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Research to analyze diffusive phenomena over large rich datasets has received considerable

attention in recent years. Moreover, with the appearance and proliferation of online social net-

work services, social (information) network analysis and mining techniques have become closely

intertwined with the analysis of diffusive and infection phenomena. In this dissertation, we sug-

gest various analysis and mining techniques to solve problems related to diffusive and infection

phenomena over social (information) networks built from various datasets in diverse areas. This

research makes five contributions. The first contribution is about influence analysis in social net-

works for which we suggest two new centrality measures, Diffusion Centrality and Covertness

Centrality. Diffusion Centrality quantifies the influence of vertices in social networks with respect

to a given diffusion model which explains how a diffusive property is spreading. Covertness Cen-

trality quantifies how well a vertex can communicate (diffuse information) with (to) others and

hide in networks as a common vertex w.r.t. a set of centrality measures. The second contribution

is about network simplification problems to scale up analysis techniques for very large networks.

For this topic, two techniques, CoarseNet and Coarsened Back and Forth (CBAF), are suggested

in order to find a succinct representation of networks while preserving key characteristics for dif-

fusion processes on that network. The third contribution is about social network databases. We

propose a new network model, STUN (Spatio-Temporal Uncertain Networks), whose edges are



characterized with uncertainty, space, and time, and develop a graph index structure to retrieve

graph patterns over the network efficiently. The fourth contribution develops epidemic models

and ensembles to predict the number of malware infections in countries using past detection his-

tory. In our fifth contribution, we also develop methods to predict financial crises of countries

using financial connectedness among countries.
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Chapter 1: Introduction

With the proliferation of rich data-sets from various scientific fields such as economics, social

science, finance, ecology, biology and computer science, there is now much ongoing research to

analyze such data sets. Moreover, because it is possible to get fine and abundant historical and

(or) interaction data from various online social network services, the analysis of diffusive and in-

fection phenomenon has been extensively studied and social (information) network analysis and

mining techniques have become closely intertwined with the analysis of diffusive and infection

phenomena. Moreover, as graph data models can naturally express the relationships and interac-

tions among data elements, graph models have been widely used for solving various problems in

diverse areas.

In this thesis, we suggest various analysis and mining techniques to solve problems related

to diffusive and infection phenomena over social (information) networks built from various data-

sets in diverse areas. In short, we focus on developing data mining techniques for social influence

analysis to quantify the relative importance of vertices in networks, network simplification to

scale up social analysis techniques for very large networks, social network database for networks

whose edges have space, time and uncertainty information, malware infection prediction to predict

the volume of malware infections in each country and systematic banking crises prediction over

countries. The short descriptions of the contributions are below.
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Social Influence Analysis. Influence analysis in social networks has received considerable at-

tention in recent years due to its wide range of applications, e.g viral marketing, personalized

recommendation, link prediction and ranking of feeds. Centrality of a vertex as a measure of its

relative importance within a graph is a fundamental concept in network analysis. It has been ex-

tensively studied and widely used for social network influence analysis. In Chapter 2, we develop

two new centrality measures, Diffusion Centrality and Covertness Centrality for different analysis

purposes.

In different areas including economics, epidemiology, physics, sociology and computer

science, there has been much research on analyzing how various diffusive properties of vertices

spread through the networks and various diffusion models have been developed. However, existing

centrality measures mainly depend on the structural properties of networks and do not explicitly

consider diffusion processes, how properties diffuse through social networks. They also do no

consider the semantical properties of nodes, and the nature of the links between them. Therefore,

in Chapter 2.1, we suggest Diffusion Centrality to quantify the influence of vertices in social net-

works with respect to a given diffusion model. We then develop a general framework which con-

sists of syntax/semantics to express diffusion models and suggest a hypergraph-based algorithm,

HyperDC, to compute diffusion centrality efficiently with optimizations in the social information

networks for a given diffusion model.

It has been known for some time that in terror networks, money laundering networks, and

criminal networks, important players want to stay off the radar and to blend into the crowd. But

they hold sufficient ability to communicate with or to diffuse information to the rest of their net-

work. In order to capture these, Chapter 2.2 proposes Covertness Centrality. Covertness Centrality

measures how common a vertex is w.r.t. a set of centrality measures (common-ness) and how well

the vertex can communicate with a user-specified set of vertices. We first propose probabilistic
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models to measure common-ness of a vertex and then, define Covertness Centrality of a vertex as

a linear combination of common-ness and the communication ability of the vertex.

Network Simplification. In very large networks, it would be not feasible to apply network analy-

sis techniques directly and exactly.Because of this, several network simplification techniques have

been developed in order to analyze huge social networks. But there are no network simplification

techniques to capture smaller equivalent representation of the network that preserves its diffu-

sion and infection characteristics with considering not only structural aspects but also semantic

aspects of social networks. So In Chapter 3 we suggest two network simplification techniques,

COARSENET and Coarsened Back and Forth (CBAF).

In Chapter 3.1, we first formulate a novel Graph Coarsening Problem to find a succinct

representation of any graph while preserving key characteristics for diffusion processes on that

graph. We then provide a fast and effective near-linear-time (in nodes and edges) algorithm,

COARSENET and show how our method can help in diverse applications like influence maxi-

mization and detecting patterns of propagation at the level of automatically created groups on

real cascade data. In Chapter 3.2, we develop another network simplification technique which is

extended from COARSENET to support various diffusion models explicitly and semantic aspects

of social networks. Then, we suggest CBAF algorithm to find top-k vertices having the highest

diffusion centrality in very large social information networks approximately and efficiently.

Spatio-Temporal Uncertain Network. In prior social network analysis research, an edge ex-

presses the relationship or the interaction between two vertices with labels. However, due to the

widespread adoption of location-sensing mobile devices, people can share information about their

geographic position with others easily via online social network services. As a consequence, ser-

vice providers have access to the data on online relations and interactions with spatial and temporal
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information among users. Many companies already provide services taking into account spatial

and temporal information with social networks. There are also numerous ongoing efforts to infer

spatial, temporal and other properties of social networks. The spatial, temporal and uncertainty

information allow us to build reliable social network models and the models can help us enrich

network analysis techniques. Moreover, it is obvious that diffusive and infection phenomena could

be (very) different according to different spatio-temporal situations. But the framework to express

social networks whose edges have space, time and uncertainty information has not been studied

yet. So, in Chapter 4, we propose a new network model, STUN (Spatio-Temporal Uncertain Net-

works), to formally define social networks whose edges can be characterized with uncertainty,

space, and time information. We then develop an index structure to store the networks and to

retrieve graph patterns efficiently with space, time, and uncertainty constraints over the networks.

We also introduce STUN ranking queries which attempt to identify important nodes in a STUN

network, extending the well-known PageRank algorithm.

In the previous techniques suggested in this thesis, we assume that diffusion models are

given. In this thesis, we also suggest how diffusion models can be built for capturing the diffusion

and infection process of specific diffusive and infection phenomenon from infection history data.

Our research does not suggest a general framework to build diffusion models for various datasets,

because the infection properties (features) of diffusive and infection phenomenon would be (very)

different for different application domains. For example, the diffusion and infection features of

epidemic diseases would be very different from the diffusion process of information and rumors.

In our research, we show how social network analysis techniques can be used for the analysis

of diffusive and infection phenomenon and how the analyzed features can be used for building

diffusion and infection models to predict the infections of diffusive objects. We specifically study
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the diffusion process and infection (diffusion) phenomenon of two different data sets.

Malware Infection and Diffusion prediction model. Given a history of detected malware attacks,

can we predict the number of malware infections in a country? Can we do this for different mal-

ware and countries? This is an important question which has numerous implications for cyber se-

curity, right from designing better anti-virus software, to designing and deloying targeted patches

to more accurately measuring the economic impact of breaches. This problem is compounded by

the fact that, as externals, we can only detect a fraction of actual malware infections. In Chapter 5,

we address this problem using data from Symantec covering more than 1.4 million hosts and 50

malware spread across 2 years and multiple countries. We first carefully design domain-based

features from both malware and machine-hosts perspectives. Secondly, inspired by epidemiolog-

ical and information diffusion models, we design a novel temporal non-linear model for malware

spread and detection. Finally we present ESM, an ensemble-based approach which combines both

these methods to construct a more accurate algorithm. Using extensive experiments spanning mul-

tiple malware and countries, we show that ESM can effectively predict malware infection ratios

over time (both the actual number and trend) and the performance is stable and robust even when

the number of detected infections is low.

Systematic Banking Crises (infection) prediction model. The global financial crisis has reignited

interest in crisis prediction models. It has also raised the question whether financial interconnect-

edness can serve as an early warning indicator of crises. In Chapter 6, first we suggest network

indicators that measure the connectedness among countries in the global network of financial

linkages. The indicators can be obtained by applying social network analysis techniques and can

capture the infection (diffusion) properties of crises over countries implicitly and relatively. Sec-

ond, we suggest a infection prediction model to predict which countries will experience systemic
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banking crises with the indicators. We then examine the ability of connectedness in the global

network of financial linkages to predict systemic banking crises during 1978-2010 year period.
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Chapter 2: Social Influence Analysis

Influence analysis in social networks has received considerable attention in recent years due to

its wide range of applications, e.g viral marketing, personalized recommendation, link prediction

and ranking of feeds. Various centrality measures have been used for social influence analysis.

However, there is no centrality measure to consider the infection (propagation) flow of diffusive

properties directly and explicitly in various diffusive and infection phenomenon over networks.

No centrality measure also exists to capture the features of important players who want to hide

in a crowd and to have sufficient communication ability with others in crime social networks. In

Chapter 2, we suggest two new centrality measures, Diffusion Centrality and Covertness Cen-

trality for them. Diffusion Centrality is to measure the relative influence of a vertex in a social

information network with considering explicitly the diffusion process of a given diffusion model

and proposed in Section 2.1. Covertness Centrality quantifies the abilities of a vertex, how well

the vertex can be hidden in crowds and communicate with others. We develop it in Section 2.2.

2.1 Diffusion Centrality

2.1.1 Introduction

An increasingly important problem in social networks (SNs) is that of assigning a ‘centrality”

value to vertices reflecting their importance within the SN. Well-known measures such as degree

centrality [83, 163], betweenness centrality [37, 82], PageRank [?], closeness centrality [177, 21],
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and eigenvector centrality [36] only take the structure of the network into account—they do not

differentiate between vertices that are central w.r.t. spreading one topic or meme or sentiment vs.

spreading another. A vertex that is important in spreading awareness of a mobile phone program

may be very unimportant in spreading information about a restaurant. Likewise, most past work

assumes that there is no information about properties of the vertices/edges or edge weights—but in

modern social networks, at least some self-declared properties exist and, in many cases, analysis

of tweets and posts can provide further information. These omissions can cause serious problems

as shown in the following toy example.

Example 2.1.1 (HIV). Figure 2.1 shows four people a, b, c, d, where b has HIV. Solid edges denote

sexual relationships, while dashed edges denote friend relationships (these edges are undirected

in this example, i.e. sexual partners and friends are considered symmetric relationships). Edge

weights denote the intensity of these relationships.

a

c

d

b
0.1

0.1

0.8

0.7

Fig. 2.1: [

]A small HIV social network. Shaded vertices denote people with HIV. Solid edges denote sexual

relationships, dashed edges denote friend relationships.

The table below shows the centrality of a, b, c, d w.r.t. various centrality measures1.

Intuitively, the only person in this network capable of spreading HIV is b. However, b has

the lowest centrality according to all five centrality measures mentioned above.

Past centrality measures ignore how properties (e.g., HIV in the above example) diffuse

1 The classical definitions of the centrality measures are used as opposed to their weighted versions.
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Centrality Measure a b c d

Degree 1 0.33 0.66 0.66

Betweenness 2 0 0 0

PageRank 0.367 0.141 0.246 0.246

Closeness 0.33 0.2 0.25 0.25

Eigenvector 0.375 0.125 0.25 0.25

through the SN, solely focusing on the structure of the network. We can readily think of networks

(e.g., Twitter) where person A has the highest centrality in terms of spread of support for Repub-

licans, while person B is the central player in terms of spread of support for conserving gorillas.

The network in both cases is the same (Twitter), but the centrality of vertices should be measured

both by structural graph properties and by a vertex’s ability to diffuse a given property. In Sec-

tion 2.1, we propose the novel notion of diffusion centrality that takes an SN, a diffusive property

p, and a previously learned diffusion model Π for p, and defines centrality of vertices based on

these inputs. We do not provide algorithms to automatically learn diffusion models—interested

readers may find one such algorithm in [41].

In Section 2.1, we also show how diffusion centrality can be used to achieve significantly

higher spread of a diffusive property p by using diffusion models for p rather than classical cen-

trality measures. We further show that this can be done for most diffusion models we have seen

in the literature. Moreover, this can often be done in time comparable to that of Pagerank. Last

but not least, our methods are shown to scale to social networks with over 2M vertices and 20M

edges.

Section 2.1 is organized as follows.

• We define Diffusion Centrality (DC) in Section 2.1.3 to quantify the influence of vertices in

a social network with respect to (i) a given diffusion model which explains how a diffusive
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property is spreading, (ii) the structural properties and (iii) the semantic properties of the

network. Diffusion models are expressed via Generalized Annotated (logic) Programs or

GAPs [131] that were previously shown [184] to express most diffusion models studied in

the literature, including a variety of cascade models, tipping models, disease spread models,

and homophilic models.

• Section 2.1.4 proposes a general ‘hypergraph fixed point algorithm” (HyperLFP) to effi-

ciently compute the likelihood that an arbitrary vertex has certain properties according to

the GAP diffusion model. We also define novel classes of GAPs (such as p-monotone and

p-dwindling), together with a novel suite of network filtering methods to develop the Hy-

perDC algorithm. These optimization significantly reduce the time required to compute the

expected spread of p through the network w.r.t. a diffusion model Π.

• Section 2.1.5 describes extensive experiments comparing DC with classical centrality mea-

sures in terms of both runtime and the “spread” generated by central vertices. Experimental

results on multiple real-world social networks and widely used diffusion models in the liter-

ature show that when the top-k vertices selected by diffusion centrality are given property p

(e.g., an incentive to spread good news about a mobile phone plan or a political candidate),

they usually achieve much bigger spreads (i.e., expected number of vertices in the network

having property p) than when these top-k vertices are selected by classical centrality mea-

sures. This maximization of spread w.r.t. a wide variety of diffusion models is the main

goal of this paper. Moreover, the experiments show that HyperDC is much faster than be-

tweenness and closeness centrality—its runtime is often similar to PageRank, eigenvector,

and degree centrality.

In Section Ap.1.4, we summarize all the notations used in Section 2.1.
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2.1.2 Preliminaries

In this section, we formally define social networks (SNs), recall generalized annotated programs

(GAPs) from [131], and show how diffusion models can be expressed with GAPs.

2.1.2.1 Social Networks

We assume the existence of a set VP of unary predicate symbols (to capture properties of vertices

in a social network), called vertex predicate symbols (or properties), and a set EP of binary predi-

cate symbols (intended to capture relationships between vertices in a social network), called edge

predicate symbols.

Definition 1 (Social Network). A social network (SN) is a tuple (V,E,VL, ω) where:

1. V is a finite set of vertices;

2. E ⊆ V × V × EP is a finite set of (labeled) edges;

3. VL : V → 2VP assigns a set of properties to each vertex;

4. ω : E → (0, 1] assigns a weight to each edge.

Intuitively, an SN is a directed graph where VL assigns a set of properties to each vertex and

there can be multiple labeled edges between a given pair of vertices, each of which is associated

with a weight and a unique edge predicate symbol.

Example 2.1.2. Consider the SN of Example 2.1.1 (cf. Figure 2.1). Here, VP = {hiv} and

EP = {sp, fr}, where sp and fr stand for sexual and friend relationships, respectively. The SN is
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defined as:

1. V = {a, b, c, d}.

2. E = {〈a, b, sp〉, 〈b, a, sp〉, 〈a, c, sp〉, 〈c, a, sp〉, 〈a, d, fr〉, 〈d, a, fr〉, 〈c, d, fr〉, 〈d, c, fr〉}.

3. VL(b) = {hiv}; VL(a) = VL(c) = VL(d) = ∅.

4. ω(〈a, b, sp〉) = ω(〈b, a, sp〉) = ω(〈a, c, sp〉) = ω(〈c, a, sp〉) = 0.1;

ω(〈a, d, fr〉) = ω(〈d, a, fr〉) = 0.8; ω(〈c, d, fr〉) = ω(〈d, c, fr〉) = 0.7.

Our definition of social networks is much broader than that used by several researchers [?,

63, 115, 127] who often do not consider either vertex properties or edge labels or edge weights—it

is well known in marketing that intrinsic properties of vertices (customers, patients) and the nature

and strength of the relationships (edges) are critical for decision-making.

2.1.2.2 Generalized Annotated Programs (GAPs)

Syntax. We assume the existence of a set T of variable symbols ranging over the unit real interval

[0, 1] and a set F of function symbols (corresponding to continuous functions), each of which has

an associated arity.

Definition 2 (Annotation Term). Annotation terms are defined as follows:

1. Any member of [0, 1] ∪ T is an annotation term.

2. If f ∈ F is an n-ary function symbol and t1, . . . , tn are annotation terms, then f(t1, . . . , tn) is

an annotation term.

For instance, 0.5 and X are annotation terms (X is assumed to be a variable in T ). If + is

a binary function symbol in F , then X + 1 is an annotation term.

We now define a logical language whose predicate symbols are VP ∪ EP. We assume the

existence of a finite set V of constants (the universe of vertices) and a set V of variable symbols

ranging over the constants (vertices). No function symbols are present. Any member of V ∪ V is
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a term. If p ∈ VP and t is a term, then p(t) is a vertex atom. If p ∈ EP and t1, t2 are terms, then

p(t1, t2) is an edge atom.

Definition 3 (Annotated Atom/GAP-Rule/GAP). If A is an atom and µ is an annotation term,

then A : µ is an annotated atom; if A is a vertex (resp. edge) atom, then A : µ is also called a

vertex (resp. edge) annotated atom. A GAP-rule (or simply rule) is of the form A0 : µ0 ← A1 :

µ1 ∧ . . . ∧ An : µn where n ≥ 0 and every Ai : µi is an annotated atom. A0 : µ0 is the head of

the rule, while A1 : µ1 ∧ . . . ∧ An : µn is the body of the rule. A generalized annotated program

(GAP) is a finite set of rules.

For notational simplicity, we will write a ground rule A0 : µ0 ← simply as A0 : µ0, that

is, we drop ←. Such a rule is called a fact. An annotated atom (resp. rule, GAP) is ground iff

there are no occurrences of variables from either T or V in it. We use A to denote the set of all

ground atoms. Throughout this paper we consider a restricted class of GAPs: every rule with a

non-empty body has a vertex annotated atom in the head ([131] allows any annotated atom in the

head of a rule). Thus, edge atoms can appear only in rule bodies or rules with an empty body. This

restriction results from the set of diffusion models we consider in this paper: neither edge weights

nor edge labels change as the result of the diffusion.

We use grd(r) to denote the ground instances of a rule r, i.e. the set of all rules obtained

from r by replacing every occurrence of a variable in T (i.e., appearing in annotation terms) with

a real number in [0, 1], and every occurrence of a variable in V (i.e., appearing in vertex or edge

atoms) with a vertex in V—multiple occurrences of the same variable are replaced in the same

way. Given a GAP Π, we use grd(Π) to denote the set of all ground instances of rules in Π, i.e.

grd(Π) =
⋃
r∈Π grd(r).

We assume that VP contains a distinguished vertex predicate symbol vertex that represents

the presence of a vertex in an SN. Every SN S = (V,E,VL, ω) can be represented by a GAP,
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denoted ΠS , as follows:

ΠS = {vertex(v) : 1 | v ∈ V } ∪ {p(v) : 1 | v ∈ V ∧ p ∈ VL(v)} ∪

{ep(v1, v2) : ω(〈v1, v2, ep〉) | 〈v1, v2, ep〉 ∈ E}

Example 2.1.3. The GAP associated with the SN of Example 2.1.1 is the following:

vertex(a) : 1 sp(a, b) : 0.1 fr(a, d) : 0.8 hiv(b) : 1

vertex(b) : 1 sp(b, a) : 0.1 fr(d, a) : 0.8

vertex(c) : 1 sp(a, c) : 0.1 fr(c, d) : 0.7

vertex(d) : 1 sp(c, a) : 0.1 fr(d, c) : 0.7

When we augment ΠS with other rules, such as rules describing how certain properties

diffuse through the social network, we get a GAP Π ⊇ ΠS that captures both the structure of the

SN and the diffusion principles. Below is a small example.

A GAP Πhiv for the SN of Example 2.1.1 might be:

r1 : hiv(V ) : 0.9×X × Y ← sp(V, V ′) : Y ∧ hiv(V ′) : X

r2 : hiv(V ) : 0.4×X × Y × Y ′ ← fr(V, V ′) : Y ∧ sp(V ′, V ′′) : Y ′ ∧ hiv(V ′′) : X

r3 : hiv(V ) : 0.6×X × Y × Y ′ ← sp(V, V ′) : Y ∧ sp(V ′, V ′′) : Y ′ ∧ hiv(V ′′) : X

The first rule says that the confidence that a vertex V has HIV, given that a partner V ′ has HIV

with confidence X , is 0.9×X×Y , where Y is the weight of the sexual relationship between

the two vertices. The other rules can be similarly read.

Semantics. An interpretation I is a mapping from the set of all ground atoms A to [0, 1]. The set

of all interpretations can be partially ordered as follows: given two interpretations I1 and I2, then

I1 � I2 iff for all ground atoms A ∈ A, I1(A) ≤ I2(A). An interpretation I satisfies a ground

annotated atom A : µ, denoted I |= A : µ, iff I(A) ≥ µ. I satisfies a ground rule r of the form

AA0 ← AA1∧ . . . ∧ AAn, denoted I |= r, iff (i) I satisfies AA0 or (ii) there exists an 1 ≤ i ≤ n

such that I does not satisfy AAi. I satisfies a (possibly non-ground) rule iff I satisfies all ground
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instances of it. I satisfies a GAP Π iff I satisfies every rule in Π. A GAP Π entails a ground

annotated atom AA, denoted Π |= AA, iff every interpretation I that satisfies Π also satisfies AA.

