every FSMM , states, and controllable global traceσ ∈ LM(s) with fewer

thank inputs (k > 0) and consider states and controllableσ ∈ LM (s) with k inputs. We will

assume thatσ′ ∼ σ for someσ′ ∈ LM(s) and are required to prove thatσ′ = σ.

Let σ = x1/y1, . . . , xk/yk andσ′ = x′

1/y
′

1, . . . , x
′

k/y
′

k. Sinceσ is controllable there can only

be one portp such thatπp(σ) starts with an input. Thus, sinceσ′ ∼ σ we must have thatx′

1 = x1.

Further, sinceM is deterministic we know thaty′1 = y1. The result now follows by noting that

x2/y2, . . . , xk/yk is controllable and by applying the inductive hypothesis tox2/y2, . . . , xk/yk

andx′

2/y
′

2, . . . , x
′

k/y
′

k.

Proposition 14 If Algorithm 3 is given DFSMM , local tracesσ1, . . . , σm, and a controllable

input sequencex1, . . . , xk then it returns True if and only if there is a global traceσ ∈ L(M)

with input portionx1, . . . , xk that has the property thatπp(σ) = σp for all p ∈ P.
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Algorithm 3 An oracle for⊑s with controllable input sequences
Input DFSMM = (S, s0, X, Y, h), local tracesσ1, . . . , σm, and controllable input sequence

x1, . . . , xk

Let s := s0

for all p ∈ P do

Let σ0
p := σp

end for

for all i := 1 to k do

Let s′ andyi be defined by{(s′, yi)} = h(s, xi)

for all p ∈ P do

if πp(xi/yi) ∈ pre(σi−1
p ) then

Let σi
p be defined byσi−1

p = πp(xi/yi)σ
i
p

else

Output False and Terminate

end if

end for

end for

if For all p ∈ P we have thatσk
p = ǫ then

Output True

else

Output False

end if

Proof: We use proof by induction onk. The result clearly hold for the base case, which

is the empty sequence. Now assume that for every DFSMM and controllable input sequence

x1, . . . , xj of length less thank, we have that Algorithm 3 returns True if and only if there is a

global traceσ ∈ L(M) with input portionx1, . . . , xj that has the property thatπp(σ) = σp for

all p ∈ P. Let x1, . . . , xk be a controllable input sequence.

SinceM is deterministic, the result of applyingx1 is uniquely defined and let us suppose that

h(s0, x1) = {(s, y)}. Further,x2, . . . , xk is controllable when applied from states. Algorithm 3
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returns True if and only if for allp ∈ P we have thatσp = πp(x1/y)σ
′

p for someσ′

p such that

Algorithm 3 returns True when given DFSMM with initial states, local tracesσ′

1, . . . , σ
′

m, and

controllable input sequencex2, . . . , xk. The result now follows from the inductive hypothesis.

Proposition 15 Given a DFSMM with n transitions andm ports, a set of local traces and a

controllable input sequence of lengthk, Algorithm 3 operates in time ofO(mk + k log(n)).

Proof: The innermost nested loop iterates a total ofmk times since the outermost loop

iteratesk times (once for each input) and for each such iteration the innermost loop has one

iteration for each port. Each iteration takes constant timeand so this contributesO(mk). We

have to apply the functionh once for each input and so a total ofk times. If this is achieved by

searching through a table that representsh where the transition are listed in lexical order then

this can be achieved using a binary search inO(log(n)). Thus, this contributesO(k log(n)) and

so the overall worst case time complexity ofO(mk + k log(n)).

VI. THE COMPLEXITY OF THE ORACLE PROBLEM

We have seen that we can solve the oracle problem for controllable input sequences with

DFSMs in low order polynomial time. However, the time complexity given for Algorithm 2 is

exponential. It is thus natural to ask whether there might exist polynomial time algorithms for

the general oracle problem. We now explore two cases: NFSMs and DFSMs when we are not

using controllable input sequences. We prove that both of these oracle problems are NP-hard by

showing that we can reduce the following problem to them.

Definition 6 Given boolean variablesz1, . . . , zr let C1, . . . , Ck denote sets of three literals,

where each literal is either a variablezi or its negation. The three-in-one SAT problem is: Does

there exist an assignment to the boolean variables such thateachCi contains exactly one true

literal.

