2 research outputs found

    Cyber Law and Espionage Law as Communicating Vessels

    Get PDF
    Professor Lubin\u27s contribution is Cyber Law and Espionage Law as Communicating Vessels, pp. 203-225. Existing legal literature would have us assume that espionage operations and “below-the-threshold” cyber operations are doctrinally distinct. Whereas one is subject to the scant, amorphous, and under-developed legal framework of espionage law, the other is subject to an emerging, ever-evolving body of legal rules, known cumulatively as cyber law. This dichotomy, however, is erroneous and misleading. In practice, espionage and cyber law function as communicating vessels, and so are better conceived as two elements of a complex system, Information Warfare (IW). This paper therefore first draws attention to the similarities between the practices – the fact that the actors, technologies, and targets are interchangeable, as are the knee-jerk legal reactions of the international community. In light of the convergence between peacetime Low-Intensity Cyber Operations (LICOs) and peacetime Espionage Operations (EOs) the two should be subjected to a single regulatory framework, one which recognizes the role intelligence plays in our public world order and which adopts a contextual and consequential method of inquiry. The paper proceeds in the following order: Part 2 provides a descriptive account of the unique symbiotic relationship between espionage and cyber law, and further explains the reasons for this dynamic. Part 3 places the discussion surrounding this relationship within the broader discourse on IW, making the claim that the convergence between EOs and LICOs, as described in Part 2, could further be explained by an even larger convergence across all the various elements of the informational environment. Parts 2 and 3 then serve as the backdrop for Part 4, which details the attempt of the drafters of the Tallinn Manual 2.0 to compartmentalize espionage law and cyber law, and the deficits of their approach. The paper concludes by proposing an alternative holistic understanding of espionage law, grounded in general principles of law, which is more practically transferable to the cyber realmhttps://www.repository.law.indiana.edu/facbooks/1220/thumbnail.jp

    Diffusion, Infection and Social (Information) Network Database

    Get PDF
    Research to analyze diffusive phenomena over large rich datasets has received considerable attention in recent years. Moreover, with the appearance and proliferation of online social network services, social (information) network analysis and mining techniques have become closely intertwined with the analysis of diffusive and infection phenomena. In this dissertation, we suggest various analysis and mining techniques to solve problems related to diffusive and infection phenomena over social (information) networks built from various datasets in diverse areas. This research makes five contributions. The first contribution is about influence analysis in social networks for which we suggest two new centrality measures, Diffusion Centrality and Covertness Centrality. Diffusion Centrality quantifies the influence of vertices in social networks with respect to a given diffusion model which explains how a diffusive property is spreading. Covertness Centrality quantifies how well a vertex can communicate (diffuse information) with (to) others and hide in networks as a common vertex w.r.t. a set of centrality measures. The second contribution is about network simplification problems to scale up analysis techniques for very large networks. For this topic, two techniques, CoarseNet and Coarsened Back and Forth (CBAF), are suggested in order to find a succinct representation of networks while preserving key characteristics for diffusion processes on that network. The third contribution is about social network databases. We propose a new network model, STUN (Spatio-Temporal Uncertain Networks), whose edges are characterized with uncertainty, space, and time, and develop a graph index structure to retrieve graph patterns over the network efficiently. The fourth contribution develops epidemic models and ensembles to predict the number of malware infections in countries using past detection history. In our fifth contribution, we also develop methods to predict financial crises of countries using financial connectedness among countries
    corecore