[131] associates an operator TΠ that maps interpretations to interpretations with any GAP

Π. Suppose I is an interpretation. Then,

TΠ(I)(A) = max({I(A)} ∪ {µ | A : µ← AA1 ∧ . . . ∧ AAn is in grd(Π) and

for all 1 ≤ i ≤ n, I |= AAi})

The iteration of TΠ is defined as follows:

TΠ ↑ 0 is the interpretation that assigns 0 to all ground atoms.

TΠ ↑ (i+ 1) = TΠ(TΠ ↑ i).

[131] shows that TΠ is monotonic (w.r.t. �) and has a least fixed point lfp(TΠ). Moreover,

they show that a GAP Π entails a ground annotated atom A : µ iff µ ≤ lfp(TΠ)(A) and therefore

lfp(TΠ) precisely captures the ground atomic logical consequences of Π. We will denote the least

fixed point lfp(TΠ) also as lfp(Π).

Example 2.1.4. Consider again the HIV SN S of Example 2.1.1 and the GAP Πhiv of Exam-

ple 2.1.2.2. Let Π = ΠS ∪ Πhiv. TΠ has a least fixed point that coincides with TΠ ↑ 3 as shown

in Table 2.1 (edge atoms are not reported as the values assigned to them at iteration 1 are those

reported in Example 2.1.3 and do not change after iteration 1). Thus, the least fixed point assigns

0.09 to hiv(a), 1 to hiv(b), 0.0081 to hiv(c), and 0.032 to hiv(d).

2.1.2.3 Expressing Diffusion Models with GAPs

Diffusion models specify how vertex properties “propagate” and fall into three categories: tipping

models, in which a vertex adopts a behavior when a sufficiently large percentage of its neighbors

adopt the behavior [179, ?, 115]; cascade models, in which diffusion cascades across the network

(cascade models have been developed for the SIR model of disease spread [10], marking photos
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TΠ ↑ i hiv(a) hiv(b) hiv(c) hiv(d)

0 0 0 0 0

1 0 1 0 0

2 0.09 1 0.006 0.032

3 0.09 1 0.0081 0.032

4 0.09 1 0.0081 0.032

Tab. 2.1: Iterations of TΠ.

as favorites in Flickr [?]); and homophilic models, in which vertices adopt behaviors on the basis

of their intrinsic properties but not on the basis of the network structure [12]. Many existing

diffusion models for a variety of phenomena can be expressed as GAPs. [183] shows that GAPs

can represent many different diffusion models, including: the Susceptible-Infectious-Removed

(SIR) model of disease spread [10], which is a classic disease model; the Susceptible-Infectious-

Susceptible (SIS) model [110], which is a variant of the SIR model; the Big Seed marketing

approach [200], which is a strategy of advertising to a large group of individuals who are likely

to spread the advertisement further through network effects; models of diffusion of “favorited”

pictures in Flickr [49]; tipping models like the Jackson-Yariv product diffusion model [115].

Example 2.1.5. Suppose the SN in Figure 2.1 represents cell phone users and vertices have prop-

erties like male, female, young, old, and adopter telling us if the user adopted a cell phone plan.

The phone company wants to identify important users. Suppose d is male and everyone else is

female; initially nobody is an adopter. A cell phone provider may have a diffusion rule learned

from past promotions:

adopter(V ′) : 0.6×X × Y ← adopter(V ) : X ∧male(V ) : Y ∧ fr(V, V ′) : W

The vertex which has the greatest influence, if given a free mobile phone plan and if the

above diffusion model is used, is clearly d (because this is the only vertex that can “influence”
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others to adopt the plan). However, we see from the table in Example 2.1.1 that d is not the most

relevant vertex w.r.t. to all centrality measures. It is also interesting to note that c and d have the

same centrality w.r.t. all standard centrality measures (because their properties and the diffusion

model are ignored).

Other examples of diffusion models expressed with GAPs, such as a conditional probability

model, the Jackson-Yariv and the SIR model, are reported in Section Ap.1.1, as they have been

used in our experiments.

2.1.3 Diffusion Centrality

Diffusion centrality tries to measure how well a vertex v can diffuse a property p (e.g., the hiv

property). Given an SN S = (V,E,VL, ω), a vertex predicate symbol p, and a vertex v ∈ V ,

the insertion of p(v) into S, denoted S ⊕ p(v), is the SN (V,E,VL′, ω) where VL′ is exactly

like VL except that VL′(v) = VL(v) ∪ {p}. In other words, inserting p(v) into a social network

merely says that vertex v has property p and that everything else about the network stays the same.

Likewise, the removal of p(v) from S, denoted S 	 p(v), is the social network (V,E,VL′′, ω)

which is just like S except that VL′′(v) = VL(v)− {p}.

Definition 4 (Diffusion Centrality). Let S = (V,E,VL, ω) be an SN, Π a GAP, and p a property.

The diffusion centrality (DC for short) of a vertex v ∈ V w.r.t. Π, p, and S, denoted dcΠ,p,S(v), is

defined as follows:

∑
v′∈V−{v}

lfp(Π ∪ΠS⊕p(v))(p(v
′)) −

∑
v′′∈V−{v}

lfp(Π ∪ΠS	p(v))(p(v
′′))

Whenever Π, p, and S are clear from the context, we denote the diffusion centrality of a

vertex v simply as dc(v).

This definition says that computing the diffusion centrality of vertex v involves two steps.

First, we find the least fixed point of the diffusion model and the SN S ⊕ p(v), i.e. we assume that
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vertex v has property p and see how much diffusion occurs. Then, we find the least fixed point

of the diffusion model and the SN S 	 p(v), i.e. we assume that vertex v does not have property

p and see how much diffusion occurs. The difference between these two numbers captures the

“impact” that would occur in terms of diffusion of property p if vertex v had property p.2

Example 2.1.6. Consider again the HIV SN of Example 2.1.1 and the GAP of Example 2.1.2.2.

Recall that the only vertex with property hiv is b. It can be easily verified that the values for the

positive and negative summands of Definition 4 for all vertices are as reported in the following

table.

a b c d

Positive Summand 1.122 0.13 1.122 1.0981

Negative Summand 1.0401 0 1.122 1.0981

Diffusion Centrality 0.0819 0.13 0 0

Thus, b has the highest centrality w.r.t. hiv and Πhiv— classical centrality measures (Ex-

ample 2.1.1) do not capture this because b is not a “central” vertex from a purely topological

perspective. However, b should have the highest centrality because it is the only one with HIV.

Vertices c and d do not increase the confidence of any vertex to have HIV. So their diffusion cen-

trality is zero.

Example 2.1.7. If we return to the cell phone case (Example 2.1.5), we see that the DC of d

2 Considering just the first summation of Definition 4 is wrong. Suppose we have an SN and a vertex v s.t. the first

summation of dc(v) is a high numberN (i.e., the expected number of vertices that would have property p assuming that

v has property p is N ). Suppose that when we assume that v does not have property p, the same value N is determined

(i.e., this is the value of the second summation). Then, intuitively, v should not have a high diffusion centrality since

the expected number of vertices with property p is the same regardless of whether v has property p or not (hence v does

not seem to play a central role in the diffusion of p). In contrast, considering just the first summation would give v a

high centrality.
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is 1.2, while all other vertices have 0 as their DC. Thus, d has the highest diffusion centrality.

Furthermore, as opposed to classical centrality metrics, c and d do not have the same centrality,

because their properties and the diffusion of interest make them important to a different extent.

Diffusion Centrality Problem (DCP). Given an SN S = (V,E,VL, ω), a GAP Π, and a property

p, the diffusion centrality problem consists of finding the DC (w.r.t. Π, p, and S) of every vertex

of S.

2.1.4 The HyperDC Algorithm for Exact Diffusion Centrality Computation

In this section, we present the HyperDC algorithm (Section 2.1.4.3), which solves DCP exactly

using the HyperLFP algorithm (Section 2.1.4.2) to compute the least fixed point of a GAP. We

start with a set of optimization that can speed up HyperDC (Section 2.1.4.1).

2.1.4.1 Preprocessing Optimization Steps

When computing dc(v), we note that S, S⊕p(v), and S	p(v) differ only in whether or not vertex

v has property p. One way to leverage this is to first compute and cache lfp(Π ∪ΠS) independent

of v. We then only need to calculate one summation in order to compute dc(v).

Proposition 1. Consider a social network S = (V,E,VL, ω), a GAP Π, and a property p. Let

φ = lfp(Π ∪ΠS) and v be a vertex in V . Then,

dc(v) =


∑

v′∈V−{v}
φ(p(v′))−

∑
v′′∈V−{v}

lfp(Π ∪ΠS	p(v))(p(v
′′)) if p ∈ VL(v)

∑
v′∈V−{v}

lfp(Π ∪ΠS⊕p(v))(p(v
′))−

∑
v′′∈V−{v}

φ(p(v′′)) if p /∈ VL(v)

Proof. Consider a vertex v ∈ V . If v has property p, then, by definition of S ⊕ p(v), we have that

φ = lfp(Π ∪ ΠS⊕p(v)) and the first equation holds. Likewise, if v does not have the property p,

then, by definition of S 	 p(v), we have that φ = lfp(Π ∪ΠS	p(v)) and then the second equation

also follows. �
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p-monotonic GAPs, defined below, are a class of GAPs to which we can apply optimization

techniques. The dependency graph of a GAP Π is a directed graph dep(Π) whose vertices are the

predicate symbols in Π. There is an edge from a predicate symbol q to a predicate symbol p iff

there is a rule in Π where p occurs in the head and q occurs in the body. We say that q can reach p

if there exists a path from q to p in dep(Π). If q can reach p and vice versa, then we say that p and

q are mutually recursive. We use MΠ,p to denote the set of predicate symbols that are mutually

recursive with p. We define RΠ,p as the set of predicate symbols that can reach p and appear in

the head of some rule of Π. Note that MΠ,p ⊆ RΠ,p.

Definition 5 (p-monotonic GAP). We say that a rule A0 : µ0 ← A1 : µ1 ∧ . . . ∧ An : µn is

monotonic iff µ0 is a monotonic function3. Given a GAP Π and a property p, we say that Π

is p-monotonic iff, for every rule r in Π, when the head predicate symbol is in RΠ,p then r is

monotonic.

We now introduce the p-interfered predicate set—intuitively, it is the set of predicate sym-

bols that may impact the values assigned to ground atoms of the form p(v) in the least fixed point.

Definition 6 (p-interfered predicate set). Given a GAP Π and a property p, the p-interfered pred-

icate set is defined as follows:

IΠ,p =


MΠ,p if Π is p-monotonic

RΠ,p if Π is not p-monotonic

The GAP Π of Example 2.1.2.2 is hiv-monotonic with IΠ,hiv = {hiv}. The following GAP

3 If µ0 is a constant, it is considered to be monotonic. Moreover, if µ0 = f(. . .), then µ0 is monotonic if f is

monotonic, i.e., if xi ≤ yi for all 1 ≤ i ≤ arity(f), then f(x1, . . . , xn) ≤ f(y1, . . . , yn).
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Π is not p-monotonic because of the second rule and IΠ,p = {p, q}.

p(V ) : 0.5×X ×W ← fr(V, V ′) : W ∧ p(V ′) : X

q(V ) : (1−X)×W ← fr(V, V ′) : W ∧ p(V ′) : X

p(V ) : 0.9×X ×W ← fr(V, V ′) : W ∧ q(V ′) : X

Given a GAP Π and a property p, we define

Πp = {r ∈ Π | the head predicate symbol of r belongs to RΠ,p},

Π∗p = {r ∈ Πp | every predicate symbol q in the body of r is s.t. q /∈ IΠ,p}.

Proposition 2. Consider an SN S, a GAP Π, and a property p. Let ψ = lfp(ΠS ∪ Π∗p). Then,

lfp(Π ∪ΠS)(p(v)) = lfp((Πp −Π∗p) ∪ {A : ψ(A) | A ∈ A})(p(v)) for every vertex v of S.

Proof. All the rules in Π−Πp have a predicate in the head atom that cannot reach predicate p, and

then these rules do not affect the value of lfp(Π ∪ ΠS)(p(v)). As we are interested in computing

the diffusion centrality for property p, we can ignore these rules in the computation. Moreover,

rules in Πp can be partitioned into two sets of rules, namely Π∗p and (Πp −Π∗p), and by definition

of Π∗p, we have that rules in (Πp−Π∗p) “depend on” rules in Π∗p because an atom having predicate

symbol q ∈ IΠ,p may appear in the head of a rule in Π∗p and in the body of a rule in (Πp − Π∗p),

but not vice versa. Thus, the rules in (Πp − Π∗p) do not contribute to the computation of the least

fixed point of the program Π∗p and then the value of ψ can be pre-computed. �.

To compute lfp(Π∪ΠS)(p(v)), Proposition 2 says that (i) we do not need to consider rules

in Π − Πp (they do not affect the value assigned to atoms of the form p(v) in the least fixed

point); and (ii) we can compute ψ as a preprocessing step, use it to define facts, and do not need to

consider again the rules in Π∗p (however, we can benefit from this only when Π is p-monotonic).

The last optimization step we propose is called network filtering, which consists of reducing

the given SN by removing vertices (and the relative incoming and outgoing edges) that do not play
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any role in the diffusion process, i.e., those vertices that can never receive or transmit diffusive

property p from/to other vertices in the SN via any rule in the considered diffusion model.

Example 2.1.8. Consider the diffusion model Πhiv from Example 2.1.2.2:

hiv(V ) : 0.9×X ×W ← sp(V, V ′) : W ∧ hiv(V ′) : X

hiv(V ) : 0.4×X ×W ×W ′ ← fr(V, V ′) : W ∧ sp(V ′, V ′′) : W ′ ∧ hiv(V ′′) : X

hiv(V ) : 0.6×X ×W ×W ′ ← sp(V, V ′) : W ∧ sp(V ′, V ′′) : W ′ ∧ hiv(V ′′) : X

Suppose v is a vertex in an SN having no sp relations. Moreover, suppose none of v’s friends have

sp relations. Then, v is an “unnecessary” vertex (for the purpose of computing DC) because there

is no rule r ∈ Πhiv by which the vertex v can receive the property hiv or transmit hiv to other

vertices.

Given a GAP Π, a property p, and a rule r ∈ Π, we define relbody(r) = {AA | AA is an

annotated atom in the body of r and its predicate symbol is not in RΠ,p}. Vertex v of an SN S ac-

tivates a rule r ∈ Π iff there exists a ground rule r′ ∈ grd(r) such that:

1. for every AA ∈ relbody(r′), ΠS |= AA;

2. if A : µ is the head of r′, then µ > 0; and

3. v appears in an annotated atom of the body of r′.

Definition 7 (Necessary and unnecessary vertices). Let S be an SN, Π be a GAP, and p a property.

A vertex of S is necessary if it activates a rule of Πp, otherwise it is unnecessary.

The filtering of a social network eliminates all unnecessary vertices (along with their in-

coming/outgoing edges).

Definition 8 (Network Filtering). Let S = (V,E,VL, ω) be an SN, Π a GAP, p a property, and U

the set of unnecessary vertices. The filtering of S (w.r.t. Π and p) is the SN S ′ = (V ′, E′,VL′, ω′)

where:
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1. V ′ = V \ U ;

2. E′ = E \ {〈u, v, q〉 ∈ E | u ∈ U ∨ v ∈ U};

3. VL′(v) = VL(v) for all v ∈ V ′;

4. ω′(e) = ω(e) for all e ∈ E′.

The filtering of an SN is useful because unnecessary vertices have a DC of zero. The DC

of necessary vertices can be computed on the (smaller) filtered SN.

Proposition 3. Let S be an SN, Π be a GAP, p a property, and S ′ the filtering of S. For every

vertex v of S,

1. if v is unncessary, then dcΠ,p,S(v) = 0;

2. if v is necessary, then dcΠ,p,S(v) = dcΠ,p,S′(v).

Proof. 1. If a vertex v is unnecessary, it cannot activate any rule in Π, thus, independently

from the fact whether it has the diffusion property p or not, it does not give any contribution

in diffusing p to other vertices (see item 2 of the definition of “activation”). It follows that

∑
v′∈V−{v} lfp(Π ∪ΠS⊕p(v))(p(v

′)) =
∑
v′∈V−{v} lfp(Π ∪ΠS	p(v))(p(v

′)) =

∑
v′∈V−{v} lfp(Π ∪ΠS)(p(v′))

and then dcΠ,p,S(v) = 0.

2. If a vertex v is necessary, all the rules it activates contain necessary vertices, and then we

have that

∑
v′∈V−{v} lfp(Π ∪ΠS⊕p(v))(p(v

′)) =
∑
v′∈V−{v} lfp(Π ∪ΠS′⊕p(v))(p(v

′)),

∑
v′∈V−{v} lfp(Π ∪ΠS	p(v))(p(v

′)) =
∑
v′∈V−{v} lfp(Π ∪ΠS′	p(v))(p(v

′)).

It follows that dcΠ,p,S(v) = dcΠ,p,S′(v). �
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Below we present another class of GAPs, called p-dwindling, for which our HyperLFP

algorithm has a faster convergence to the least fixed point.

Definition 9 (p-dwindling GAP). Suppose p is a property. A GAP Π is p-dwindling iff for every

ground rule A0 : µ0 ← A1 : µ1 ∧ . . . ∧ An : µn in grd(Π) s.t. q is the predicate symbol of A0

and q ∈ IΠ,p, it is the case that µ0 ≤ µi for every 1 ≤ i ≤ n s.t. the predicate symbol of Ai is in

IΠ,p.

For the Flickr, Jackson-Yariv, and SIR models (see Ap.1.1) we consider in our experimental

evaluation, we can state the following properties.

Proposition 4. The Flickr model is p-monotonic and p-dwindling. The Jackson-Yariv model is

p-monotonic but not p-dwindling. The SIR model is neither p-monotonic nor p-dwindling.

Proof.

1. Clearly, the function µv′,v × µp × µq × dpF in the head atom annotation of the unique rule

of the Flickr model is monotonic, thus the GAP describing the Flickr model is p-monotonic.

Moreover, the GAP is also p-dwindling because the value of the function µv′,v ×µp×µq ×

dpF is less than or equal to any value that µp can assume as the annotations µv′,v and µq

and the constant dpF can assume only values between 0 and 1.

2. Also the GAP describing the Jackson-Yariv model is p-monotonic. In fact, the function

bi
ci
× r(

∑
j Ej)×

∑
j wj∑
j Ej
× wq × dpJY in the head of its only rule is monotonic as the term

bi
ci
×r(

∑
j Ej)×

1∑
j Ej
×dpJY is constant. However, the GAP describing the Jackson-Yariv

model is not p-dwindling because of the term
∑

j ωj in the head atom function.

3. The GAP describing the SIR model is not p-monotonic because of the terms (1 − R) and

(1− R′) in the head atom annotation function of the first rule (which is (1− R)× µev′,v ×
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µpv′ × (1 − R′) × µqv × dpSIR). Moreover, the GAP is not p-dwindling. To see this, it is

sufficient to note that, because of the presence of the terms (1 − R) and (1 − R′) in the

head atom annotation function of the first rule, we cannot say that the value assumed by this

function is always less than or equal to R or R′ (remember that IΠSIR,p = {p, r1, r2}). �

2.1.4.2 The HyperLFP Algorithm

In this section, we propose an efficient hypergraph-based algorithm, HyperLFP, to compute the

least fixed point used for diffusion centrality computation. As HyperLFP uses hypergraphs, we

first define hypergraphs.

Definition 10. A directed hypergraph is a pair 〈V,H〉 where:

1. V is a finite set of vertices.

2. H is a finite set of directed hyperedges. A hyperedge is a pair 〈S, t〉 where S is a (possibly

empty) set of vertices, called source set, and t is a vertex, called target vertex. Given a

hyperedge h ∈ H we use S(h) to denote its source set and t(h) to denote its target vertex.

We now define a hypergraph that captures how a property p diffuses through an SN S

according to a GAP Π. The hypergraph does not depend on which vertices have property p in the

original SN, but depends only on Π and the structure of S in terms of edges and vertex properties

other than p. Therefore, given a GAP Π and an SN S, the diffusion hypergraph has to be computed

only once and can be used with different assignments of a property p to the vertices and edges of

S. In addition, the hypergraph allows us to eliminate (ground) diffusion rules that are useless for

the purpose of computing the least fixed point.

Definition 11 (Enabled Rule). Consider an SN S , a GAP Π, and a property p. Let ϕ = lfp(ΠS ∪

Π∗p). A rule r ∈ grd(Π−Π∗p) is enabled iff ϕ(A) ≥ µ for every annotated atom A : µ in the body
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of r whose predicate symbol is not in IΠ,p.

Intuitively, enabled rules are the ground rules that can affect the diffusion of p (directly or

indirectly) in the least fixed point computation. Proposition 2 is applied in Definition 11 via the

computation of ϕ = lfp(ΠS ∪Π∗p).

Example 2.1.9. Consider the GAP Πhiv of Example 2.1.2.2 and the SN of Example 2.1.1 (cf.

Figure 2.1). The following ground instance of the second rule is enabled: hiv(d) : 0.4 × 0.08 ←

fr(d, a) : 0.8 ∧ sp(a, c) : 0.1 ∧ hiv(c) : 1. Notice that the atom hiv(c) does not play any role in

determining whether or not the rule is enabled.