The three-in-one SAT problem is motivated by a proposition being written in conjunctive

normal formC1 ∧ . . . ∧ Ck, each conjunctCi being the disjunction of three literals, and each

literal being either a variable or its negation. Thus,Ci = li1 ∨ li2 ∨ li3 for three literalsli1, li2, li3.

This problem is known to be NP-hard [35]. We first consider theoracle problem for NFSMs.
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Proposition 16 Given local tracesσ1, . . . , σm at m ports and an FSMM with m ports, the

problem of deciding whether there existsσ′ ∈ L(M) such that for allp ∈ P we have that

πp(σ
′) = σp is NP-hard.

Proof: We will show that we can reduce the three-in-one SAT problem to this problem.

We therefore suppose that we have variablesz1, . . . , zr and clausesC1, . . . , Ck. We will define

an FSMM with r+ k ports, inputsz1, . . . , zr at ports1, . . . , r and outputsy1, . . . , yr+k at ports

1, . . . , r + k.

FSM M has one states0. For an inputzi there are two transitions:

1) A transition that, for all1 ≤ j ≤ k, sends outputyr+j to port r + j if and only if Cj

contains literalzi and otherwise sends no output to portr + j. For all 1 ≤ p ≤ r it also

sends outputyp to port p.

2) A transition that, for all1 ≤ j ≤ k, sends outputyr+j to port r + j if and only if Cj

contains literal¬zi and otherwise sends no output to portr + j. For all 1 ≤ p ≤ r it also

sends outputyp to port p.

Now consider the local tracesσ1, . . . , σr+k defined by:σ1 = z1(y1)
r, σ2 = y2z2(y2)

r−1, . . . , σr =

(yr)
r−1zryr and for all1 ≤ i ≤ k we have thatσr+i = yr+i. Essentially, each inputzi is received

once by the FSM and a nondeterministic choice is made: eitheran output is sent to all ports

that correspond to clauses that contain literalzi or output is sent to all ports that correspond

to clauses that contain literal¬zi. It is thus clear that there existsσ′ ∈ L(M) such that for all

1 ≤ p ≤ r + k we have thatπp(σ
′) = σp if and only if there exist an assignment to the boolean

variablesz1, . . . , zr such that eachCi contains exactly one true literal. The result thus follows

from the three-in-one SAT problem being NP-hard and the factthat it is possible to construct

M and theσp in polynomial time.

Note that the proof constructed an instance of the oracle problem for an NFSM and set of

local traces that could correspond to the application of a controllable input sequence and thus

the problem is NP-hard even if we restrict testing to using controllable input sequences.

The above proof uses nondeterminism in the FSM to allow an input representing a variable

to lead to either a transition that corresponds to that variable being true or a transition that

corresponds to the variable being false. We cannot do this ina DFSM and so we require some

other mechanism. However, we can reduce the three-in-one SAT problem to the oracle problem
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for DFSMs.

Proposition 17 Given local tracesσ1, . . . , σm at m ports and a DFSMM with m ports, the

problem of deciding whether there existsσ′ ∈ L(M) such that for allp ∈ P we have that

πp(σ
′) = σp is NP-hard.

Proof: Again we will show that we can reduce the three-in-one SAT problem to this and

suppose that we have variablesz1, . . . , zr and clausesC1, . . . , Ck. We will define a DFSMM

with r + k + 1 ports, inputsz0, z1, . . . , zr at ports0, 1, . . . , r and outputsy1, . . . , yr+k at ports

1, . . . , r+ k. Here we count ports from0 rather than1 since the role of input at0 will be rather

different from the role of the other inputs.

DFSM M has two statess0, s1. For an inputzi with 1 ≤ i ≤ r there are two transitions:

1) From states0 there is a transition that, for all1 ≤ j ≤ k, sends outputyr+j to port r+ j if

and only ifCj contains literalzi and otherwise sends no output to portr+j. The transition

sends no output to ports0, . . . , r and does not change state.

2) From states1 there is a transition that, for all1 ≤ j ≤ k, sends outputyr+j to port r + j

if and only if Cj contains literal¬zi and otherwise sends no output to portr + j. The

transition sends no output to ports0, . . . , r and does not change state.