Definition 12 (Diffusion HypergraphH(S,Π, p)). Consider an SN S = (V,E,VL, ω), a GAP Π,

and a property p. The hyperedge associated with a ground rule r ∈ grd(Π) whose head anno-

tated atom is of the form p′(v) : µ is defined as 〈{p′′(vi) | p′′(vi) : µi is in the body of r and p′′ ∈

IΠ,p}, p′(v)〉 and is denoted by hedge(r). The diffusion hypergraphH(S,Π, p) is a triple 〈N,H,W 〉

such that:

1. 〈N,H〉 is a directed hypergraph with N = {q(v) | q ∈ IΠ,p and v ∈ V }, and H =

{hedge(r) | r is an enabled ground rule of Π whose head predicate

symbol is in IΠ,p},

2. W is a function such that for each h ∈ H and matrix M [1...|IΠ,p|][1..|V |] of real values

in [0, 1], W (h,M) is the head annotation of the ground rule r satisfying the following two

properties: (i) hedge(r) = h, and (ii) for every atom q(v) appearing in S(h), M [q][v] is

equal to the annotation of q(v) in r.

Example 2.1.10. Figure 2.2 shows the diffusion hypergraph for the GAP Πhiv of Example 2.1.2.2

and the social network of Example 2.1.1.
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hiv(a)

hiv(b)

hiv(c)

hiv(d)

0.9x0.1xhiv(b)

0.9x0.1xhiv(a)

0.6x0.01xhiv(c)

0.4x0.07xhiv(a)
0.6x0.01xhiv(b)

0.4x0.08xhiv(b)

0.9x0.1xhiv(c)

0.9x0.1xhiv(a)
0.4x0.08xhiv(c)

Fig. 2.2: A diffusion hypergraph.

The rough idea of the HyperLFP algorithm (Algorithm 1) is that hyperedges that propagate

a value greater than zero are kept in a max-heap and those propagating higher values are visited

first; the max-heap is updated as propagation unfolds.

For all q ∈ IΠ,p and v ∈ V , M [q][v] is the initial value of the ground atom q(v) and is given

as input, U [q][v] keeps track of the hyperedges having q(v) in their source set and is also given

in input, and M ′[q][v] is the current assignment to q(v). Specifically, M ′[q][v] is initially set to

M and then iteratively updated by the algorithm. C keeps track of the highest values propagated

by hyperedges that were added to MaxHeap. At each iteration of the while loop on lines 5–18,

a pair 〈h,w〉 with maximum w is retrieved from MaxHeap. If M ′[q][v] is less than w, it is set to

w, otherwise another hyperedge is retrieved from MaxHeap. If w is assigned to M ′[q][v], then

hyperedges that can be affected by this are inspected (for each loop on lines 10–18). Only the

hyperedges having t(h) in the source set are inspected. For each of them, if no hyperedge added

to MaxHeap propagated a higher value (line 13), then if Π is p-monotonic the hyperedge is added

to MaxHeap (along with the value it propagates), otherwise it is added to MaxHeap′. The reason

for this is that when Π is p-monotonic we can retrieve hyperedges in descending order of their
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weights even if their values were derived from different iterations of TΠ. However, if Π is not

p-monotonic, the iterations of TΠ must be executed one after the other without mixing the values

derived at each of them. So, when Π is not p-monotonic, hyperedges are retrieved in descending

order of their weight for each iteration of TΠ. When MaxHeap is empty, MaxHeap′ is assigned

to MaxHeap. M ′ is returned if both heaps are empty.

If a GAP Π is p-dwindling and p-monotonic, then HyperLFP ensures that when a value w

is assigned to a ground atom q(v), then w is the final value for q(v) in the least fixed point; hence

the hyperedge that propagated w as well as any other hyperedge having q(v) as a target atom no

longer needs to be considered in order to see if a new higher value can be assigned to q(v).

Proposition 5. The worst-case time complexity of Algorithm HyperLFP is O(|N | + 1
α · |H| ·

(log |H| + Umax · (Smax + log |H|))), where Umax = maxv∈V,q∈IΠ,p{|{h | h ∈ H ∧ q(v) ∈

S(h)}|}, Smax = maxh∈H{|S(h)|}, and α is the minimum value obtained at line 9 for (w −

M ′[q][v]).

Proof. The cost of making two copies of the matrix M at Lines 1-2 is O(|N |). The the loop at

Line 5 is executed |H| times as at each iteration we remove an hyper-edge from MaxHeap (Line

6). Within this loop, the predominant costs are the cost of deleting the maximum fromMaxHeap

(Line 6), which is O(log |H|), and the cost of the loop at Line 10. This loop is executed for each

hyper-edge h′ ∈ U [q][v] whose number is Umax in the worst-case and at each iteration the cost

of computing the function W at Line 11 is O(Smax) in the worst-case, while the cost of adding

〈h′, w′〉 either to MaxHeap (Line 16) or MaxHeap′ (Line 18) is O(log |H|). Thus, the cost

of executing Lines 5-19 is O(|N | + |H| · (log|H| + Umax · Smax)). Finally, the loop at Line

3 is executed 1
α times in the worst-case as 1 is the maximum growth the annotation of an atom

can have and α is the minimum increment step. Thus, the complexity of HyperLFP algorithm is
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O(|N |+ 1
α · |H| · (log |H|+ Umax · (Smax + log |H|))). �

Algorithm 1 HyperLFP
Input: For a social network S = (V,E,VL, ω), a GAP Π, and a property p,

two matrices U [1...|IΠ,p|][1..|V |] and M [1...|IΠ,p|][1..|V |],

a max-heap MaxHeap, the diffusion hypergraphH(S,Π, p) = 〈N,H,W 〉

Output: lfp(Π ∪ΠS)(q(v)) for all v ∈ V and q ∈ IΠ,p

1: C ← copy of M;

2: M ′ ← copy of M;

3: while MaxHeap 6= ∅ do

4: MaxHeap′ ← ∅;

5: while MaxHeap 6= ∅ do

6: 〈h,w〉 ← deleteMax(MaxHeap);

7: Let q(v) = t(h);

8: if M ′[q][v] < w then

9: M ′[q][v]← w;

10: for each h′ ∈ U [q][v] do

11: w′ ←W (h′,M ′);

12: Let q′(v′) = t(h′);

13: if w′ > C[q′][v′] then

14: C[q′][v′]← w′;

15: if Π is p-monotonic then

16: Add 〈h′, w′〉 to MaxHeap;

17: else

18: Add 〈h′, w′〉 to MaxHeap′;

19: MaxHeap ← MaxHeap′;

20: return M ′;
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2.1.4.3 The HyperDC Algorithm

The HyperDC algorithm (Algorithm 2) initializes Minit, U , and MaxHeapinit by calling Algo-

rithm 3 (line 1), and then uses them to compute lfp(Π ∪ ΠS) (lines 2–4). After that, the diffusion

centrality of each vertex is computed (lines 6–25). Specifically, the value of atom p(v) is incorpo-

rated into Minit, and MaxHeap is updated accordingly (lines 7–16). Then, the least fixed point is

computed using the updated Minit and MaxHeap (lines 17–18). Finally, the diffusion centrality

of vertex v is computed and the value of p(v) in Minit is restored (lines 19–25). In this last step,

Proposition 1 is leveraged. In fact, if p ∈ VL(v′), the positive summand of the definition of DC

has already been computed in lines 2–4 and what is being computed is the negative summand. In

this case, the positive summand is equal to sump − F [p][v] and the negative summand is equal

to sum′p, so the diffusion centrality of vertex v is (sump − F [p][v]) − sum′p. If p 6∈ VL(v′), the

negative summand has been computed already in lines 2–4. In this case, the diffusion centrality of

vertex v is sum′p − (sump − F [p][v]).

Proposition 6. The worst-case time complexity of Algorithm HyperDC is O(|V | · (|N |+ 1
α · |H| ·

(log |H| + Umax · (Smax + log |H|)))), where Umax = maxv∈V {|{h | h ∈ H ∧ v ∈ S(h)}|},

Smax = maxh∈H{|S(h)|}, and α is defined as in Proposition 5.

Proof. By leveraging Proposition 1, the HyperDC algorithm computes one least fix point for each

node, so its worst-case time complexity is given by the number of vertices (|V |) times the worst-

case time complexity of the HyperLFP algorithm (which is O(|N | + 1
α · |H| · (log |H| + Umax ·

(Smax + log |H|)))) called at line 17. �
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Algorithm 2 HyperDC
Input: An SN S = (V,E,VL, ω), a GAP Π, a property p,

the diffusion hypergraphH(S,Π, p) = 〈N,H,W 〉

Output: {〈v, dc(v)〉 | v ∈ V }

1: 〈Minit, U,MaxHeapinit〉 ← InitializeHyperDC(S, IΠ,p,H);

2: MaxHeap ← copy of MaxHeapinit;

3: F ← HyperLFP(U,Minit,MaxHeap,H(S,Π, p)) ;

4: sump ←
∑
v∈V F [p][v];

5: Result← ∅;

6: for each v ∈ V do

7: MaxHeap ← copy of MaxHeapinit;

8: if p ∈ VL(v) then

9: Minit[p][v]← 0;

10: else

11: Minit[p][v]← 1;

12: for each h ∈ U [p][v] do

13: remove 〈h,w〉 from MaxHeap;

14: Let p′(v′) = t(h);

15: if W (h,Minit) > Minit[p
′][v′] then

16: Add 〈h,W (h,Minit)〉 to MaxHeap;

17: M ← HyperLFP(U,Minit,MaxHeap,H(S,Π, p));

18: sum′p ←
∑
v′∈V,v′ 6=vM [p][v′];

19: if p ∈ VL(v) then

20: dc(v)← (sump − F [p][v])− sum′p;

21: Minit[p][v]← 1;

22: else

23: dc(v)← sum′p − (sump − F [p][v]);

24: Minit[p][v]← 0;

25: Add 〈v, dc(v)〉 to Result;

26: return Result;
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Algorithm 3 InitializeHyperDC
Input: A social network S = (V,E,VL, ω),

a p-interfered predicate set IΠ,p,

a diffusion hypergraphH = 〈N,H,W 〉.

Output: M [1..|IΠ,p|][1..|V |], U [1..|IΠ,p|][1..|V |], MaxHeap

1: n = |IΠ,p|; m = |V |;

2: M [1..n][1..m]; U [1..n][1..m]; MaxHeap ← ∅;

3: M [q][v]← 0, U [q][v]← ∅ for all q ∈ IΠ,p and v ∈ V ;

4: for each v ∈ V do

5: for each q ∈ VL(v) ∩ IΠ,p do

6: M [q][v]← 1;

7: for each h ∈ H do

8: Add 〈h,W (h,M)〉 to MaxHeap;

9: for each q(v) ∈ S(h) do

10: U [q][v]← U [q][v] ∪ {h};

11: return 〈M,U,MaxHeap〉;

A brief note is in order about how the techniques in this section yield better scalability.

Compared to our past work [123], HyperDC is approximately 100 times faster than that in [123].

In particular, the U and MaxHeapinit structures used in HyperDC are built just once. This yields

a speedup of approximately 5x. In addition, the filtering based on Proposition 3 yields a further

speedup of 20x, leading to a total speedup of 100x.

2.1.5 Experimental Evaluation

This section contains a detailed report on our experiments. We compared the runtime and spread

generated by diffusion centrality against classical centrality measures (Section 2.1.5.2), using net-

works with up to around 265K vertices and 440K edges. The networks used here were not as large

as possible because some classical algorithms were unable to handle these sizes.
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We implemented the HyperLFP (Algorithm 1) and HyperDC (Algorithm 2) in Java. To

compute degree, eigenvector, PageRank, closeness, and betweenness centrality we used the Java

Universal Network/Graph Framework (JUNG)4. All experiments were run on an Intel Xeon @

2.40 GHz, 24 GB RAM.

2.1.5.1 Experimental Setup

Social Networks. Our experiments used several real-word social networks summarized in Ta-

ble 2.2.

Network Description Type # Vertices # Edges Avg. Degree Density

BlogCatalog friendship undirected 10,312 333,983 64.78 6.28E-03

e-mail Enron e-mail communications undirected 36,692 183,831 10.02 2.73E-04

Douban friendship undirected 154,907 654,188 8.45 5.45E-05

wiki-Vote Wikipedia vote relationships directed 7,115 103,689 14.57 2.05E-03

soc-Epinions Trust relationships directed 75,879 508,837 6.71 8.84E-05

email-EuAll e-mail communications directed 265,214 420,045 1.58 5.97E-06

Tab. 2.2: Non-Game Social Networks used in the experiments.

We also considered an additional online game dataset called STEAM [22] which contains

friendship relations (represented as directed edges) between players (vertices). Each player has

several vertex properties and we selected country, group(s), games played and total time played

per game. We extracted 10 subnetworks from the whole STEAM dataset by choosing different

games and selecting, for each game, all players who played and all edges among the players. The

features of the extracted networks are reported in Table 2.3.

Diffusion Models. We ran experiments with a conditional probability model (hereafter referred to

as the “Flickr model” [?]), the Jackson-Yariv tipping model [115], and the SIR (susceptible, infec-
4 jung.sourceforge.net
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Social Network # Vertices # Edges Avg. Degree Density

GAME8690 4,083 21,447 5.25 1.29E-03

GAME50510 28,872 115,254 3.99 1.38E-04

GAME6850 52,879 164,702 3.11 5.89E-05

GAME1500 66,571 303,240 4.56 6.84E-05

GAME24420 82,377 437,554 5.31 6.45E-05

GAME11450 89,942 327,258 3.64 4.05E-05

GAME17300 122,467 441,657 3.61 2.94E-05

GAME420 1,307,335 12,431,564 9.51 7.27E-06

GAME220 2,030,579 20,596,331 10.14 5.00E-06

Tab. 2.3: STEAM networks used in the experiments.

tious, removed) model of disease spread [10]. [184] has shown that these three diffusion models

can be expressed as GAPs (along with many others). We generalized these diffusion models by

adding an additional condition q(u) : µ in rule bodies. When all vertices have the property q, then

we have the original diffusion models. The q-condition determines when the diffusion process can

happen. In our experiments, we compared DC with other classical centrality measures by varying

the percentage of vertices in the network with property q. The diffusion models are reported in

Section Ap.1.1, while Table 2.4 summarizes their main features (see Proposition 4).

Model IΠ,p p-monotonic p-dwindling

Flickr model {p} yes yes

Jackson-Yariv model {p} yes no

SIR model {p, r1, r2} no no

Tab. 2.4: Features of the Flickr, Jackson-Yariv, and SIR models.
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2.1.5.2 Diffusion Centrality vs. Classical Centrality Measures

As described earlier, the Flickr, Jackson-Yariv, and SIR diffusion models assume that some set

of vertices in the network have property p and that only vertices satisfying some property q can

spread p. For our STEAM data, we were able to use known properties of the vertices for q but we

were not able to do this for the other data sets. We therefore report our results comparing DC with

classical measures in two subsections.

Before getting into the details of the very extensive experiments we conducted comparing

diffusion centrality with classical centrality measures, we summarize the high level conclusion of

these comparative experiments.

1. The runtime of HyperDC is significantly better than betweenness and closeness centrality

and comparable with the others.

2. The spread achieved by diffusion centrality is almost always significantly better than those

achieved by classical centrality measures.

2.1.5.3 STEAM Data

We used all but the last two (very large) STEAM data sets (Table 2.3) for the comparative analysis

as some classical centrality measures could not complete even on the first seven STEAM data sets.

Consistently with the data, we set the percentage δp of vertices that initially have property p to 0%

and varied the percentage δq of vertices having property q by using real properties of vertices in

the STEAM data. In the STEAM data, q was taken to be the playing time of users in the game

and was assigned as follows: we sorted the players in descending order according to playing

time and assigned q to the first δq users. We varied δq ∈ {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%,

25%, 30%}. The last two STEAM subnetworks, which are substantially larger, were used for the
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evaluation of the CBAF algorithm (cf. Section 3.2.4).

Runtime. We compared the time to compute DC w.r.t. the three diffusion models against the

time to compute classical centrality measures. Figure 2.3a shows how the runtimes vary w.r.t. δq

for two representative STEAM games (Ap.1.2 shows all the games). Of the 7 STEAM games

we tested in this experiment, closeness centrality computation finished only in the smallest case

(GAME8690)—this is shown in Figure 2.3. HyperDC’s runtime is much faster than betweenness

and closeness centrality for all the STEAM subnetworks and for all values of δq. Even when

δq = 30%, the runtime of diffusion centrality is still low.

Figure 2.3b zooms in on the cases where δq varies from 1% to 5% and shows the runtimes

for HyperDC, degree centrality, and PageRank. HyperDC is faster than PageRank over networks

GAME8690 and GAME50510, and also faster than degree over network GAME8690.5 However,

when the number of vertices increases, HyperDC becomes slower than PageRank and degree for

all three diffusion models. For instance, we see in GAME1500 (Figure 2.3b) that a crossover

occurs when δq = 3% for the SIR model but not for the Jackson-Yariv model. In fact, across

the 7 STEAM games, there are some cases when HyperDC is faster than degree centrality and

PageRank and some cases where the opposite is true with no clear discernible pattern.

We also checked p-values of T-test with the runtimes of HyperDC and other centrality. The

values are shown in Appendix Ap.2. The results show that HyperDC runtime is significantly

different from the runtime of Betweenness centrality for various δq. In most cases, the p-values

are less than 0.05 except three cases for Jacson-Yariv model when δq is 20, 25 and 30% (The p-

values for the cases are 0.058, 0.065 and 0.069.). The results for PageRank and degree centrality
5 Though it may seem surprising that HyperDC sometimes beats degree centrality, the reason for this is that when δq

is low (below 3%), HyperDC only needs to compute diffusion centrality for a smal number of vertices. However, when

δq is larger, this is not the case. Likewise, PageRank computation can also be slower than HyperDC when the network

density is high.
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(a) STEAM Data: Runtime of HyperDC algorithm for Exact Diffusion Centrality computation with Flickr,

Jackson-Yariv, and SIR diffusion models compared with Classical Centrality Measures Averaged Per

Vertex when δq ∈ {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%}.
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(b) STEAM Data: Runtime of HyperDC algorithm for Exact Diffusion Centrality computation with Flickr,

Jackson-Yariv, and SIR diffusion models compared with Classical Centrality Measures Averaged Per

Vertex when δq ∈ {1%, 2%, 3%, 4%, 5%}. Detailed view of part (a).
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Fig. 2.3: STEAM Data Runtime

are interesting. For Flickr and SIR models, the general trend is similar. When δq is small, 1% (and

2%), and relatively high (≥ 10%), the difference between HyperDC runtime and the runtime of
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the two centrality measures is significant. But when δq is 3− 5% for Flickr model and 2− 3% for

SIR model, the p-values show that the difference is not significant. For Jackson-Yariv model, the

p-values show that the difference is not significant in all vairous δq.

Runtime of HyperDC Tends to be Linear. We note from Proposition 6 that in the worst

case, the complexity of HyperDC is nonlinear. In order to assess actual runtime characteristics

of HyperDC, we ran an experiment on the STEAM data when the number of vertices increases

and as δq varies. We used the networks from GAME 50510, 6850, 11450, and 17300 which all

have a similar average degree (in the 3-4 range). Figure 2.4 shows the number of vertices in the

network on the x-axis and the average runtime per vertex on the y-axis. Different curves show

varying values of δq. Each upper-lower pair of graphs uses a different diffusion model (Flickr,

Jackson-Yariv, and SIR). The upper figure shows δq ranging from 1-5% while the lower figure

shows δq ranging from 5-30%. We see that irrespective of the diffusion model used and the value

of δq, HyperDC runs in linear time in practice.

Spread. In this section, we compare the diffusion of property p when we choose the top-k central

vertices according to HyperDC vs. using classical centrality measures on the STEAM data. In

each case, the top-k vertices are called seeds. We vary k from 10 to 100 in steps of 10. The spread

w.r.t. a given set of seeds is the expected number of vertices with property p (after diffusion)

assuming the seeds have property p minus the expected number of vertices with property p (after

diffusion) in the original social network. This difference is normalized.

Our spread experiments are presented in two ways. In the first, we show how spread varies

by averaging over the number of seeds for fixed δq values. In the second, we do the opposite.

Spread Experiments Averaged over Varying k values for specific δq values. We varied δq over the

set {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%}. For each selection of δq, we considered

every value of k from the set {10, 20, . . . , 100}. Then for a fixed δq, k,Diffusion-Model triple,

38



20000 40000 60000 80000 100000 120000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Index

c(
−

1,
 −

1)

Flickr model

●

●

●

●

●

% of vertices having 'q'

1%
2%
3%
4%
5%

20000 40000 60000 80000 100000 120000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Index

c(
−

1,
 −

1)

JacksonYariv model

●

●

●

●

●

% of vertices having 'q'

1%
2%
3%
4%
5%

●●

20000 40000 60000 80000 100000 120000

0.
0

0.
2

0.
4

0.
6

Index

c(
−

1,
 −

1)

SIR model

●

●

●

●

●

% of vertices having 'q'

1%
2%
3%
4%
5%

●●

20000 40000 60000 80000 100000 120000

0
2

4
6

8
10

Index

c(
−

1,
 −

1)

Flickr model

●

●

●

●

●

% of vertices having 'q'

5%
10%
15%
20%
25%
30%

●●

20000 40000 60000 80000 100000 120000

0
2

4
6

8
10

Index

c(
−

1,
 −

1)

JacksonYariv model

●

●

●

●

●

% of vertices having 'q'

5%
10%
15%
20%
25%
30%

●●

20000 40000 60000 80000 100000 120000

0
5

10
15

Index

c(
−

1,
 −

1)

SIR model

●

●

●

●

●

% of vertices having 'q'

5%
10%
15%
20%
25%
30%

# of vertices of networks (avg. # of edges are between 3 to 4) 

C
om

pu
tin

g 
tim

e 
pe

r 
ve

rt
ex

 (
m

s)

Fig. 2.4: [

STEAM Data: Average Runtime (per vertex) of HyperDC]STEAM Data: Average Runtime (per

vertex) of HyperDC as the number of vertices is increased as as δq is varied using Flickr,

Jackson-Yariv, and SIR models. The figure shows that in practice, HyperDC runs in linear time,

irrespective of the value of δq and the diffusion model used.

we computed the ratio of the spread using HyperDC and the best spread achieved by any of the

classical centrality measures. Table 2.5 reports the average of these ratios. Thus, any ratio greater

than 1 in Table 2.5 shows that HyperDC achieves a higher spread than all of the classical centrality

measures.

For the Flickr and Jackson-Yariv diffusion models, HyperDC always achieved a better

spread than all classical centrality measures. In the case of the SIR model, on average, Hy-

perDC achieves better spreads than classical centrality measures as long as δq ≤ 15% — at 20%,

they are even, and at 25-30%, classical centrality measures achieve a better spread.

Not surprisingly, this spread ratio decreases as δq increases because when δq is large, diffu-

sion occurs due to network structure rather than due to diffusion rules.

Interestingly, spread ratios for the Flickr model are very large compared to those for the

Jackson-Yariv and SIR models. This is because the expected number of vertices which have
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Tab. 2.5: Spread over STEAM networks for different δq values.

STEAM Data: Average ratio of the spread generated by diffusion centrality

to the best spread generated by any of the classical centrality measures for different δq .

Model Network 1% 2% 3% 4% 5% 10% 15% 20% 25% 30%

FKModel GAME8690 19.4 2.4 2.0 1.8 1.9 1.9 1.6 1.5 1.4 1.3

GAME50510 18.1 22.5 23.8 26.5 19.5 5.0 3.6 3.0 2.7 2.4

GAME6850 436.6 654.2 11.6 10.4 10.7 8.1 6.4 5.6 4.1 3.2

GAME1500 677.6 89.9 48.3 49.9 46.6 48.8 50.0 56.2 55.5 3.1

GAME24420 125.6 6.5 6.1 6.3 5.7 4.9 3.1 2.3 1.9 1.7

GAME11450 512.0 585.5 804.3 8.9 9.7 6.9 5.5 5.1 4.9 3.7

GAME17300 288.7 363.5 6.6 6.7 6.8 5.4 5.1 4.4 3.7 2.8

Average 296.9 246.4 129.0 15.8 14.4 11.6 10.8 11.2 10.6 2.6

JYModel GAME8690 2.8 1.7 1.4 1.2 1.3 1.2 1.1 1.1 1.1 1.2

GAME50510 11.0 5.0 5.1 4.3 4.0 2.7 1.9 1.5 1.1 1.0

GAME6850 8.1 5.8 4.9 4.5 3.6 2.5 2.1 1.8 1.7 1.6

GAME1500 8.8 6.7 4.6 3.7 3.6 2.3 2.0 1.9 1.7 0.9

GAME24420 5.4 3.3 2.8 2.6 2.2 1.6 1.4 1.3 1.3 1.3

GAME11450 10.9 7.7 6.2 5.1 4.2 2.9 2.2 1.9 1.7 1.6

GAME17300 9.0 4.5 2.4 2.2 2.2 1.6 1.2 1.2 1.2 1.2

Average 8.0 5.0 3.9 3.4 3.0 2.1 1.7 1.5 1.4 1.3

SIRModel GAME8690 1.2 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.8 0.8

GAME50510 10.1 2.6 3.0 2.2 2.2 1.4 1.1 1.0 0.9 0.9

GAME6850 4.9 3.6 2.8 2.6 2.5 1.8 1.7 1.4 1.3 1.2

GAME1500 5.7 3.3 2.2 2.4 2.1 1.7 1.2 1.1 1.0 0.8

GAME24420 2.0 1.4 1.5 1.5 1.4 1.1 0.8 0.8 0.8 0.8

GAME11450 6.7 4.4 2.7 1.7 1.8 1.4 1.1 1.1 1.0 0.9

GAME17300 4.3 2.1 1.0 1.1 1.2 0.7 0.6 0.6 0.6 0.6

Average 5.0 2.6 2.0 1.8 1.7 1.3 1.1 1.0 0.9 0.9

property p after diffusion is much higher in the case of the Flickr model than in the other two

cases.

Spread Experiments Averaged over Varying δq values for specific k values. Here we selected val-

ues of k as before and averaged over different possible values of δq drawn from the set {1%, 2%, 3%,

4%, 5%, 10%, 15%, 20%, 25%, 30%}. Table 2.6 summarizes the results. As in the previous case,

a ratio exceeding 1 implies that HyperDC outperforms all classical centrality measures.

On average, for all possible values of k and for all three diffusion models, HyperDC

achieves a better spread than all the classical centrality measures. In fact, with a few exceptions
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Tab. 2.6: [

STEAM Data: Average ratio of spread]STEAM Data: Average ratio of the spread generated by
diffusion centrality to the best spread generated by any of the classical centrality measures for

different k.

Average ratio of the DC spread to the best spread of other centrality measures for different k.

Model Network 10 20 30 40 50 60 70 80 90 100

FlickrModel GAME8690 16.5 2.1 2.2 2.1 2.1 2.0 2.0 2.1 2.1 2.1

GAME50510 48.1 6.8 9.0 10.5 7.7 8.6 9.2 9.8 10.3 7.2

GAME6850 41.4 67.3 86.1 101.2 114.9 127.9 138.5 149.6 157.8 166.2

GAME1500 364.0 94.3 58.4 67.8 74.2 81.0 88.3 93.5 99.9 104.7

GAME24420 48.2 72.2 4.4 5.2 5.5 5.7 5.5 5.7 6.0 5.7

GAME11450 70.9 116.4 155.1 187.7 216.8 241.5 265.2 287.8 310.0 95.3

GAME17300 63.3 101.0 134.8 164.0 187.8 8.0 8.0 8.5 8.9 9.4

Average 93.2 65.7 64.3 76.9 87.0 67.8 73.8 79.6 85.0 55.8

JYModel GAME8690 1.9 1.5 1.3 1.2 1.3 1.4 1.4 1.4 1.4 1.4

GAME50510 3.3 3.6 3.9 3.7 4.1 3.7 3.9 4.0 3.7 3.8

GAME6850 2.6 3.3 3.7 3.7 3.8 3.5 3.8 4.0 4.2 4.0

GAME1500 3.1 3.3 3.9 3.9 4.0 3.7 3.7 3.6 3.5 3.5

GAME24420 2.2 2.2 2.2 2.3 2.4 2.4 2.5 2.4 2.4 2.3

GAME11450 3.0 4.3 4.7 4.5 4.7 4.5 4.6 4.8 4.8 4.6

GAME17300 2.1 1.9 2.5 2.8 2.8 2.8 3.0 3.0 2.9 3.0

Average 2.6 2.9 3.2 3.2 3.3 3.1 3.3 3.3 3.3 3.2

SIRModel GAME8690 1.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9

GAME50510 2.1 2.0 2.4 2.4 2.8 2.5 2.7 3.0 2.7 2.7

GAME6850 2.2 2.4 2.5 2.4 2.4 2.2 2.3 2.5 2.5 2.4

GAME1500 2.5 2.4 2.6 2.2 2.2 2.1 2.1 1.9 1.8 1.8

GAME24420 1.4 1.4 1.4 1.3 1.3 1.1 1.1 1.1 1.0 1.0

GAME11450 2.1 2.8 2.4 2.3 2.2 2.2 2.1 2.2 2.2 2.2

GAME17300 1.3 1.2 1.3 1.4 1.3 1.2 1.3 1.3 1.3 1.4

Average 1.8 1.9 1.9 1.8 1.9 1.7 1.8 1.8 1.8 1.8

in the SIR model, HyperDC achieves a better spread than all centrality measures.

Interestingly, the spread ratio for GAME8690 is consistently the lowest according to each

of three diffusion models and in each setting of both Tables 2.5 and 2.6. This game has just

4083 vertices (so it is very small and dense). Our choice of q is based on the amount of playing

time of a player and there is strong correlation between that and the number of friends. As a

consequence, having multiple seeds does not greatly increase diffusion of property p because of

overlaps between the vertices that may be influenced by the seeds.
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2.1.5.4 Non-Game Social Network Data

In this section, we perform experiments similar to those reported above on the networks in Ta-

ble 2.2. For these networks, the data did not have associated vertex properties. We looked at two

cases.

Case 1. We randomly selected δp = 0.1% of the vertices in the network to have a synthetic

property p (in 5 different runs). In each run, we varied δq ∈ {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%

, 25%, 30%} and selected δq% of the vertices to have a synthetic property q.

Case 2. We randomly selected δq = 3% of the vertices and varied δp ∈ {0.1%, 0.2%, 0.3%,

0.4%, 0.5%} and associated synthetic properties p and q with vertices as above.

Runtime. Figure 2.5a shows how runtime varies w.r.t. δq for Case 1 above. The networks are

sorted from left to right according to the number of vertices, with directed networks in the first row

and undirected networks in the second row. As in the case of our experiments with the STEAM

data, closeness and betweenness centrality are time consuming compared to the other algorithms

(including HyperDC). Figure 2.5b zooms in on the cases where δq varies from 1% to 5% (with

closeness and betweenness centrality removed as they are too slow).

HyperDC with the Flickr model is faster than PageRank in the majority of cases considered,

and sometimes faster than eigenvector centrality. HyperDC with the SIR model is faster than

PageRank for directed networks when δq ≤ 4%. As in the case of the STEAM data described

earlier, this is because the network filtering step can eliminate many vertices. For the Flickr and

SIR models, the runtimes increase slightly as δq increases because of the higher diffusion that

takes place. However, as in the case of the STEAM data, HyperDC with the Jackson-Yariv model

often takes the most time.

Figure 2.6 shows how runtime varies as δp varies (Case 2). We note that the runtime for
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closeness and betweenness centrality are very high (worse by 1 to 3 orders of magnitude) and

hence we do not report runtimes for them. HyperDC’s runtime for the Flickr and SIR models do

not vary much with δp. HyperDC with the Flickr is faster than Pagerank in almost all networks

and settings. Compared to degree centrality, HyperDC with Flickr exhibits competitive runtimes,

being faster in about half the settings considered and comparable or slightly worse in the others.

HyperDC with the SIR is faster than Pagerank in all data sets except the Douban data set. As

in the case of the STEAM data, HyperDC with the Jackson-Yariv is the worst performer w.r.t.

runtime (excluding betweenness and closeness centrality which we eliminated earlier due to their

very poor performance).

Spread. In both Cases 1 and 2, on average, the ratio of spread generated by HyperDC to the spread

generated by the best classical measure exceeds 1. As in the case of the STEAM data, the best

ratios are for the Flickr model. Due to space constraints we show 4 tables in Ap.1.3.

2.1.5.5 Summary of Experiments

In this section, we conducted two experiments. The first compares HyperDC (which exactly com-

putes diffusion centrality) with classical centrality measures. The experiment conclusively shows

that: The runtime of HyperDC is significantly better than betweenness and closeness centralities

and comparable with PageRank, eigenvector centrality, and degree centrality. The spread achieved

by diffusion centrality is almost always significantly better than those achieved by classical cen-

trality measures.
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(a) Non-Game Social Network Data: Runtime (ms) per vertex when varying δq from 1% to

30% and δp = 0.1%.
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(b) Non-Game Social Network Data: Runtime (ms) per vertex when varying δq from 1% to

5% and δp = 0.1%. Zoomed in view of Figure 2.5a.
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Fig. 2.5: Runtime (ms) per vertex vs. δq .
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Fig. 2.6: [

Non-Game Social Network Data: Runtime (ms) per vertex when varying δp]Non-Game Social

Network Data: Runtime (ms) per vertex when varying δp from 0.1% to 0.5% with δq = 3%.

2.2 Covertness Centrality

2.2.1 Introduction

There are certainly several important applications where users want to have low centrality accord-

ing to classical centrality measures, but still retain the ability to communicate with a given set of

vertices. For example: (i) Terrorists or criminals communicating through online social networks

may need to communicate with a certain set of vertices, i.e. their terror or criminal network, while

appear “common”, i.e. looking similar to many other vertices in the network so that they cannot

be easily distinguished from other vertices. (ii) A booming industry is in online marketing on plat-

forms like Twitter where companies offer to “insert” certain types of messaging into the network

for a client. In such cases, the marketers want to get the message out without “standing” out as

spreaders of a marketing message. We call actors who wish to satisfy (i) and (ii) covert actors, i.e.

actors who want to communicate well with certain other actors, but who wish to stay “below the
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Fig. 2.7: [

]Histograms of the degree and closeness centrality scores (normalized to the interval [0,1]) for

the URV dataset (see Table 2.7).

radar.”

Measuring which network positions are “not common” and which ones are “common” is

not straightforward. In most social networks there are a lot more vertices with a low degree than

vertices with a high degree, as most social networks are known to be scale-free. But low values

are not always dominating. Closeness centrality scores are usually normally distributed (or follow

at least another bell shaped distribution) as shown in Fig. 2.7 6. So it takes more to measure how

well a vertex hides in the crowd than looked at how low its centrality scores are.

In this section, we define a new centrality measure, denoted as Covertness Centrality (CC

for short), that captures the intuitions. Unlike classical centrality measures which start solely with

a graph as input, CC assumes that we are given as input, both a graph and a set C of classical

centrality measures. Intuitively, think of C as being a set of centrality measures that a covert actor

thinks an adversary might use to identify key players in a network. We split the definition of CC
6 These distributions for the respective centrality measures hold true for all of our evaluation networks listed in

Tab. 2.7
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into two parts - how “common” a vertex is in a network w.r.t. given C and how well the vertex can

communicate with a given set of nodes in the network according to a centrality measure.

Section 2.2 is organized as follows: In Section 2.2.2, we discuss requirements that a defini-

tion of “common-ness” should be satisfied as well as possible ways to define covertness centrality.

Next, in Section 2.2.3 and 2.2.4, we propose sampling methods to compute covertness centrality

and evaluate the proposed covertness centrality measures and algorithms.

2.2.2 Covertness Centrality Definition

Our notion of covertness centrality is a combination of commonness and communication potential.

Commonness means hiding in a crowd of equal or similar actors and communication potential is

the ability to efficiently communicate in order to achieve the objective of the group. In this section,

we will discuss how to construct a covertness centrality measure from this two components.

2.2.2.1 Commonness

As introduced, commonness should measure how well an actor hides in a crowd of similar ac-

tors. Let CM(a) denote the (as yet undefined) commonness of an actor a. Intuitively, we want

CM(a) > CM(b) if and only if knowledge of properties of the structural position of actor a

reveals less information about a than knowledge of properties of the structural position of actor b

reveals on b. This means, that if the size of the crowd actor a is hiding in is larger than the crowd

actor b is hiding in, a’s covertness centrality has to be higher.

In terms of conditional probability we can describe what we want to measure as follows.

If we want to search for an actor a and we know that this actor has the property I , what is the

probability that a randomly picked actor with property I is actor a? In this work, we are focusing

solely on network data. That means, no other information on actors are available than the edges
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connecting them. Therefore, the possible information on a person are properties of his or her

position in the network. Moreover, we assume that this information is encoded via a user-specified

set C of centrality measures.

Before we can give a formal definition of covertness centrality, we need to introduce some

definitions. Let G = (V,E) be a graph where V denotes a set of vertices and E ⊂ V × V and set

of edges connecting pairs of vertices. Furthermore, let C = (C1, C2, . . . , Ck) be an ordered set of

centrality measures on graph G where Ci is a function from V to R.

We can regard an actor w as similar to an actor v with respect to a centrality measure Ci,

when Ci(w) and Ci(v) are “similar”. We define what values of Ci can be regarded as similar

based on the variance of the values of the centrality measure. Let σi be the standard deviation of

centrality scores Ci(v) where v ∈ V . Then, the k-dimensional interval of centrality values similar

to the one of vertex v (v’s similarity neighborhood) is

Iv = [C1(v)− ασ1, C1(v) + ασ1]×

[C2(v)− ασ2, C2(v) + ασ2]×

. . .×

[Ck(v)− ασk, Ck(v) + ασk] .

where α ≥ 0 is a parameter that defines the range of similar values. A user can define what α

should be.

Furthermore, let X(v) = (C1(v), C2(v), . . . , Ck(v)) be the vector of centrality measures

for vertex v and let σ(v) = (σ1(v), σ2(v), . . . , σk(v)) be the vector of the standard deviations for

all centrality measures in C.

As we have a finite set of actors, the distinct centrality vectors that are similar to a vertex v
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w.r.t. C are

DC(v) = {X|Ci(w) = Xi, i ∈ {1..k}, w ∈ V ∧X ∈ Iv}.

The probability that a randomly chosen vertex has the centrality vector X is

fC(X) =P (C1(v) = X1 ∧ . . . ∧ Ck(v) = Xk)

=
|{v|C1(v) = X1 . . . ∧ Ck(v) = Xk}|

|V |
.

However, in our context, we are not interested in the probability that a randomly chosen vertex

has a specific centrality vector but in the probability that some other randomly chosen vertex has

the same centrality vector X as a given vertex. So we define

gC(X) = max

{
|{v|C1(v) = X1 . . . ∧ Ck(v) = Xk}| − 1

|V | − 1
, 0

}
.

Given these definitions, we can define the commonness CM(v) of a vertex v ∈ V with

respect to a non-empty set C of base centrality measures in various ways. However, it is desirable

(though not strictly necessary) that all specific definitions of CM satisfy certain properties.

Property 1. Optimal Hiding: If all vertices are equal w.r.t. all centrality measures, the vertices

are indistinguishable and so the hiding is optimal. In this case the commonness has to be 1 for all

vertices.

∀v, w ∈ V,C ∈ C C(v) = C(w)⇒ ∀u ∈ V : CM(u) = 1.

Optimal hiding gives the upper limit for commonness as there can be no better hiding than

in the crowd that consists of all other actors.

Property 2. No hiding: Given a definition of similarity, if a vertex is not similar to any other

vertex w.r.t. any centrality measure, the commonness of this vertex should be 0.

∀w 6= v ∈ V,C ∈ C C(v) � C(w)⇒ CM(v) = 0
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This property defines the lower bound for commonness and simply means that if an actor

cannot hide at all, s/he is maximally exposed and should get the lowest possible commonness

score.

Property 3. If one measure in the set of base centrality measures assigns the same score to all

vertices, removing this measure from the set should have no effect on the commonness scores.

∃x∀v ∈ V C(v) = x⇒ CMC(v) = CMC\C(v)

This axiom basically says that if a centrality measure C ∈ C is not able to distinguish

between the vertices (i.e. it assigns the exact same centrality score to all vertices), than it should

have no influence on the commonness score.

Given this desired properties, we can define specific commonness measures and see how

well they align with these properties.

Definition 13 (Common-ness Measure CM1). We can define commonness as the sum of the

squared distances separately for each dimension:

CM1(C, v) = 1−

∑
C∈C

(
1−

∑
X∈D{C}(v) g{C}(X)

)2

k
(2.1)

Definition 14 (Common-ness Measure CM2). Another way to define commonness is the fraction

of all vertices that are similar to a vertex v in all considered dimensions:

CM2(C, v) =
∑

X∈DC(v)

gC(X). (2.2)

If we think of the deviation from no informational value (that is when all actors have the

same centrality value) as an error, we can define commonness as the sum of the squared error over

all dimensions as in Definition 13. However, if the centrality measures are uncorrelated, measuring

the averageness of an actor independently for each measure can lead to undesired results. For

example, an actor might appear to be totally average w.r.t. all measures considered independently,
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but if the sets of actors he is similar to are large, but do not overlap for the different centrality

measure, there is no crowd he can hide in. To account for this, in Definition 14 the joint probability

distribution of all centrality measures is used.

We now investigate whether the two definitions have the desired properties. We start with

CM1.

Proposition 7. CM1 satisfies properties (1) and (2) but not (3).

Proof. It follows immediately for the definition that CM1 satisfies Property 1. If for a centrality

measure all vertices have the same value x, then for all centrality measures C there is a X so that

for all vertices v D{C}(v) = X and f(X) = 1. It follows immediately CM1(v) = 1−(1/1) = 0.

Property 2 is satisfied as well. If for a measure C and a vertex v for all other vertices w ∈ V

C(w) /∈ Iv (this is the definition of similarity ∼ of CM1), then D{C}(v) is empty. So, the sum

over all X in D{C} is 0, the whole fraction becomes k/k = 1 and CM(v) = 0. Finally, lets

have a look at Property 3 for CM1. Let us assume we have two centrality measures C1 and

C2, whereof C2 is non-distinguishing. For C1 the term
∑

X∈D{C}(v) g{C}(X) will have some

value a < 1 for every v while the term get 0 for C2 (compare discussion of Property 2). So

CM1({C1}, v) = 1 − a/1 while CM1({C1, C2}, v) = 1 − (a + 1)/2. Since a < 1 follows

CM1({C1}, v) 6= CM1({C1, C2}, v) and CM1 does not satisfy Property 3.

Proposition 8. CM2 satisfies all 3 properties (1)–(3).

Proof. The proof that CM2 satisfies Property 1 is similar to that for CM1. If for some set of

centrality measures C all vertices have the identical centrality vector X , for every v ∈ V the only

similar vector DC(v) is X . As all vectors are identical g(x) = 1 and so CM2(C, v) = 1 for every

v. Likewise, ifD{C}(v) is the empty set when there are not other vertices similar to a vertex v, i.e.

there is no w 6= v ∈ V with C(w) ∈ Iv. From D{C}(v) = ∅ follows CM2(· , v) = 0 and so CM2
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satisfies Property 2. To proof that Property 3 is satisfied goes as follows. Let Cn be a measure that

assign the same score s to every vertex. If we addCn to C we only extend the centrality vectors and

intervals by one dimension. As every vertex has the same centrality score of Cn, for every vector

Y = (y1, . . . , yk) in DC(v) there is a corresponding vector Yn = (y1, . . . , yk, s) in DC∪Cn(v). As

X = (x1, . . . , xk) we be extended to Xn = (x1, . . . , xk, s) it follows that gC(X) = gC∪Cn(Xn)

holds because of the correspondence between X and Xn.