If M receives inputz0 in states0 then it moves to states1, producing no output. IfM receives

z0 when in states1 there is no change in state and no output is produced. In effect, the input of

the firstz0 moves us from a state in which the output in response tozi, 1 ≤ i ≤ r, corresponds

to zi being true to a state in which the response tozi corresponds tozi being false.

Now consider the local tracesσ0, σ1, . . . , σr+k defined by:σ0 = z0, σ1 = z1, σ1 = z2, . . . , σr =

zr and for all1 ≤ i ≤ k we have thatσr+i = yr+i. Each inputzi is received once by the DFSM

and these could have been received in any order and so for all1 ≤ i ≤ r we do not know

whetherzi has been received beforez0 or afterz0. If zi is received beforez0 then an output is

sent to all ports that correspond to clauses that contain literal zi. If zi is received afterz0 then

an output is sent to all ports that correspond to clauses thatcontain literal¬zi. Thus there exists

σ′ ∈ L(M) such that for all0 ≤ p ≤ r + k we have thatπp(σ
′) = σp if and only if there exist

an assignment to the boolean variablesz1, . . . , zr such that eachCi contains exactly one true

literal. The result follows from the three-in-one SAT problem being NP-hard and the fact that it

is possible to constructM and theσi in polynomial time.
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We have conditions under which the oracle problem can be solved in polynomial time for

DFSMs: we simply use controllable input sequences. While this does not work with NFSMs,

we can add a condition that makes is sufficient.

Definition 7 The NFSMM = (S, s0, X, Y, h) is locally observableif for every states and input

x there exists a portp ∈ P such that for all(s′, y) ∈ h(s, x) we have thatπp(y) 6= − and for

all (s′, y′), (s′′, y′′) ∈ h(s, x) with (s′, y′) 6= (s′′, y′′) we have thatπp(y
′) 6= πp(y

′′).

The intuition behind this is that if an NFSM is locally observable then we can look at the

output at one port, in response to an input, and determine what the overall output should have

been. This clearly simplifies the oracle problem: if an NFSM is locally observable, we have a set

of local traces and we know which input was first then from the first output at the appropriate

port we can also determine what output must have been produced in response to this input if

there was no failure. Thus, if we have a controllable input sequence then we can repeat this

process.

Proposition 18 If Algorithm 2 is given a locally observable FSMM with n transitions and a

set of local tracesσ1, . . . , σm with k inputs that was produced by applying a controllable input

sequence then it operates in time that is ofO(k(m+ log(n))).

Proof: First observe that since a controllable input sequence of lengthk was used andM is

locally observable, on each iteration the current setZi contains at most one tuple. We can assume

that when an inputx is considered from states we know which local trace to study in order to

determine the output that must have been produced in response to x and thus the computation

within the loop takeslog(n) to locate the appropriate transition andO(m) to compute the value

to place inZi. Since there arek iterations, the result thus follows.

Thus, when testing from an NFSM with distributed ports it is desirable to use controllable

input sequences and for the NFSM to be locally observable. However, this places a restriction

on the entire NFSM and instead it is sufficient for the input sequences used in testing to lead

to paths through the NFSM that have a similar property. The following achieves this by placing

a condition on the input sequences used.

Definition 8 Given FSMM an input sequencex1, . . . , xk is strongly controllablefor M if the

following hold:
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1) x1, . . . , xk is controllable forM ; and

2) for all 1 ≤ i < k, if there is a path froms0 to states with a label that has input portion

x1, . . . , xi−1 then there is a portp ∈ P such that for all(s′, y) ∈ h(s, xi) we have that

πp(y) 6= − and for all (s′, y′), (s′′, y′′) ∈ h(s, xi) with (s′, y′) 6= (s′′, y′′) we have that

πp(y
′) 6= πp(y

′′).

If an input sequence is strongly controllable then at each point the tester to apply the next

input is aware of when to apply the input since the input sequence is controllable. As a result,

when considering the oracle problem at each point we know which input is applied next. In

addition, the next output produced at an appropriatep ∈ P identifies the transition that occurred

and so in Algorithm 2 the new setZi formed contains at most one tuple. As a result, the proof

of the following result is equivalent to that of Proposition18.