Thus, CM2 satisfies all three properties we want a commonness measure to have, while

CM1 satisfies only the first two desired properties. As a consequence, CM2 seems to be the

epistemologically better choice.

2.2.2.2 Communication Potential

The communication potential should reflect the ability to communicate and cooperate to achieve

a common objective. This vague statement makes no point about which communication and co-

operation options are important to achieve the common goal. If only in-group connections are

important for achieving the group’s objective, we define the the communication potential based

on a centrality measure D and the group V̂ ⊂ V . Let Ĝ = (V̂ , Ê) be the induced subgraph of G

given by the group V̂ . Then the communication potential is CP1(v) = DĜ(v), i.e. the centrality

score of v on the graph Ĝ that is “of interest”. In a criminal or terrorist network application, V̂

might consist of vertices that an investigative agency has already uncovered - people they know are

suspicious for one reason or another — and the agency wants to “uncover” the rest of the covert

network. However, if the ability to communicate with people outside the group is important as

well, the entire graph G can be used to measure the communication potential: CP2(v) = DG(v).

Calculating CP1 requires knowledge of the group that a vertex is trying to communicate

with — a factor that can be problematic in the real world. Therefore, we can only calculate and
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compare CP1 and so the covertness centrality of the members of a group to each other. CP1

is undefined for actors that are not group members. So a covertness centrality measure based

on CP1 is suitable for explaining organizational structures of terror/criminal groups when V̂ is

known through other processes. In contrast, a covertness centrality score based on CP2 is defined

for every actor in a network. It can be used to answer generic questions such as “Where would

criminals try to hide?”

2.2.2.3 Covertness Centrality

In Section 2.2.2.1 and 2.2.2.2 we discussed definitions of the two components of covertness cen-

trality: commonness and communication potential. There is no unique “best way” to combine

these two measure into one — any combination method would reflect a different judgment on the

importance of common-ness and communication. Let us assume that the communication potential

CP is normalized in a reasonable way to the interval [0, 1] like CM is. A possible family of

functions is

CC(v, τ, λ) =



0 , CM(v) < τ

λCM(v) + (1− λ)CP (v) , CM(v) ≥ τ

(2.3)

For τ = 0, CC is a classic trade-off between the two requirements. Additionally requiring a

minimum level τ of commonness would reflect an understanding that the communication potential

is irrelevant as long as the threat of being identified is too high. For the case of criminal networks,

the actual assessment of the trade-off is influenced by the type of illegal activity a groups pursues.

Morselli et al. [161] discuss that criminal for-profit organizations put more emphasis on efficiency,

while ideological groups like terrorists are primarily concerned with security.
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2.2.3 CC Computation using Sampling Methods

Calculating the exact commonness of a vertex requires calculating all base centralities for all

vertices. While the computational effort to calculate some centrality measures is low, e.g. degree

centrality, other centrality measures have a high runtime complexity, e.g. closeness and between-

ness centrality. Calculating the exact commonness for large graphs is a very time-consuming or

practical impossible task. However, if we are not interested in the covertness centrality of all

vertices but only for some, we can speed up the calculation.

We could estimate the probability gC(X) that a random vertex has a given centrality score

from a sample of vertices S ⊂ V . That means, we replace gC(X) with

g̃C(X) = (2.4)

min

{
|{v ∈ S|C1(v) = X1 . . . ∧ Ck(v) = Xk}| − 1

|S| − 1

}
.

If we expect that the centrality scores follow a power-law distribution (as they e.g. usually

do for degree and betweenness centrality [90]), this sampling strategy might be problematic. We

can expect random sampling – and hence g̃C(X) – to tend to underestimate the size of the neigh-

borhood for vertices in the long tails of power-law distributions when the sample size is low. In

a similar but less significant way, centrality measures involving other distributions (e.g. closeness

centrality distributions which are usually bell-shaped) can be affected when large parts of the score

range have very low probabilities.

Let f̂C be the estimated joint probability distribution for the set of centrality measure C. The

continuous equivalent of CM1 (Definition 13) is

ĈM1(C, v) = 1−

∑k
i=1

(
1−

∫ Ci(v)+ασi
Ci(v)−ασi f̂{Ci}(X)dX

)2

k
. (2.5)
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and the equivalent of CM2 (Definition 14) is

ĈM2(C, v) =

∫ C1(v)+ασ1

C1(v)−ασ1

. . .

∫ Ck(v)+ασk

Ck(v)−ασk
f̂C(X)dXk . . . dX1 (2.6)

The equations are identical to their discrete counterparts except for the calculation of the estimated

number of vertices in the interval around v. The equivalence goes directly back to the derivation

of the integral as the approximation of a stepwise function with infinite steps.

As we can assume that many centrality measures have a power-law distribution and are at

least to some degree correlated to the degree centrality, an improved sampling technique might

also improve the accuracy of heuristic algorithms. Instead of simple random sampling, systematic

sampling [150] based on the degree of the vertices seems to be a good idea. Simple random

sampling means we randomly select vertices of V . For systematic sampling, we order all vertices

by degree. From a population of n vertices, we then select k vertices by taking every n/k-th vertex

starting from a randomly select start vertex among the first n/k-th vertices.

To summarize, the computation of commonness is based on the size of the similarity neigh-

borhood of a vertex, which can be computed in several ways:

1. Exact computation: Empirical distribution of all vertices in V

2. Heuristic computation based on simple sampling:

(a) Empirical distribution7

(b) Estimated distribution8

3. Heuristic computation based on systematic sampling:

(a) Empirical distribution
7 i.e. we compute the exact number of similar vertices based on the empirical distribution of the centrality scores
8 i.e. we compute the expected number of similar vertices based on the probability density of the estimated distribu-

tion of the centrality scores
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(b) Estimated distribution

Algorithm 4 shows the pseudo-code to compute covertness centrality for a set of vertices S

based on the empirical distributions of a set C of base centrality measures. The function sample

could be either a simple random or systematic sampling or could return all vertices V if we want to

compute exact scores. The communication potential measure D can be any centrality measure, Ĝ

is an arbitrary subgraph ofG (including Ĝ = G) to computeD on, CM is a commonness function

like those given in Eq. 2.1, 2.2, 2.5 and 2.6. The covertness function CC combines commonness

and communication potential as in Eq. 2.3.

Though the Covertness Centrality Algorithm (Algorithm 4) can take any distribution as

input, we note that the computation of commonness based on estimated distributions requires a

method to detect the type of distribution of centrality measure as well as the parameters of the

distribution — due to space constraints, we do not discuss 2(b) and 3(b) above.

Algorithm 4 Covertness Centrality
Input: Graph G = (V,E), set of vertices S, set of centrality measures C, communication potential measure D,

sampling function sampling, commonness function CM , covertness function CC, subgraph Ĝ

Output: covertness centrality scores list<Float> covertness

1: GetBaseCentralityScores

2: for v ∈ sample(V ) ∪ S do

3: for C ∈ C do

4: scores[v][C]← C(G, v)

5: GetCovertnessCentralityScores

6: for v ∈ S do

7: cm← CM(v, scores)

8: cp← D(v, Ĝ)

9: covertness[v]← CC(cm, cp)

10: covertness
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2.2.3.1 Algorithmic Complexity

The covertness of actors is especially of interest for the analysis of large networks as only then is

there potentially a large crowd to hide in. Therefore, the computational complexity of algorithms

to compute covertness centrality is important. To compute the exact commonness of a vertex,

the base centrality score of all vertices for all centrality measures in C must be computed and the

most expensive one will determine the compound complexity. Eigenvector and shortest-path based

centrality measures have at least a quadratic run-time. However, for most measures, approximation

algorithms have been developed. For a discussion of centrality measure computation see [116].

Let n denote the number of vertices in a graph. Calculating the exact commonness has

a complexity equal to the sum of the base centrality measures plus the time to determine the

neighborhood of a vertex. If all the centrality vectors are stored in a range tree whose creation

takes O(n(log n)k−1), retrieving the similarity neighborhood of a vertex takes O((log n)k + t)

where t is the number of retrieved neighbors [25]. To calculate the covertness centrality of all

vertices only for all distinct centrality vectors, a neighborhood search is required. In most cases,

the dominating factor in the complexity of common-ness will originate from the calculation of

the base centrality measures, e.g. when the set of base centralities includes a shortest-path based

measure.

For some base centrality measures, sampling can speed up the calculation of common-

ness. Instead of calculating the empirical distribution of the centrality of all vertices, the empirical

distribution of a random sample can be used as shown (see Equation 2.4). This is beneficial for

all centrality measures where the individual centrality scores can be calculated independently for

each vertex. In the case of betweenness centrality, all source shortest paths have to be computed

for getting the score of one vertex and so individual score computation provides almost no benefit.
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For eigenvector centrality, computing the score of only one vertex is impossible as the scores of the

vertices are interdependent. If all scores have to be calculated, sampling would only decrease the

complexity of the similarity neighborhood search. For closeness centrality however, calculating

the scores of only a sample of vertices can dramatically decrease the runtime because in this case

the single source shortest path problem has to be solved for each and every vertex.

As discussed in Section 2.2.3 the simple strategy of using the empirical distribution of a

random sample will probably tend to underestimate the size of the neighborhood for vertices in

the long tails of power-law distributions. Estimating the parameter of a distribution based on the

sample is likely to provide higher accuracy for the same sample size. A second advantage would

be that instead of having to determine the similarity neighborhood of each vertex, we just need

to calculate the integral in Equation 2.5 or 2.6. For a graph with n vertices, a sample size of e.g.

log n would decrease the effort for getting the required closeness centrality scores from O(n3) to

O(n2 log n). We will evaluate required sample sizes in Section 2.2.4. The required sample size

depends on the sampling technique and the desired accuracy.

Systematic sampling instead of simple random sampling would require an additionalO(n log n)

to sort the vertices. For example, determining the closeness centrality score of one vertex takes

O(n2) time — so the advanced sampling technique would pay off if the same accuracy is achieved

with a minimal smaller sample size.

2.2.4 Evaluation

In this evaluation, we analyze the properties of the covertness centrality measures as well as the

algorithms to calculate them. For this evaluation, we use the testbed of real-world networks listed

in Table 2.7.
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Tab. 2.7: Real-world evaluation datasets. The Youtube networks are snowball samples from the original

dataset. URV is the abbreviation for Universitat Rovira i Virgili.

Network #Vertices #Edges Type Reference

URV 1133 10902 e-mail [103]

Youtube 40k 39998 85793 friendship [158]

Youtube 60k 59998 151481 friendship [158]

2.2.4.1 Measures

First, we study the results of the two different commonness definitions. We have already discussed

the fact that CM1 might have a problem when the different centralities in C are not correlated

because vertices that are very exposed w.r.t. one measure might still end up with high commonness

scores. This is what we see in Fig. 2.8. Vertices with low closeness centrality scores have lowCM2

scores because of the low probability density of closeness in that area. However, these vertices

have high CM1 scores as they have many vertices in their similarity neighborhood for other base

measures. That compensates for their rare closeness values.

Commonness is strongly negatively correlated to the base centrality measure degree, close-

ness, eigenvector and betweenness centrality. In Fig. 2.9 we see for λ = 1 (i.e. covertness is

measured by common-ness only) that the distribution density increases for higher common-ness

scores. For lower values of λ, i.e. for an increasing contribution of communication potential to

covertness centrality, the distribution of covertness gets closer to that one of the communication

potential measure. For λ = 0.25 the covertness centrality distribution is already very similar to

the closeness centrality distribution (compare Fig. 2.7).
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Fig. 2.8: Scatter plot of the commonness scores according to CM1 and CM2 (based on the four base cen-

trality measures degree, closeness, betweenness and eigenvector centrality and the URV dataset)

in relation to closeness centrality.
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Fig. 2.9: Distribution ofCC scores depending on different λ values whenCM2 (based on degree, between-

ness, closeness and eigenvector centrality) is used as the measure of commonness and closeness

centrality is used to measure CP and computed base on the whole graph.
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Fig. 2.10: Comparison of the rank correlation between the exact algorithm and the two sampling algorithm

with different sampling methods for the URV dataset.

2.2.4.2 Compute Time

We implemented CM1 and CM2 in Python and evaluated the performance on a standard desktop

machine. The scores of the base centralities were read from a file to evaluate the performance

of the covertness computation only. The runtime scales linearly with the number of vertices with

compute times of 0.1, 2, and 3 seconds respectively for our three test networks.

Beside the exact commonness algorithm we also studied the heuristic computation of the

sizes of the similarity neighborhoods based on sampling. Fig. 2.10 shows for both sampling

methods the Kendall τ rank correlation [129] of the commonness scores to the exact scores (with

no sampling) is very high — well over 0.95. To achieve the same accuracy than simple random

sample, systematic sampling requires a significantly lower sample size. More detailed results are

shown in Table 2.8 and Tab. 2.9.
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Tab. 2.8: Accuracy of sampling for different sampling methods and networks for CM1 measured with

Kendal’s τ .

Network Simple Systematic

20% 40% 60% 20% 40% 60%

URV 0.965 0.981 0.981 0.966 0.985 1.000

YouTube 40k 0.975 0.992 0.997 0.979 0.996 1.000

YouTube 60k 0.981 0.995 0.997 0.990 0.996 1.000

Tab. 2.9: Accuracy of sampling for different sampling methods and networks for CM2 measured with

Kendal’s τ .

Network Simple Systematic

20% 40% 60% 20% 40% 60%

URV 0.880 0.929 0.940 0.876 0.965 0.976

YouTube 40k 0.983 0.985 0.998 0.993 0.992 0.996

YouTube 60k 0.992 0.989 0.996 0.995 1.000 0.998
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2.3 Related Work

Several centrality measures have been proposed in graph theory and social network analysis:

degree centrality [83, 163], betweenness centrality [37, 82],PageRank [?], closeness central-

ity [177, 21], and eigenvector centrality [36]. Different variants of such centrality measures have

been proposed as well [42, 71, 4, 3, 172, 100]. Game-theoretic centrality measures have been

proposed in [114, 191].

Diffusion Centrality. One of the main differences between all of these centrality measures and

diffusion centrality is that the former only take the structure of the network into account, ignoring

properties of vertices as well as properties and weights of edges. As a consequence, any “seman-

tics” embedded in the network is completely neglected—for instance, two completely different

social networks (in terms of properties assigned to vertices and edges) that have the same topol-

ogy are treated in the same way.

Another drawback of the aforementioned centrality measures is that they do not take into

account the diffusive property with respect to which a vertex is considered “influential” or “cen-

tral”, as well as the model describing how such a property propagates. However, person A can

have the highest centrality in terms of spread of support for Republicans, while person B can be

the central player in terms of spread of support for conserving gorillas, so it becomes crucial to

take into account the property with respect to which vertices are considered influential.

As discussed in Section 2.1 and shown in our experimental evaluation, neglecting this in-

formation can cause serious problems that diffusion centrality overcomes, being able to take into

account both the semantics aspects of social networks and the diffusion model of interest. To the

best of our knowledge, classical centrality measures either do not capture these aspects or simply

ignore them.
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There has been extensive work in reasoning about diffusion in social networks. One well-

known and extensively studied problem is influence maximization, that is, the problem of identi-

fying a subset of vertices in a social network that maximizes the spread of influence. The problem

was first posed in [72] where diffusion processes were modeled as Markov random fields. The

problem was formulated as an optimization problem in the seminal paper [127], which mainly fo-

cuses on two propagation models: the independent cascade and the linear threshold models. [127]

shows that the influence maximization problem is NP-hard and provides an approximation greedy

algorithm (with approximation guarantees).

The algorithm proposed in [127] is extremely expensive and does not scale to large social

networks. To overcome this limitation, there have been numerous proposals aimed at achieving

better performance under the independent cascade and linear threshold models [128, 133, 143, 53,

54, 117, 93, 95, 56, 55, 96, 198, 43, 135]. Algorithms for the Susceptible-Infected-Susceptible

(SIS) model have proposed as well [134, 178, 112].

All of the approaches reported above for the influence maximization problem consider re-

stricted diffusion models which suffer from various limitations when it comes to real-world propa-

gation as no properties and vertex/edge conditions are considered. In contrast, our approach deals

with very general diffusion models and takes social network semantic properties into account. The

language we consider can express several well-known diffusion models such as the independent

cascade, the linear threshold, the SIS and SIR models, the Jackson-Yariv model, and many oth-

ers. Being able to accurately model the diffusion process and incorporate the semantic aspects of

networks is fundamental for correct analysis of real-world diffusion phenomena.

Another well-studied related problem in computer science is the target set selection prob-

lem [119, 146, 58]. This problem assumes a deterministic tipping model and seeks to find a set of

vertices of a certain size that optimizes the final number of adopters. Although approximation al-
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gorithms for this problem have been discovered, there is no evidence that they scale well for large

datasets. Moreover, these approaches focus on specific diffusion models and neglect networks’

semantics.

Recently, after our paper on diffusion centrality [123], a few pieces of work have observed

that no individual can be a universal influencer, and influential members of the network tend to

be influential only in one or some specific domains of knowledge, highlighting that the research

on social influence has surprisingly largely overlooked this aspect [19, 47, 193]. Several theories

in sociology [136, 99] show that the effect of the social influence from various angles may be

different. This has led to the extension of the classic independent cascade and linear threshold

models to be “topic-aware” [19, 47] thus considering propagation with respect to a particular

topic. Approaches along this line but tailored for the microblogging setting have been proposed

in [202, 166]. Still, the diffusion models considered by these works are limited, as well as the

characteristics of the vertices and the edges of social networks.

A recent survey on different issues related to information diffusion in social networks

is [102]. A general framework to solve social network diffusion optimization problems that can

take a broad class of diffusion models as input has been proposed in [184], where diffusion models

are expressed via generalized annotated logic programs [131].

Covertness Centrality. The literature on different types of dark, hidden or covert networks of

criminal or terrorist groups is extensive. However, most existing literature deals with the network

among the members of a covert group only. In contrast, the situation we deal with in Section 2.2

is a large network (e.g. phone, e-mail) in which a small fraction of actors constitute a covert

sub-network in a larger (mostly innocent) population.

Our work is inspired by previous work on the conflict between the efficiency of commu-

nication in a terrorist group and the attempt to maintain secrecy. Lindelauf et al. [147] analyzed
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the trade-off between secrecy and information. Secrecy is defined by the exposure probability and

the link detection probability. The exposure probability is the probability that a group member

gets identified. Link detection probability is the probability that a covert actor is identified by

following a link of an already identified covert actor. The link detection probability refers to what

Gutfraind [104] denote as cascade resilience. In their case, a link is established if the resulting

communication efficiency outweighs the costs of potentially being identified by following that

link. In contrast, we see the costs of establishing a link with respect to the exposure an actor re-

ceives through it. So our approach is different, as for us covertness does not mean having the least

possible number of connections but having connections that appear unsuspicious.

There has been a small amount of work on detecting covert cells within networks. In such a

case, a group of individuals tries to stay hidden within a large network. However, most past works

on covert cell detection do not study the relationship between centrality measures and covert cell

structure. For instance, [20] discusses groups that try to camouflage communications - but the

idea that an adversary trying to uncover such covert groups may look at centrality measures is not

considered. In addition, there is work on detecting anomalous positions in a network - however, an

anomaly may occur not because someone is trying to hide while maintaining communications with

cell members but because an individual is in a location in the network that has skewed statistical

properties. Conversely, covertness is not anomalous - an individual trying to stay ”off the radar” is

making an explicit attempt to look ”normal” within the network and our notion of common-ness

represents an explicit attempt by a ”bad guy” to not look anomalous. Thus, the two concepts are

very different.
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2.4 Conclusion

Centrality is a fundamental concept in social network analysis. Each centrality measure quantifies

the relative importance of vertices in social networks w.r.t. a different analysis purpose. Many

centrality measures have been extensively studied and widely used in social influence analysis.

But there is no centrality measure to measure the influence of vertices with considering explicitly

diffusion process of diffusive properties over social networks. So, in Section 2.1, we propose the

novel concept of Diffusion Centrality and show how it can be computed with respect to diffusion

models expressed via generalized annotated programs (GAPs). We then present the HyperDC

algorithm that exactly computes diffusion centrality vertices w.r.t. any GAP-expressible diffusion

models. We conduct a very detailed experimental study on several real-world social networks.

The experiments compare the runtime and spread generated via the HyperDC algorithm with

classical centrality measures. Our results show that HyperDC runs very fast, comparable in time

to PageRank (and sometimes even degree centrality) for the Flickr and SIR models – but slightly

slower for the Jackson-Yariv model, while producing much better spread for all three diffusion

models.

In Section 2.2, we discuss the problem of constructing a measure that reflects covertness of

a vertex that combines elements of “common-ness” as well as communication efficiency in a social

network. Being covert in a network means hiding in a crowd of similar actors. It is motivated by

attempt to analyze how malicious actors in a network behave if they are aware that the network

is being monitored via a set C of centrality measures. Previous work on covertness focused on

how actors as parts of small covert networks optimize their position within the network only. We

extend those work by the broader view on large networks where covert network are embedded in.

We present several ways to construct a covertness centrality measure as well as ways to compute
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the scores of such measures. Given that the base centrality scores are known covertness centrality

can be computed efficiently. If the base scores are unknown, we show that with suitable sampling

techniques it is not necessary to determine the exact similarity neighborhoods. We develop an

algorithm to compute covertness centrality of nodes using different types of sampling methods,

showing that these sampling methods are highly correlated to methods without sampling and that

they can be computed relatively efficiently with small sample sizes.

Note. The material in Section 2.2 has been published in [165]. The authors agree that I made a

significant contribution and may use this work in my thesis.

68



Chapter 3: Network Simplification

For very huge networks, it is not feasible to apply social network analysis techniques directly

and exactly. Due to the reason, several network sparsification and simplifications techniques have

been developed in order to help social influence analysis in such large social networks. But the

techniques do not consider diffusion process explicitly and semantic aspects (vertex and edge

properties) of social networks. Therefore, we develop new network coarsening techniques that

approximately preserves both structural and semantic properties of social networks with respect

to diffusion process (of a given diffusion model). In Section 3.1, first, we formulate a novel Graph

Coarsening Problem to find a succinct representation of any graph while preserving key charac-

teristics for diffusion processes on that graph. We then provide a fast and effective near-linear-

time (in nodes and edges) algorithm COARSENET. Then, in Section 3.2, we develop methods

to coarsen a network and propose a heuristic algorithm called “Coarsened Back and Forth” or

CBAF to compute the top-k vertices (having the highest diffusion centrality w.r.t. p) which is ex-

tended from COARSENET to support various diffusion process and semantica aspects of networks

in coarsening step mainly.
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3.1 Fast Influence-based Coarsening for Large Networks

3.1.1 Introduction

The unprecedented popularity of online social networking websites, such as Facebook, Google+,

Flickr, and YouTube, has made it possible to analyze real social networks. Word of mouth mar-

keting and viral marketing strategies have evolved to take advantage of this network structure by

utilizing network effects. Similarly, understanding large-scale epidemiological datasets is impor-

tant for designing effective propagation models and containment policies for public health. The

sheer size of today’s large social networks makes it challenging to perform sophisticated network

analysis.

Given a propagation graph, possibly learnt from cascade analysis, is it possible to get a

smaller nearly diffusion-equivalent representation for it? Getting a smaller equivalent graph will

help multiple algorithmic and data mining tasks like influence maximization, immunization, un-

derstanding cascade data and data compression. In this paper, we study a novel graph coarsening

problem with the aim of approximating a large social network by a much smaller graph that ap-

proximately preserves the network structure. Our primary goal is to find a compact representation

of a large graph such that diffusion and propagation processes on the large graph can be studied by

analyzing the smaller representation. Intuitively, most of the edges in a real network are relatively

unimportant; hence we propose characterizing and “contracting” precisely such edges in a graph

to obtain a coarse representation.

The main contributions of this paper are:

(a) Problem Formulation: We carefully formulate a novel Graph Coarsening Problem (GCP) to

find a succinct representation of a given social network so that the diffusion characteristics

of the network are mostly preserved.
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(b) Efficient Algorithms: We develop COARSENET, an efficient (near-linear time) and effective

algorithm for GCP, using careful approximations. We show that due to our novel scoring

technique, the coarsened graph retains most of the diffusive properties of the original net-

work.

(c) Extensive Experiments: We show that COARSENET is able to coarsen graphs up to 90% with-

out much loss of key information. We also demonstrate the usefulness of our approach via

a number of interesting applications. A major application we consider in this work is that

of influence maximization in the Independent Cascade model. We propose a framework

CSPIN that involves coarsening the graph and then solving influence maximization on the

smaller graph to obtain high quality solutions. As the coarsened graph is much smaller than

the original graph, the influence maximization algorithm runs orders of magnitude faster on

the coarsened graph. Further using real cascade data from Flixster, we show how GCP can

potentially help in understanding propagation data and constructing non-network surrogates

for finding nodes with similar influence.

The rest of the paper is organized as follows: Section 5.7 gives related work and Sec-

tion 3.1.2 briefly gives the notation and explains some technical preliminaries. Section 3.1.3 pro-

vides a formal definition of the Graph Coarsening Problem that we introduce, while Section 3.1.4

presents our approach and solution. In Section 3.1.5, we show how our coarsening framework can

be applied to solve influence maximization on large networks. Finally, Section 4.7 gives experi-

mental results while we conclude in Section 4.9.

3.1.2 Preliminaries

Table 3.1 gives some of the notation.
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Tab. 3.1: Symbols

Symbol Definition and Description

A,B, . . . matrices (bold upper case)

~a,~b, . . . column vectors

aj or a(j) jth element of vector a

n number of vertices in the graphs

m number of edges in the graphs

α the reduction factor

λG first eigenvalue (in absolute value) of

adjacency matrix of graph G

~uG, ~vG Right and left first eigenvectors (for

λG) of adjacency matrix G

IC Model The Independent Cascade Model

GCP Graph Coarsening Problem (see Def-

inition 17)

COARSENET Our algorithm for GCP

IC Model. A social network is a directed, weighted graph G = (V,E,w). Usually each vertex

v ∈ V represents an individual of the network and edges represent influence relationships between

these individuals. The Independent Cascade (IC) model is a popular diffusion model used to model

the way influence propagates along the edges of a social network. In this setting, a vertex v ∈ V

is called active if it has been influenced and inactive otherwise. Once an inactive vertex becomes

active, it always stays active, i.e. we focus only on progressive models. Given a seed set S ⊂ V of
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initially active vertices, the Independent Cascade model proceeds in discrete time steps as follows.

At time step t, let St denote the set of vertices activated at time t. Every vertex u ∈ St is given

a single chance to activate each currently inactive neighbor v with probability of success w(u, v)

independently of all other interactions. If u succeeds, then v becomes active at time t + 1. This

diffusion process continues until no more activations are possible. The influence spread of seed

set S, denoted by σ(S), is the expected number of activated vertices at the end of the process.

3.1.3 Problem Formulation

Motivated by the fact that in any real network, most edges and vertices are not important (due to

the heavily skewed degree distributions), we propose a graph coarsening problem which involves

pruning away precisely such edges (and vertices). We aim to coarsen the graph to obtain a much

smaller representation which retains the diffusive properties. We coarsen a graph by successively

merging adjacent node pairs. We attempt to quickly find “good” edges which have little effect on

the network’s diffusive properties. At first glance, this seems impossible as the diffusive properties

of a graph are highly dependent on the connectivity of the vertices and edge weights. Further,

determining which node pairs to merge and analyzing the effect of merging two nodes on diffusion

are non-trivial. Informally, we study the following problem in this paper:

Definition 15 (Informal Problem).

INPUT: Weighted graph G = (V,E,w) and a target fraction 0 < α < 1

GOAL: Coarsen G by repeatedly merging adjacent node pairs to obtain a weighted graph H =

(V ′, E′, w′) such that

• |V ′| = (1− α)|V |

• Graph H approximates graph G with respect to its diffusive properties
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Role of Eigenvalues. In order to address the informal problem described above, we need a

tractable way to characterize the diffusive properties of a network. Recent work [169] shows

that for almost any propagation model (including the IC model), important diffusion character-

istics (in particular the so-called epidemic threshold) of a graph (after removing self loops) are

captured by the spectrum of the graph, specifically, by the first eigenvalue of the adjacency matrix.

Thus it is natural to believe that if the first eigenvalue of the coarsened graph H (its adjacency

matrix) is close to that of the original graph G, then H indeed approximates G well. Although the

work of [169] deals with undirected graphs, their findings are also applicable to strongly connected

directed graphs.

Merging node pairs. To explicitly formulate the problem in Definition 15, we also need to define

what happens when a node pair is merged (i.e. an edge is contracted) in a weighted graph. More

precisely, after merging neighboring vertices a and b to form a new node c, we need to determine

the new edge weights of all incoming and outgoing edges of c. In order to maintain the diffusive

properties of the network, we need to reweight the new edges appropriately.

x e d b a

cdex

0.5 0.5 0.5 0.5

0.50.5 0.5?

Fig. 3.1: Why reweight?

To see why this is crucial, consider Figure 3.1. Assume that the IC model is being run.

Suppose we need to pick the two best seeds (i.e. two nodes with the maximum influence spread

as defined in the previous Section) from the top 5-vertex chain. Further assume that the graph is

undirected and each edge has the same weight β = 0.5. Clearly, vertices b and e are the best. If we

merge vertices {a, b}, we get the bottom 4-vertex chain. To still match the original solution, we

correspondingly want {c, e} to be the best seed-set in the new chain—but if edge {d, c} remains
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the same weight, any of the pair of vertices {e, c} or {x, d} are the best seed sets in the 4-vertex

chain. This motivates the need to reweight suitably so that new coarsened graph still retains the

original characteristics.

The main insight is that if we select c as a seed, we are in-effect intending to choose only

one of vertices a and b to be seeded (influenced); which suggests that the likelihood of d being

influenced from c is either 0.5 or 0.25 (corresponding to when a or b is chosen respectively).

Hence the weight of edge (c, d) should be modified to reflect this fact.

We propose the following solution: Suppose e = (a, b) is contracted and a and b are merged

together to form “supervertex” c (say). We reweight the edges adjacent to a and bwhile coarsening

so that the edges now represent the average of the transmission probabilities via a or b. So in our

example of Figure 3.1, edge {c, d} would have weight 0.375 (average of 0.5 and 0.25). Further,

we can verify that in this case {e, c} will be the best seed-set, as desired.

z

a bx y

z

cx y

aiz
aoz

biz
boz

β1

β2

aox

aix boy

biy

aiz(1+β1)+biz(1+β2)
4

aoz(1+β2)+boz(1+β1)
4

1+β1

2 aix

1+β2

2 aox
1+β2

2 biy

1+β1

2 boy

Fig. 3.2: Reweighting of edges after merging node pairs

Extending the same principle, Figure 3.2 shows the general situation for any candidate node

pair (a, b) and how a merge and re-weight (= contract) operation will look like. More formally,

our contract operation is as follows:
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Definition 16 (Merging node pairs). LetNbi(v) (respectivelyNbo(v)) denote the set of in-neighbors

(resp. out-neighbors) of a vertex v. Let viu = w(u, v) and vou = w(v, u) denote the weight of the

corresponding edges. If the node pair(a, b) is now contracted to a new vertex c, and w(a, b) = β1

and w(b, a) = β2, then the new edges are weighted as -

cit =



(1 + β1)ait
2

∀t ∈ Nbi(a)\Nbi(b)

(1 + β2)bit
2

∀t ∈ Nbi(b)\Nbi(a)

(1 + β1)(ait) + (1 + β2)(bit)

4
∀t ∈ Nbi(a) ∩Nbi(b)

cot =



(1 + β2)aot
2

∀t ∈ Nbo(a)\Nbo(b)

(1 + β1)bot
2

∀t ∈ Nbo(b)\Nbo(a)

(1 + β2)(aot ) + (1 + β1)(bot )

4
∀t ∈ Nbo(a) ∩Nbo(b)

Graph Coarsening Problem. We are now ready to state our problem formally. Motivated by

the connections between the diffusive and spectral properties of a graph, we define the following

Graph Coarsening Problem to find the set of node pairs which when merged (according to Defi-

nition 16) lead to the least change in the first eigenvalue. Further, since a vertex cannot influence

itself, we assume without loss of generality that the graph G has no self loops.

Definition 17 (Graph Coarsening Problem).

INPUT: Directed, strongly connected, weighted graph G = (V,E,w) without self loops and a

target fraction 0 < α < 1

OUTPUT: E∗ = arg minE′⊂E,|E′|=α|V | |λG − λG′ |, where G′ is obtained from G by merging all

node pairs in E′.
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A related problem is Edge Immunization [195] that asks for a set of edges whose removal

leads to the greatest drop in the first eigenvalue. In contrast, GCP seeks to find a set of edges

whose contraction (Definition 16) leads to the least change in the first eigenvalue. The Edge

Immunization problem is known to be NP-hard [195].

3.1.4 Our Solution

As obvious algorithms to GCP are clearly exponential, we propose a greedy heuristic that repeat-

edly merges a node pair which minimizes the change in the first eigenvalue. Let G−(a,b) denote

the graph G after merging nodes a and b (and incorporating the re-weighting strategy), and λG

denote the first eigenvalue of the adjacency matrix of G. We define the score of a node pair(a, b)

as follows -

Definition 18 (Score). Given a weighted graph G = (V,E,w) and an adjacent node pair(a, b),

score(a, b) is defined by:

score(a, b) = |λG−(a,b)
− λG| = ∆λ(a,b)

Intuitively, if score(a, b) ≈ 0, it implies that edges (a, b) and (b, a) do not play a significant

role in the diffusion through the graph and can thus be contracted. Figure 3.3 shows an example

of our approach.

Naı̈ve Algorithm: The above intuition suggests the following naı̈ve algorithm for selecting node

pairs for merging. At each stage, calculate the change in the eigenvalue due to merging each

adjacent node pair, choose the node pair leading to the least change, merge the chosen nodes,

and repeat until the graph is small enough. An implementation for this, even using the Lanczos

algorithm for eigenvalue computation for sparse graphs, will be too expensive, takingO(m2) time.

Can we compute (maybe approximately) the scores of each node pair faster?
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(c) Coarsened Network

Fig. 3.3: Our approach on an example network. All edges have weight 0.5 in the original graph. We do not

show the new edge weights in the coarsened graph for clarity.

Main Idea: We use a matrix perturbation argument to derive an expression for the change in

eigenvalue due to merging two adjacent nodes. Using further information about the specific per-

turbations occurring due to merging two adjacent nodes, we show that the change in the eigenvalue

can be approximated well in constant time. Thus, we obtain a linear (O(m)) time scheme to esti-

mate the score of every pair of adjacent nodes.

3.1.4.1 Score Estimation

Let a and b denote the two neighboring vertices that we are trying to score. We assume that

the first eigenvalue of the graph λG and the corresponding right and left eigenvectors ~u,~v are

precomputed. Further since the graph G is strongly connected, by the Perron-Frobenius theorem,

the first eigenvalue λG and the eigenvectors ~u and ~v are all real and have positive components.

When it is clear from the context, we drop subscripts G and (a, b). In the proofs that follow

λ = λG and ∆λ = ∆λ(a,b) as there is no ambiguity. Let A denote the adjacency matrix of

the graph. Further as ~u denotes the eigenvector of A, let ua = u(a) denote the component of

~u corresponding to vertex a. Merging nodes changes the dimensions of the adjacency matrix A

which we handle by viewing merging nodes a, b as adding b′s neighbors to a and isolating node b.
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Approximation 9 provides an equation for the change in the eigenvalue by a matrix pertur-

bation argument. Proposition 10 and Proposition 11 show how our reweighting strategy helps us

to approximate the score(a, b) in constant time.

Approximation 9. The change in eigenvalue ∆λ can be approximated by ∆λ =
~vT∆A~u+ ~vT∆A∆~u

(~vT~u+ ~vT∆~u)

where ∆A denotes an infinitesimally small change in the adjacency matrix A and ∆~u denotes the

corresponding change in the eigenvector ~u.

JUSTIFICATION. By the definition of an eigenvalue and eigenvector of a matrix, we have

A~u = λ~u (3.1)

~vTA = ~vTλ (3.2)

Perturbing all values of (3.1) infinitesimally, we get

(A + ∆A)(~u+ ∆~u) ≈ (λ+ ∆λ)(~u+ ∆~u)

A∆~u+ ∆A~u+ ∆A∆~u ≈ λ∆~u+ ∆λ~u+ ∆λ∆~u

Premultiplying by ~vT and using (3.1) and (3.2),

∆λ(~vT~u+ ~vT∆~u) ≈ ~vT∆A~u+ ~vT∆A∆~u

∆λ ≈ ~vT∆A~u+ ~vT∆A∆~u

(~vT~u+ ~vT∆~u)
(3.3)

Using expression (3.3) along with prior knowledge about the perturbations to the adjacency

matrix A and the eigenvector ~u, we obtain an expression for computing the score of the node pair.

Proposition 10 (Score Estimate). Under Approximation 9, the score of a node pair score(a, b)

can be approximated as

∆λ(a,b) =
−λ (uava + ubvb) + va~u

T ~co + β2uavb + β1ubva
~vT~u− (uava + ubvb)

(ignoring second order terms).
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Proof. Approximation 9 provided an expression for ∆λ in terms of the change in the adjacency

matrix and the eigenvector. Now ∆A, i.e., change in the adjacency matrix can be considered as

occurring in three stages namely (i) Deletion of a, (ii) Deletion of b, (iii) Insertion of c. Assume

that c is inserted in place of a. Thus we obtain,

∆A =−
(
~ai ~ea

T + ~ea ~ao
T
)
−
(
~bi~eb

T + ~eb~bo
T
)

+
(
~ci ~ea

T + ~ea~co
T
)

(3.4)

where ~ev denotes a vector with a 1 in the vth row and 0 elsewhere. Further, as we modify only

two rows and columns of the matrix, this change ∆A is very small.

Also, deletion of vertices a and b cause ath and bth components of ~u and ~v to be zero. ∆~u,

i.e, change in the eigenvector ~u can thus be considered as setting ua and ub to zero, followed by

small changes to other components and to ua due to addition of c. Thus we obtain,

∆~u = −ua ~ea − ub~eb + ~δ (3.5)

Although ∆~u cannot be considered as small, we assume that the changes ~δ after setting ua

and ub components to zero are very small.

Substituting for ∆A, we get

~vT∆A~u = ~vT (−(~ai ~ea
T + ~ea ~ao

T
)− (~bi~eb

T + ~eb~bo
T

+ (~ci ~ea
T + ~ea~co

T
))~u

Since ~vT ~ea = va and similarly,

~vT∆A~u = −ua~vT ~ai − va ~ao
T
~u− ub~vT ~bi − vb~bo

T
~u

+ ua~v
T ~ci + va~co

T
~u

But ~vT ~ai = λva and ~ao
T
~u = λua and similarly,

~vT∆A~u = −2λ (uava + ubvb) + ua~v
T ~ci + va~co

T
~u (3.6)
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Now using (3.4) and (3.5) consider,

~vT∆A∆~u = ~vT∆A(−ua ~ea − ub~eb + ~δ)

Since ∆A and ~δ are both very small, we ignore the second order term ~vT∆A~δ.

⇒ ~vT∆A∆~u = ~vT∆A(−ua ~ea − ub~eb)

= ~vT (−(~ai ~ea
T + ~ea ~ao

T
)− (~bi~eb

T + ~eb~bo
T

+ (~ci ~ea
T + ~ea~co

T
))(−ua ~ea − ub~eb)

Since self loops do not affect diffusion in any way, we can assume without loss of generality that

G has no self loops. Further, simplifying using definitions of eigenvalue we get,

~vT∆A∆~u = λ(uava + ubvb) + β2uavb

+ β1ubva − ua~vT ~ci (3.7)

Ignoring small terms, we also have,

~vT∆~u = ~vT (−ua ~ea − ub~eb + ~δ) = −(uava + ubvb) (3.8)

Substituting (3.6),(3.7) and (3.8) in Approximation 9, we get

∆λ =
−λ (uava + ubvb) + va~u

T ~co + β2uavb + β1ubva
~vT~u− (uava + ubvb)

Note that every term in this expression is a simple product of scalars, except for the ~uT ~co

term. We now show that even ~uT ~co can in fact be expressed in terms of scalars and can thus be

computed in constant time.

Proposition 11. Using the re-weighting scheme as defined in Definition 16, if c denotes the new

vertex created by merging nodes {a, b} and ~co denotes the out-adjacency vector of c, ~uT ~co =
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(1 + β2)

2
(λua − β1ub) +

(1 + β1)

2
(λub − β2ua) where β1 is the weight of edge (a, b) and β2 is

the weight of the edge (b, a).

Proof. Let X = Nbo(a) \ Nbo(b), Y = Nbo(b) \ Nbo(a), Z = Nbo(a) ∩ Nbo(b). Since, c is

adjacent only to neighbors of a and b, we have

~uT ~co =
∑
t∈X

utc
o
t +

∑
t∈Y

utc
o
t +

∑
t∈Z

utc
o
t + ucW

where W is the weight of a self loop added at c. Note that a self loop does not affect diffusion

in any way (as a node can not influence itself). We use a self loop only in the analysis so as to

compute the scores efficiently.

As per our reweighting scheme (See Definition 16)

~uT ~co =
∑
t∈X

(1 + β2)

2
uta

o
t +

∑
t∈Y

(1 + β1)

2
utb

o
t

+
∑
t∈Z

(
(1 + β2)

4
aot +

(1 + β1)

4
bot )ut + ucW (3.9)

But, by definition of eigenvalues, we know that

λua =
∑
t∈V

uta
o
t =

∑
t∈X

uta
o
t +

∑
t∈Z

uta
o
t + ubβ1

∑
t∈X

uta
o
t = λua −

∑
t∈Z

uta
o
t − β1ub

= λua − ao(Z)− β1ub (3.10)

where ao(Z) =
∑

t∈Z uta
o
t

Similarly, we get

∑
t∈Y

utb
o
t = λub − bo(Z)− β2ua (3.11)
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Substituting Equations (3.10), (3.11), in (3.9),

~uT ~co =
(1 + β2)

2
(λua − ao(Z)− β1ub)

+
(1 + β1)

2
(λub − bo(Z)− β2ua)

+
(1 + β2)

4
ao(Z) +

(1 + β1)

4
bo(Z) + ucW

We now choose W = (−(1 + β2)

4
ao(Z)− (1 + β1)

4
bo(Z))/uc, so that we get

~uT ~co =
(1 + β2)

2
(λua − β1ub) +

(1 + β1)

2
(λub − β2ua)

Corollary 1. Given the first eigenvalue λ and corresponding eigenvectors ~u,~v, the score of a node

pair score(a, b) can be approximated in constant time.

Proof. Substituting for ~ut~co in Proposition 10 using Proposition 11, we obtain an expression for

score(a, b) that is composed entirely of scalar terms. Thus we can estimate the edge score in

constant time.

3.1.4.2 Complete Algorithm

Using the approximation described in the previous section, we assign a score to every pair of

adjacent nodes of the graph. We then sort these node pairs in ascending order of the absolute

value of their scores. Intuitively, we would like to merge a node pair if it has minimal score. Given

an upper bound of α, the graph is then coarsened by contracting αn node pairs one by one in this

order ignoring any pairs that have already been merged. We give the pseudo-code of our algorithm

COARSENET in Algorithm 5.