Proposition 19 If Algorithm 2 is given an FSMM with n transitions and a set of local traces

σ1, . . . , σm with k inputs that was produced by applying a strongly controllable input sequence

then it operates in time that is ofO(k(m+ log(n))).

The concepts of an input sequence being strongly controllable and an FSM being locally

observable are related.

Proposition 20 If FSM M is locally observable then every controllable input sequence is

strongly controllable forM .

Proof: We will assume thatM is locally observable and consider some controllable input

sequencex1, . . . , xk: it is sufficient to prove that this input sequence is strongly controllable for

M .

Let 1 ≤ i < k and lets be such that there is a path froms0 to states with a label that has

input portionx1, . . . , xi−1. Then it is sufficient to prove that there is a portp ∈ P such that

for all (s′, y) ∈ h(s, xi) we have thatπp(y) 6= − and for all (s′, y′), (s′′, y′′) ∈ h(s, xi) with

(s′, y′) 6= (s′′, y′′) we have thatπp(y
′) 6= πp(y

′′). SinceM is locally observable, for every states

and inputx there exists a portp ∈ P such that for all(s′, y) ∈ h(s, x) we have thatπp(y) 6= −

and for all (s′, y′), (s′′, y′′) ∈ h(s, x) with (s′, y′) 6= (s′′, y′′) we have thatπp(y
′) 6= πp(y

′′). The

result therefore follows.
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The notion of an FSM being locally observable could potentially be seen as a testability

property: a property that makes testing easier. However, where such a property has not been

deliberately designed into a system it seems extremely strong and instead it is more likely that

we will be able to test using strongly controllable input sequences, the challenge being to produce

strongly controllable input sequences that satisfy a giventest criterion.

VII. CONCLUSIONS

If a system has physically distributed interfaces, called ports, then in testing and in use

observations are made locally. Thus, we observe a local trace at each interface rather than a global

trace. This form of observation is strictly weaker than whenwe observe global traces and leads to

new notions of conformance. This paper has considered testing from a (possibly nondeterministic)

finite state machine (FSM) and two corresponding conformance relations. One conformance

relation ⊑w involves simply comparing each observed local trace with a projection of the

specification and represents the situation in which no agentcan receive information regarding

observations made at more than one port. A stronger conformance relation⊑s corresponds to

the situation in which an agent might have access to the localtraces observed at all of the ports.

The conformance relations⊑w and ⊑s have previously been defined. However, in testing

we also need to determine whether an observation (set of local traces) is consistent with the

specification and this is the oracle problem. This paper has given algorithms for solving the

oracle problem for⊑w and⊑s. We showed that the oracle problem can be solved in low order

polynomial time for⊑w but is NP-hard for⊑s. This result holds even if the FSM is deterministic.

We then investigated conditions under which the oracle problem for⊑s can be solved efficiently.

We proved that if we are testing from a deterministic FSM withinput sequences that satisfy

the traditional notion of controllability then the oracle problem can be solved in low order

polynomial time. We gave stronger sufficient conditions fornondeterministic FSMs: either the

FSM is locally observable or the input sequence is strongly controllable. When it is not feasible

to solve the oracle problem when using⊑s we can instead use the algorithm for⊑w since this

provides a sound approximation.

There are many avenues for future work. First, while we have given conditions under which

the oracle problem for⊑s can be solved in polynomial time, these are not necessary conditions.

It would therefore be interesting to develop weaker sufficient conditions. We have shown that an
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oracle for⊑w defines a conservative approximation for⊑s and there may be scope to develop

better conservative approximations. There has been work onadapting theioco conformance

relation, traditionally used with input output transitionsystems (IOTSs), to the scenario in which

we only make local observations [20], [21] and it would be interesting to investigate the oracle

problem for such conformance relations. However, since IOTSs can have an infinite number of

states and input and output need not alternate, it seems likely that strong restrictions will be

required in order to allow polynomial time solutions to the oracle problem for IOTSs. Finally,

it would be interesting to extend this work to formalisms in which a transition is triggered by a

set of inputs rather than a single input (see, for example, [36], [37]).
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