Lemma 1 (Running Time). The worst case time complexity of our algorithm is O(m ln(m) +

αnnθ) where nθ denotes the maximum degree of any vertex at any time in the coarsening process.
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Algorithm 5 Coarsening Algorithm - COARSENET(G,α)

Input: A directed, weighted graph G=(V ,E,w),

a reduction factor α

Output: Coarsened graph Gαcoarse=(V ′,E′,w′)

1: i = 0

2: n = |V |

3: G′ = G

4: for each adjacent pair of nodes a, b ∈ V do

5: Compute score(a, b) using Section 3.1.4.1

6: π ← ordering of node pairs in increasing order of score

7: while i ≤ αn do

8: (a, b) = π(i)

9: G′ ← ContractG′(a, b)

10: i++

11: return Gαcoarse = G′

Proof. Computing the first eigenvalue and eigenvector of the adjacency matrix of the graph takes

O(m) time (for example, using Lanczos iteration assuming that the spectral gap is large). As

shown in Section 3.1.4.1, each node pair can be assigned a score in constant time. In order to score

all m adjacent pairs of nodes of the graph, we require linear i.e. (O(m)) time. The scored node

pairs are sorted in O(m ln(m)) time. Merging two nodes (a, b) requires O(deg(a) + deg(b)) =

O(nθ) time. Since we each merge at most αn pairs of nodes, the merging itself has time complex-

ity O(αnnθ).

Therefore, our worst-case time complexity is O(m ln(m) + αnnθ).
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3.1.5 Sample Application:

Influence Maximization

The eigenvalue based coarsening method described above aims to obtain a small network that ap-

proximates the diffusive properties of the original large network. As an example application, we

now show how to apply our graph coarsening framework to the well studied influence maximiza-

tion problem. Recall that given a diffusion model (IC model in our case) and a social network,

the influence maximization problem is to find a small seed set of k nodes such that the expected

number of influenced nodes is maximized.

Since we have designed our coarsening strategy such that nodes and edges important for

diffusion remain untouched, we expect that solving influence maximization on the coarsened graph

is a good proxy for solving it on the much larger original network. The major challenge in this

process is to determine how to map the solutions obtained from the coarsened graph back onto

the vertices of the original network. But due to the carefully designed coarsening strategy which

tries to keep important, candidate vertices unmerged, we observe that a simple random pull back

scheme works well in practice.

More formally, we propose the following multi-stage approach to solve influence maxi-

mization:

1. Coarsen the social network graph G by using Algorithm 5 to obtain a much smaller graph

Gcoarse. Let µ : V → Vcoarse denote a mapping from vertices of the original graph to those

of the coarsened graph.

2. Solve the influence maximization problem on Gcoarse to get k vertices s1, . . . , sk in the

coarsened graph that optimize the desired objective function. We can use any off-the-shelf

algorithm for influence maximization in this step. Since Gcoarse is much smaller than G,
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traditional algorithms for influence maximization can provide high quality solutions in little

time.

3. Pull back the solutions on to the vertices of the original graph. Given a seed si in Gcoarse,

we need to select a vertex v ∈ µ−1(si) from G as a seed. Multiple strategies can be

considered here such as v = argmaxu∈µ−1(si)(σ(u)) where σ(u) is the expected influence

by seeding u. However, thanks to our careful coarsening framework, we show that a simple

strategy of selecting a seed uniformly at random from µ−1(si) for every seed si performs

very well in practice.

Algorithm 6 describes our strategy to solve influence maximization problems. Note that a

similar strategy can be applied to study other problems based on diffusion in networks.

Algorithm 6 CSPIN: Influence Maximization Framework
Input: A weighted graph G=(V ,E,w), the number of seeds k, a reduction factor α

Output: A seed set S of k seeds

1: Gαcoarse, µ← COARSENET(G,α) (See Algorithm 5)

2: s′1, s′2, . . . , s′k ← InfluenceMaximization(Gαcoarse, k)

3: for i = 1, . . . , k do

4: si ← random sample from µ−1(s′i)

5: return S = {s1, s2, . . . , sk}

3.1.6 Experimental Evaluation

We performed several experiments to show the effectiveness of COARSENET algorithm and also

the GCP framework for cascade analysis.
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Tab. 3.2: Datasets: Basic Statistics

Dataset #Vertices #Edges Mean Degree

Flickr small 500,038 5,002,845 20.01

Flickr medium 1,000,001 14,506,356 29.01

Flickr large 2,022,530 21,050,542 20.82

DBLP 511,163 1,871,070 7.32

Amazon 334,863 1,851,744 11.06

Brightkite 58,228 214,078 7.35

Portland 1,588,212 31,204,286 39.29

Flixster 55,918 559,863 20.02

Datasets All experiments were conducted on an Intel Xeon machine (2.40 GHz) with 24GB

of main memory1. We used a diverse selection of datasets from different domains to test our

algorithm and framework (see Table 3.2). These datasets were chosen for their size as well as

the applicability to the diffusion problem. COARSENET was tested on data from Flickr, DBLP,

Amazon, Brightkite and Portland epidemiology data. In the Flickr data, vertices are users, and

links represent friendships [49]. In the DBLP data, vertices represent authors and edges represent

co-authorship links. Brightkite is a friendship network from a former location-based social net-

working service provider Brightkite. In the Amazon dataset, vertices are products and an edge

represents that the two products are often purchased together. The Portland dataset is a social

contact graph of vertices representing people and edges representing interactions—it represents

a synthetic population of the city of Portland, Oregon, and has been used in nation-wide small-
1 Code at: http://www.cs.vt.edu/˜badityap/CODE/coarsenet.tgz
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pox studies [77]. Finally, we also used a real cascade dataset Flixster2, where cascades of movie

ratings happen over a social network.

3.1.6.1 Performance for the GCP problem

We want to measure the performance of COARSENET algorithm on the GCP problem. In short,

we can coarsen up to 70% of node-pairs using COARSENET, and still retain almost the same

eigenvalue.
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Fig. 3.4: Effectiveness of COARSENET for GCP. λ vs α for COARSENET and RANDOM. COARSENET

maintains λ values.

.
2 http://www.cs.ubc.ca/˜jamalim/datasets/

88

http://www.cs.ubc.ca/~jamalim/datasets/


3.1.6.1.1 Effectiveness As a baseline we used RANDOM, a random node-pair coarsening algo-

rithm (randomly choose a node-pair and contract), used in some community detection techniques.

Figure 3.4 shows the values of λ as the reduction factor α increases when we ran COARSENET and

RANDOM on three datasets (we set a weight of 0.02 for this experiment). We observed that in all

datasets, as the reduction factor α increases, the values of λ barely change for COARSENET, show-

ing that the diffusive properties are maintained even with almost 70% contraction; while RANDOM

destroyed the eigenvalue very quickly with increasing α. This shows that (a) large graphs can in

fact be coarsened to large percentages while maintaining diffusion; and (b) COARSENET effec-

tively solves the GCP problem. As we show later, we apply the GCP problem and COARSENET

on a detailed sample application of influence maximization.

3.1.6.1.2 Scalability Figure 3.5 shows the running times of COARSENET w.r.t. α and n. To

analyze the runtime of COARSENET with respect to graph size (n), we extracted 6 connected

components (with 500K to 1M vertices in steps of 100K) of the Flickr large dataset. As expected

from Lemma 1, we observe that in all datasets, as the reduction factor α increases, the running

time increases linearly (figures also show the linear-fit, with R2 values), and scale near-linearly as

the size of the graph increases. This demonstrates that COARSENET is scalable for large datasets.

3.1.6.2 Application 1: Influence Maximization

Here we demonstrate in detail a concrete application of our GCP problem and COARSENET al-

gorithm to diffusion-related problems. We use the well-known Influence Maximization problem.

The idea as discussed before is to use the Coarsen-Solve-Project CSPIN framework (see Sec-

tion 3.1.5). In short we find that we obtain 300× speed-up on large networks, while maintaining

the quality of solutions.

89



0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

1000

Reduction Factor

R
un

ni
ng

 T
im

e 
(in

 s
ec

on
ds

)

 

 

 
Y = 1400X −190
R2=0.9898

0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

600

700

800

900

Reduction Factor

R
un

ni
ng

 T
im

e 
(in

 s
ec

on
ds

)

 

 

 
Y = 1800X − 500
R2=0.9505

(a) Amazon (b) DBLP

0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

Reduction Factor

R
un

ni
ng

 T
im

e 
(in

 s
ec

on
ds

)

 

 

 
Y = 580X − 140
R2=0.9950

5 6 7 8 9 10

x 10
5

600

800

1000

1200

1400

1600

1800

Graph Size (Number of Vertices)

R
u

n
n

in
g

 T
im

e
(i

n
 s

e
c
o

n
d

s
)

 

 

 
Y = 0.0015X + 120

R
2
=0.9530

(c) Brightkite (d) Flickr (Varying sizes)

Fig. 3.5: Scalability of COARSENET for GCP. (a,b,c) Linear w.r.t. α. (d) Near-linear w.r.t. size of graph.

Propagation probabilities: Since accurate propagation probabilities for these networks are not

available, we generate propagation probabilities according to two models following the literature.

• Uniform: Each edge is assigned a low propagation probability of 0.02. In most real social

networks, the propagation probabilities are known to be low. For example, [49] find that the

propagation probability in the Flickr network is about 1-2%.

• Trivalency: We also test on the trivalency model studied in [54]. For every edge we choose

a probability uniformly at random from the set {0.1, 0.01, 0.001} which correspond to the

edge having high, medium and low influence respectively.

Algorithms and setup: We can use any off-the-shelf algorithm to solve Inf. Max. problem on
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the smaller coarsened network. Here, we choose to use the fast and popular PMIA [54] algorithm.

We then compared the influence spreads and running-times of the CSPIN framework with the plain

PMIA algorithm to demonstrate gains from using GCP.

3.1.6.2.1 Effectiveness Quality of solution (Influence spread). In all experiments, the influ-

ence spread generated by our CSPIN approach is within 10% of the influence spread generated

by PMIA. In some cases, we even perform slightly better than PMIA. Figure 3.6(a) shows the

expected spread obtained by selecting k = 1000 seeds on five datasets. For these experiments, the

percentage of edges to merged is set at 90% and we use the uniform propagation model.

Quality w.r.t α. We find that we can merge up to 95% of the edges while still retaining influ-

ence spread. As more edges are merged, the coarsened graph is smaller; so the superseeds in

Gαcoarse can be found faster and thus we expect our running time to decrease. We ran tests on the

Flickr medium dataset for 1000 seeds and varied α from 80% to 95%. Figure 3.6(b) shows the

ratio of the expected influence spread obtained by CSPIN to that obtained by PMIA is almost 1 with

varying α.

Quality of solution: Effect of unbiased random pullback.

Tab. 3.3: Insensitivity of CSPIN to random pullback choices : Expected influence spread does not vary

much.

#Trials Maximum

Spread

Minimum

Spread

Coefficient of

variation (σµ)

100 58996.6 58984.8 5.061× 10−5

COARSENET groups nodes which have similar diffusion effects, hence choosing any one of

the nodes randomly inside a group will lead to similar spreads (hence we do the random pullback in
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Fig. 3.6: Effectiveness of CSPIN. Ratio of influence spread between CSPIN and PMIA for (a) different

datasets; (b) varying α. (c) Running time vs α.

CSPIN). Note we do not claim that these groups belong to link-based communities—only that their

diffusive effects are similar. To demonstrate this, we performed 100 trials of the random pullback

phase for the Flickr small graph. For these trials, 1000 superseeds were found by coarsening 90%

of the edges. In each trial, we use these same superseeds to find the 1000 seeds independently and

uniformly at random. Table 3.3 shows that the coefficient of variation of the expected spread is

only 5.061× 10−5.
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3.1.6.2.2 Scalability Scalability w.r.t number of seeds (k). As the budget k increases, we

see dramatic performance benefits of CSPIN over PMIA. We run experiments on Flickr small, and

Portland by setting α = 90%, and k varied from 0.01% to 1% of |V |. Figure 3.7(a,b) shows the

total running times (including the coarsening). Due to lack of space we show only the results for

the trivalency model (the uniform case was similar). In all datasets, as k increases, the running

time of CSPIN increases very slowly. Note that we get orders of magnitude speed-ups: e.g. on

Flickr PMIA takes more than 10 days to find 200+ seeds, while CSPIN runs in 2 minutes.
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Fig. 3.7: Scalability of CSPIN. (a,b) vs k; (c) vs size of graph. CSPIN gets increasing orders-of-magnitude

speed-up over PMIA.

Scalability w.r.t α. We can see that the running time also drops with increased coarsening as seen

in Figure 3.6(c).

Scalability w.r.t n. We ran CSPIN on the components of increasing size of Flickr large with
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k = 1000 and α = 90%. Figure 3.7(c) plots the running times: CSPIN obtains a speed up of

around 250× over PMIA consistently.

3.1.6.3 Application 2: Diffusion Characterization

We now briefly describe how the GCP problem can help in understanding cascade datasets in an

exploratory setting.

Methodology: We used a Flixster dataset, where users can share ratings of movies with friends.

There is a log-file which stores ratings actions by each user: and a cascade is supposed to happen

when a person rates the same movie soon after one of her friends. We use the methodology of [94]

to learn influence probabilities of a IC-model over the edges of the friendship network from the

traces. We then coarsen the resulting directed graph using COARSENET to α = 50%, and study

the formed groups (supernodes). Note that this is in contrast to the approaches where the group

information is supplied by a graph-partitioning algorithm (like METIS), and then a group-based IC

model is learnt. The base network had 55, 918 nodes and 559, 863 edges. The trace-log contained

about 7 million actions over 48, 000 movies. We get 1891 groups after removing groups with only

one node, with mean group size 16.6 with the largest group having 22061 nodes (roughly 40% of

nodes).

Distribution of movies over groups: Figure 3.8 shows the histogram of the # of groups reached

by the movie propagations (following [155], we assume that a movie reaches a group if at least

10% of its nodes rated that movie). We show only the first 100 points of the distribution. We

observe that a very large fraction of movies propagate in a small number of groups. Interestingly

we observe a multi-modal distribution, suggesting movies have multiple scales of spread.

Groups through the lens of surrogates: An important point to note is that our groups may not be

link-based communities: we just ensure that nodes in a group have the same diffusive properties.
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We validated this observation in the previous section (Table 3.3). Hence a natural question is if

groups found in Flixster have any other natural structure (e.g. demographics)—if they do, we can

get a non-network external surrogate for similar diffusive characteristics. Fortunately, the Flixster

does contain a couple of auxiliary features for its users (like ID, Last Login, Age). We calculated

the Mean Absolute Error (MAE) for ‘Age’ inside each group, and compared it with the MAE

across groups. We found that the average MAE inside the group is very small (within 2 years)

compared to a MAE of almost 8 outside, which implies that ages are concentrated within groups

and can act as surrogates for diffusive characteristics.

Note. The material in Section 3.1 has been published in [171]. The authors agree that I made a

significant contribution and may use this work in my thesis.
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3.2 CBAF Algorithm for Approximating kDCP

The goal of this section is to develop our Coarsened Back and Forth (CBAF) algorithm to

approximately compute the top-k diffusion centrality vertices in huge social networks where it is

not feasible to compute DC for all vertices.

Top-k Diffusion Centrality Problem (kDCP). Given a 0 < k < |V |, the top-k diffusion central-

ity problem consists of finding a set T of k vertices of S having the highest DC, i.e. the DC of

every vertex in T is greater than or equal to the DC of every vertex in V − T .

The basic idea is to coarsen the original social network S into a smaller network S ′ which

tries to preserve the “diffusive behavior” of S. The top-k vertices are then computed over S ′ and

the solution is mapped back to a subgraph of S on which we again compute the top-k vertices.

Given a social network S, a GAP Π, and a property p, CBAF performs the following steps:

1. Compute the filtering S ′ of S;

2. Coarsen S ′ by merging its vertices so as to obtain a new social network SC and a mapping

from the vertices of S ′ to the vertices of SC ;

3. Compute a set TC of top-k vertices of SC ;

4. Use TC to compute an approximate set of top-k vertices of S.

The first step has already been described in Section 2.1.4.1, while the other steps will be

detailed in the rest of this section. The notations of the following sections are summurized in

Section Ap.1.4.
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3.2.1 Social Network Coarsening

This section proposes a new semantical coarsening technique that reduces network size by merging

together vertices that are similar, while trying to preserve the structural and semantic properties

of the network w.r.t. a property p. The coarsening process involves the following issues: (i) how

to select “similar” vertices to be merged together, (ii) how to assign properties to a merged vertex

and to its edges after merging, and (iii) how to compute edge weights between merged vertices.

These issues are addressed in the following subsections.

3.2.1.1 Vertex Similarity

CBAF can work with any mechanism to determine whether two vertices are similar. Throughout

this paper, we assume that given any vertex v, there is a set SIM(v) ⊆ V of vertices that are

similar to it. Such a function SIM can obviously be defined in many ways. We provide one

such way of defining SIM that takes the diffusion model for p into account (as well as the social

network structure).

Consider an SN S, a GAP Π, and a property p. Given two vertices u and v of S, we write

u ∼ v iff u and v activate the same set of rules of Π (cf. Section 2.1.4.1 for the the notion of

“activation”). Using this equivalence relation, we define SIMΠ(v) = {u ∈ V | u ∼ v}.

Obviously, many other definitions are also possible, but this is the one used in our experi-

ments.

Consider the social network in Figure 3.9 and the diffusion model Πhiv of Example 2.1.2.2.
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Fig. 3.9: An HIV social network. Shaded vertices denote people with HIV.

The set of vertices that activate rules r1, r2, and r3 are, respectively:

{a, b, c, e, f, g, h, k, l,m, n}

{a, b, c, d, e, f, g, h, k, l,m, n, o, p, q}

{a, b, c, e, f, g, h, k, l,m, n}

Thus, SIMΠ(x) = {a, b, c, e, f, g, h, k, l,m, n} for all x ∈ {a, b, c, e, f, g, h, k, l,m, n} and

SIMΠ(x) = {d, o, p, q} for all x ∈ {d, o, p, q} . Notice that vertices i and j are unnecessary.

3.2.1.2 Vertex Merging

We now define how to merge similar vertices. When a set of vertices is merged into a new vertex

v, we have to specify vertex properties of v, as well as associated edge properties/weights.

Definition 19 (Vertex properties merging). Let S be an SN and {v1, . . . , vn} be a subset of the

vertices of S (to be merged). For each p ∈ VP, let gp : {0, 1}n → {0, 1} be any associative and

commutative function. Then, the new vertex has the set of properties

mergeVP({v1, . . . , vn},VL) = {p ∈ VP | gp(ϑ(v1, p), . . . , ϑ(vn, p)) = 1}
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where ϑ(vi, p) = 1 if p ∈ VL(vi), otherwise ϑ(vi, p) = 0.

The above definition assumes the existence of a function gp that takes the values (0 or 1) of

the p-property of the vertices being merged and combines them into a single 0 or 1 value denoting

whether the merged vertex has property p or not.

Consider the social network shown in Figure 3.9 where the only vertex property is hiv. Some

examples for the function ghiv can be g′hiv(x1, . . . , xn) = min
1≤i≤n

xi, computing the property

intersection, or g′′hiv(x1, . . . , xn) = max
1≤i≤n

xi, computing the property union. Suppose we want

to merge the vertices in the set V ′ = {l,m, n}. If we use g′hiv, the resulting merged vertex

will not have any property as mergeVP(V ′,VL) = ∅, while if we use g′′hiv, the resulting

merged vertex will have the set of properties mergeVP(V ′,VL) = {hiv}. We can also use a

“majority” function where the new vertex has the property p if the majority of the vertices in

V ′ have the property p.

We now address the problem of assigning edges to the new merged vertex. Let S =

(V,E,VL, ω) be an SN and V ′ = {v1, . . . , vn} be a subset of V to be merged into a new ver-

tex v′. For each edge (v, u, ep) ∈ E such that either v ∈ V ′ and u ∈ V \ V ′ or u ∈ V ′ and

v ∈ V \ V ′, the new vertex v′ will have the outgoing edge (v′, u, ep) if v ∈ V ′, or the incoming

edge (v, v′, ep) if u ∈ V ′. For instance, consider the SN in Figure 3.9 and suppose we are merg-

ing vertices e and g into a new vertex e′. Then, the new edges involving vertex e′ are shown in

Figure 3.10.

We now define how to assign a weight to an arbitrary set of edges (having the same label)

in S = (V,E,VL, ω).

Definition 20 (Edge weighting). Let S = (V,E,VL, ω) be an SN and ep ∈ EP. Moreover, let

{e1, . . . , em} ⊆ (V × V × {ep}) be an arbitrary set of edges between vertices in V labeled with
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Fig. 3.10: Social network of Figure 3.9 after merging vertices e and g into vertex e′.

ep, and gep : (0, 1]m → (0, 1] be any associative and commutative function. Then, we define

weight({e1, . . . , em}) = gep(ω
∗(e1), . . . , ω∗(em))

where ω∗(e) = ω(e) if e ∈ E, otherwise ω∗(e) = 0.

Given two sets of vertices V ′ and V ′′ and an edge property ep ∈ EP, we define the set

possEdges(V ′, V ′′, ep) as the set of all possible edges having property ep that can exist from ver-

tices in V ′ to vertices in V ′′, i.e. possEdges(V ′, V ′′, ep) = {(v′, v′′, ep) | v′ ∈ V ′ ∧ v′′ ∈ V ′′}.

Finally, if v′ is a new vertex obtained by merging a set V ′ of vertices and e′ = (v, v′, ep) is a new

incoming edge then its weight is computed as weight(possEdges({v}, V ′, ep)), while, if e′′ =

(v′, v, ep) is a new outgoing edge, then its weight is computed asweight(possEdges(V ′, {v}, ep)).

3.2.1.3 Social Network Coarsening

We are now ready to give the definition of social network coarsening.

Definition 21 (Social network coarsening). Let S = (V,E,VL, ω) be an SN and θ be a real

number in (0, 1] called the contraction factor. A coarsening of S is an SN S ′ = (V ′, E′,VL′, ω′)
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together with an onto mapping π : V → V ′ satisfying the following properties:

• |V ′| ≤ θ · |V |;

• E′ = {〈π(v1), π(v2), ep〉 | 〈v1, v2, ep〉 ∈ E ∧ π(v1) 6= π(v2)};

• VL′(v′) = mergeVP({v ∈ V | π(v) = v′},VL) for each v′ ∈ V ′;

• ω′(e′) = weight(possEdges(π−1(v1), π−1(v2), ep)), for each

e′ = 〈π(v1), π(v2), ep〉 ∈ E′.

Thus, coarsening a social network S yields a new social network S ′ together with a mapping

π from the vertices of S to the vertices of S ′ such that (i) the number of vertices of S ′ is smaller

than that of S by a factor θ; (ii) if there was an edge between two vertices u and v in S, and u has

been merged into a new vertex u′ in S ′ while v has been merged into a new vertex v′ 6= u′ in S ′,

then there is an edge between u′ and v′ in S ′; (iii) the vertex properties of each merged vertex of

S ′ are assigned using function mergeVP ; and (iv) the weights of the edges of S ′ are assigned by

function weight.

Consider an SN S = (V,E,VL, ω) and let S ′ = (V ′, E′,VL′, ω′) and π : V → V ′ be a

coarsening of S. Given V ′′ ⊆ V ′, with a slight abuse of notation, we denote by π−1(V ′′) the set

{v ∈ V | π(v) ∈ V ′′}.
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Algorithm 7 CoarsenSN
Input: A social network S = (V,E,VL, ω), a GAP Π, a contraction factor θ ∈ (0, 1], a similarity function SIM , a

neighbors threshold ρ ∈ (0, 1],

, a vertex properties merging function mergeVP , and an edge weight function.

Output: A coarsening S ′ = (V ′, E′,VL′, ω′) and π : V → V ′ of S.

1: S ′ = (V ′, E′,VL′, ω′) = (V,E,VL, ω);

2: π(v)← v for all v ∈ V ;

3: R← V ′, cont← true;

4: while ((|V ′| > θ · |V |) ∧ cont) do

5: Randomly select a vertex v ∈ R;

6: M ← getMergingSet(v,S ′,Π, SIM, ρ); R← R \ (M ∪ {v});

7: if (M 6= ∅) then

8: VL′(v)← mergeVP({v} ∪M,VL′);

9: π(v′)← v for all v′ ∈ π−1(v); π(v′)← v for all v′ ∈M ;

10: V ′ ← V ′ −M ; 〈E′, ω′〉 ← UpdateEdges(E′, ω′, v,M,weight, π);

11: if (R = ∅) then

12: cont← false;

13: return 〈S ′, π〉;

14:

15: getMergingSet(v,S ′,Π, SIM, ρ)

16: U = all neighbors of vertex v in S ′;

17: U ′ = U ∩ SIM(v);

18: Randomly select a set M ⊆ U ′ of size |M | = ρ · |U ′| ;

19: return M ;

20:

21: updateEdges(E′, ω, v,M,weight, π)

22: E′′ = {〈π(v1), π(v2), ep〉 | 〈v1, v2, ep〉 ∈ E′ ∧ π(v1) 6= π(v2)};

23: for each e′ = 〈π(v1), π(v2), ep〉 ∈ E′′ do

24: ω′(e′)← weight(possEdges(π−1(v1), π−1(v2), ep)) ;

25: return 〈E′′, ω′〉;
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Algorithm 7 is a general algorithm for coarsening a social network. It starts by initializing

the mapping function π as the identity function. In each iteration, a vertex v in the current SN

is randomly selected, and the set of vertices to be merged with it is computed by the function

getMergingSet. This function computes the set U ′ of all v’s neighbors that are similar to v

according to the similarity function SIM received as input, and returns a subset M of U ′ whose

size is a percentage ρ of |U ′|. If the set of vertices M is not empty, vertex v is merged with M ,

otherwise a new vertex v is randomly selected. If v is merged with M , the new vertex properties

of v are computed using the mergeVP function, the mapping π is updated, and the set of edges

is updated by the function UpdateEdges. This function first computes the new set of edges so

that if there was an edge between a vertex in M ∪ {v} and another vertex u, now there is an edge

between v and u, while the new edge weight is computed by using the function weight received

in input. The algorithm’s iterations stop when either the number |V ′| of vertices in the current SN

is less than or equal to θ · |V ′|, where θ is the contraction factor establishing the desired size of the

coarsened network, or it is not possible to merge any other vertex. Of course, Algorithm 7 can be

used with our similarity function SIMΠ.

3.2.2 Adapting the DC Definition to the Coarsened Network

We now adapt diffusion centrality to the case of coarsened networks. This intermediate step will

later be used in the computation of diffusion centrality for vertices of the original network.

When a set of vertices M in the original network S is merged into a single vertex v′ in

the coarsened one, v′ represents the network Sv′ consisting of all vertices in M and all edges

among them from the original network. Thus, even if two vertices v′ and v′′ have the same

diffusion centrality on the coarsened network, the actual diffusion of the property of interest in the

original network among the vertices belonging to Sv′ and Sv′′ may be different and depends on
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the properties of the two subnetworks Sv′ and Sv′′ (number of vertices, edges, density, etc.). To

take this into account, we assign a weight to each vertex v′ in the coarsened network representing

the importance of vertex v′ w.r.t. to the original network.

Definition 22 (Diffusion centrality on a coarsened network). Let S be a social network, SC =

(VC , EC ,VLC , ωC) be a coarsening of S with vertex mapping π, andmvw be a function assigning

a weight to each vertex in VC . Then, the diffusion centrality of a vertex v in the coarsened SN is

defined as

dc′Π,p,SC (v) = Σv′∈VC−{v}
(
mvw(v′) · lfp(Π ∪ΠSC⊕p(v))(p(v

′))
)
−

Σv′′∈VC−{v}
(
mvw(v′′) · lfp(Π ∪ΠSC	p(v))(p(v

′′))
)

Function mvw, which we call merged vertex weight function, can be defined in several

ways. Below we provide three alternative definitions. Consider an SN S = (V,E,VL, ω), and let

SC and π be a coarsening of S. Given a vertex v of SC ,

• mvw0(v) = 1. In this case, the original definition of DC is used.

• mvw1(v) = |Vv| × |Ev |
|Vv |2−|Vv | = |Ev |

|Vv |−1 ,

where Vv = π−1({v}) and Ev = {〈v1, v2, ep〉 | v1, v2 ∈ Vv ∧ 〈v1, v2, ep〉 ∈ E}. In

this case, the weight of v is given by the number of vertices in the original SN that were

merged to form v multiplied by the density of the (sub)network Sv represented by v. The

idea behind this is that if Sv has high density and many vertices, the weight of v should be

high.

• mvw2(v) = ln(mvw1(v)) + 1.

Here, we consider the fact that the diffusion of the property p can rapidly decrease according

to the distance of vertices in Vv from the diffusion source vertex v. Thus, mvw2(v) reduces

the effect of mvw1(v) on the diffusion centrality by taking its natural log plus 1.
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Algorithm 8 CBAF (Approximate Top-k)
Input: An SN S = (V,E,VL, ω), a GAP Π, a property p, an integer k,

a set of options opts as described in Table 3.4.

Output: An approximate set of top-k vertices.

1: S ′ = (V ′, E′,VL′, ω′)← networkF iltering(S,Π, p)

2: 〈SC = (VC , EC ,VLC , ωC), π〉 ← CoarsenSN(S ′,Π, opts)

3: TC ← computeTopK(SC , k,mvw) % Use HyperDC

4: TC = TC ∪ nbrs(TC , dC ,SC)

5: VI = π−1(TC) ∪ nbrs(π−1(TC), dI ,S)

6: SI = (VI , EI ,VLI , ωI)← SN induced from S by the vertices in VI

7: return computeTopK(SI , k,mvw0)

3.2.3 CBAF: Approximately Solving the kDCP Problem

In this subsection we show how to approximately compute the top-k diffusion centrality vertices

in a social network S = (V,E,VL, ω). First, we introduce some definitions.

Definition 23 (Induced social network). Given an SN S = (V,E,VL, ω), the SN induced from S

by a set of vertices VI ⊆ V is SI = (VI , EI ,VLI , ωI), where EI = {〈v1, v2, ep〉 | 〈v1, v2, ep〉 ∈

E ∧ v1, v2 ∈ VI}, VLI(v) = VL(v) for all v ∈ VI , and ωI(e) = ω(e) for all e ∈ EI .

Given an SN S = (V,E,VL, ω), a set of vertices T ⊆ V , and a positive integer d, we

denote by nbrs(T, d,S) the set of the neighbors of the vertices in T at distance at most d. If

d = 0, then nbrs(T, d,S) = ∅.
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θ ∈ (0, 1] contraction factor mvw merged vertex weight function

SIM similarity function dC neighbors distance for extending

ρ ∈ (0, 1] neighbors threshold the set TC

mergeVP vertex properties merging function dI neighbors distance for extending

weight edge weight function the set π−1(TC)

Tab. 3.4: Input options opts for Algoritm 8.

We are now ready to present our CBAF algorithm shown in Algorithm 8. CBAF takes

as input a social network S , a GAP Π, a property p, an integer k, and a set of options opts as

described in Table 3.4. It returns an (approximate) set of top-k diffusion centrality vertices over S.

The first step of the algorithm filters out the original SN S by removing all unnecessary vertices,

obtaining the network S ′ (line 1). Then S ′ is coarsened into a smaller social network SC (line 2),

and the exact set TC of top-k vertices over SC is computed (line 3) by running HyperDC to find

the diffusion centrality of all vertices in S ′ and choosing the top-k. At this point the set TC is

extended with its neighbors in SC at distance at most dC so that the following computation is not

biased by the vertices in TC (line 4). Next, the above set of vertices is mapped back to the vertices

of the original SN S and is extended with its neighbors on S at distance at most dI obtaining the

set of vertices VI (line 5). After that, the social network SI induced from the vertices in VI on

S is computed (line 6), and the algorithm returns the approximate set of top-k vertices over S as

the exact set of top-k diffusion centrality vertices computed over SI (line 7). Note that CBAF first

evaluates diffusion centrality of all vertices in the coarsened network S ′ (which is typically small)

and then diffusion centrality of all vertices in a subgraph of the original network corresponding to

the neighborhood of vertices associated with the solution found in line 3 of the CBAF algorithm.

This is typically a small fraction of the vertices in the original social network S.
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3.2.4 CBAF Algorithm: Performance Experiments

We implemented CBAF (Algorithm 8) in Java and tested scalability, runtime, and spread of CBAF

with networks of up to 2M vertices and 20M edges (Section 3.2.4). In this section, we describe

experiments we performed to compare CBAF with HyperDC in terms of both runtime and spread.

Simply put, these experiments show that CBAF almost always achieves the same spread as Hy-

perDC with a runtime that is always lower (with the correct choice of settings) than HyperDC—

moreover, sometimes it takes less than half the runtime of HyperDC.

Input Options for CBAF. There are a number of input options for CBAF that influence its per-

formance. In order to find the best possible input options, we ran extensive experiments in which

1944 different candidate option sets were considered. The three option sets that achieved a good

balance between runtime and spread are reported in Table 3.5—these were the options we used in

our experiments with CBAF.

label dC dI weight mergeVP mvw ρ

OP1 1 0 max majority mvw1 1.0

OP2 1 0 max intersect mvw1 1.0

OP3 1 0 average majority mvw0 1.0

Tab. 3.5: Best Input Options for CBAF

In all experiments, we used the vertex similarity function SIMΠ defined earlier. The con-

traction factor θ was chosen from the set {0.2, 0.3, 0.4}.

CBAF Evaluation Measures. We used two measures to evaluate CBAF. The time ratio is simply

the ratio of time taken by CBAF vs. HyperDC. The spread ratio is the ratio of spread according to

CBAF (assuming the top-k vertices have property p) vs. that according to HyperDC.

107



We experimentally compared HyperDC and CBAF over 4 datasets — these included the

two largest STEAM networks (GAME420 with 1.3M vertices and 12.43M edges, GAME220 with

2.03M vertices and 20.59M edges) and the 2 largest non-game social networks (Email-Eu and

Douban) together with the Flickr, Jackson-Yariv, and SIR diffusion models. In all the experiments

we set δp = 0 and δq = 5%.

Tables 3.6 and 3.7 show the experimental comparisons between CBAF and HyperDC over

the Email-Eu and Douban networks, using the options of Table 3.5, with k = 100, and θ ∈

{0.4, 0.3, 0.2}.

For the huge networks GAME420 and GAME220 we ran the experiments with θ = 0.4 and

k ∈ {0.01%, 0.05%, 0.10%}. In Table 3.8 we present the results only for the network GAME220,

which is the largest one, because the results for GAME420 are quite similar to the ones for the

GAME220 network.

Runtime. We note that option OP3 consistently yields the fastest runtimes for CBAF. The time

ratios are always less than one in all networks and for all diffusion models with the exception of

the Jackson-Yariv model in the huge networks with k = 0.10%. In particular, on the Douban

network with the SIR model the time ratio is less than 50%, while delivering an almost perfect

spread ratio of 0.99. On the Email-Eu network using the Jackson-Yariv model, it runs in just over

50% of the time taken by HyperDC. On the huge GAME220 network using the Flickr model it

runs in under 60% of the time taken by HyperDC. CBAF does not work well for the Jackson-Yariv

model in the two huge networks because of the high average degree of these networks.

Spread. In all cases, all three options yield approximately the same spread. In the huge networks

and the Douban network, the spread ratio is always close to one. On the Email-Eu network,

the spreads range from 0.8-0.9 for the Jackson-Yariv and SIR models. However, for the Flickr

model, the spread is lower, mostly in the 0.6-0.7 range. The reason for this is that the Email-Eu
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network has a very low average degree which leads to merged vertices (in the coarsened networks)

representing only small sets of vertices of the original network so that the induced network is small

and not representative enough to compute approximate top-k vertices well.

Summary of Experiments. We compares HyperDC with CBAF. We show that CBAF almost

always achieves the same spread as HyperDC with a runtime that is always lower (with the correct

choice of settings) than HyperDC - moreover, sometimes, it takes less than half the runtime of

HyperDC.
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Tab. 3.6: Results over the Douban network.

Model Option set θ ratiotime ratiospread

Flickr OP1 0.4 0.67 0.96

0.3 0.68 0.96

0.2 0.74 0.96

OP2 0.4 0.70 0.94

0.3 0.69 0.94

0.2 0.70 0.94

OP3 0.4 0.63 0.96

0.3 0.62 0.97

0.2 0.64 0.97

JY OP1 0.4 1.04 0.93

0.3 1.00 0.93

0.2 1.12 0.93

OP2 0.4 1.00 0.98

0.3 1.03 0.98

0.2 1.04 0.98

OP3 0.4 0.93 0.93

0.3 0.91 0.94

0.2 0.91 0.94

SIR OP1 0.4 0.79 1.00

0.3 0.81 1.00

0.2 0.81 1.00

OP2 0.4 0.79 1.00

0.3 0.81 1.00

0.2 0.82 1.00

OP3 0.4 0.46 0.99

0.3 0.48 0.99

0.2 0.47 0.99
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Tab. 3.7: Results over the Email-eu network.

Model Option set θ ratiotime ratiospread

Flickr OP1 0.4 1.27 0.69

0.3 1.26 0.63

0.2 1.37 0.64

OP2 0.4 1.16 0.61

0.3 1.17 0.57

0.2 1.19 0.59

OP3 0.4 0.83 0.61

0.3 0.82 0.67

0.2 0.83 0.62

JY OP1 0.4 0.72 0.82

0.3 0.77 0.81

0.2 0.73 0.81

OP2 0.4 0.63 0.82

0.3 0.68 0.82

0.2 0.66 0.83

OP3 0.4 0.52 0.82

0.3 0.55 0.82

0.2 0.66 0.83

SIR OP1 0.4 0.93 0.90

0.3 0.85 0.91

0.2 0.88 0.88

OP2 0.4 0.69 0.91

0.3 0.72 0.91

0.2 0.72 0.92

OP3 0.4 0.72 0.90

0.3 0.76 0.89

0.2 0.76 0.91
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Tab. 3.8: Results over the GAME220 network.

Model k (|seeds|/|V |) Option set ratiotime ratiospread

Flickr 0.01% OP1 0.61 0.98

OP2 0.70 0.98

OP3 0.52 0.99

0.05% OP1 0.69 0.97

OP2 0.76 0.99

OP3 0.45 0.99

0.10% OP1 0.60 0.99

OP2 0.85 0.99

OP3 0.60 0.94

JY 0.01% OP1 1.09 0.98

OP2 1.10 0.97

OP3 0.95 0.97

0.05% OP1 1.25 0.99

OP2 1.11 0.98

OP3 0.95 1.00

0.10% OP1 1.18 0.95

OP2 1.19 0.98

OP3 1.04 1.00

SIR 0.01% OP1 0.96 0.97

OP2 1.13 1.02

OP3 0.66 0.97

0.05% OP1 1.19 1.00

OP2 1.23 0.99

OP3 0.72 0.98

0.10% OP1 1.05 0.98

OP2 1.07 0.98

OP3 0.64 1.00
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3.3 Related Work

The idea of coarsening a network for some task is not new, and has been used extensively in

the popular community detection techniques (METIS [125] and GRACLUS [69]): nevertheless,

they use different metrics for coarsening like cut-based, flow-based or heavy-edge matching-based

conditions. In contrast we study diffusion-based metrics, and do not aim to find communities.

The related problem of graph sparsification has also been well studied in the theory com-

munity under the notion of “spanners” [75]. A spanner is a sparse subgraph that maintains the

pairwise distances between all nodes within a multiplicative or additive factor. Fung et al. [84]

study the cut-sparsifier problem which asks for a sparse weighted subgraph such that the weight of

all cuts is maintained within a small multiplicative factor. Graph sparsification for influence anal-

ysis has emerged as a new tool for analyzing large networks. Mathioudakis et al. [151] propose

an algorithm to find the sparse backbone of an influence network. The major difference is that

graph sparsification removes edges (so the nodes stay the same), while we coarsen and contract

node-pairs to reduce the graph. Another line of very recent work [155] tries to learn influence

models at community-scale, using groups supplied by graph-partitioning algorithms like METIS.

Our work is related in the sense that we also aim to ‘group’ nodes, but not based on link-based

communities, instead automatically based on nodes’ diffusion characteristics. In that sense we

believe our work provides a complementary viewpoint: learn models directly at the node level,

and then try to group them appropriately automatically.

The rest of the related work can be categorized into Epidemic Thresholds, Influence Maxi-

mization, Other Optimization problems, and General Information Diffusion.

Epidemic Thresholds. The classical texts on epidemic models and analysis are May and An-

derson [11] and Hethcote [111]. Much research in virus propagation focuses on the so-called
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epidemic threshold, i.e. determining the conditions under which an epidemic will not break

out. Widely-studied epidemiological models include homogeneous models [17, 154, 11] which

assume that every individual has equal contact with others in the population. While earlier

works [130, 168] focus on some specific types of graph structure (e.g., random graphs, power-

law graphs, etc), Chakrabarti et al. [50] and Ganesh et al. [88] found that, for the flu-like SIS

model, the epidemic threshold for any arbitrary graph depends on the leading eigenvalue of the

adjacency matrix of the graph. Prakash et al. [169] further extended the result to a broad class of

epidemic models.

Influence Maximization: The influence maximization problem was introduced by Domingos and

Richardson [174]. Kempe et al. [127] formulated it as a combinatorial optimization problem under

the Independent Cascade Model, proved it is NP-Hard and gave a simple 1 − 1/e approximation

based on the submodularity of expected spread of a set of starting seeds. Numerous follow-up

papers have looked at speeding-up the algorithm (e.g., [143, 97, 53, 133, 54]).

Other Optimization Problems. Another related problem is immunization, i.e, the problem of

finding the best vertices for removal to stop an epidemic, with effective immunization strategies

for static and dynamic graphs [109, 196, 38]. Other such problems where we wish to select a

subset of ‘important’ vertices on graphs, include ‘outbreak detection’ [143] and finding most-

likely starting points (‘culprits’) of epidemics [142, 170].

General Information Diffusion. There is a lot of research interest in studying dynamic processes

on large graphs, (a) blogs and propagations [101, 137, 127], (b) information cascades [27, 91, 98]

and (c) marketing and product penetration [176]. These dynamic processes are all closely related

to virus propagation. General algorithms for information diffusion based optimization include

[184].
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3.4 Conclusions

We propose influence-based coarsening as a fundamental operation in the analysis of diffusive

processes in large networks. Based on the connections between influence spread and spectral

properties of the graph, we propose a novel Graph Coarsening Problem and provide an effec-

tive and efficient heuristic called COARSENET. By carefully reweighting the edges after each

coarsening step, COARSENET attempts to find a succinct representation of the original network

which preserves important diffusive properties. We then describe the CSPIN framework to solve

influence maximization problems on large networks using our coarsening strategy. Experimental

results show that CSPIN indeed outperforms traditional approaches by providing high quality so-

lutions in a fraction of the time. Finally we show that our COARSENET framework can also be

used for examining cascade datasets in an exploratory setting. We observe that in our case study

the nodes merged together form meaningful communities in the sense of having similar diffusive

properties which can serve as surrogates using external demographic information.

In addition, we present a very novel (but approximate) Coarsening Back and Forth (CBAF)

algorithm that allows us to take a huge social network, reduce it to a manageable size, solve the

problem of finding the top-k vertices on the coarsened network, and then pull the results back

onto the original. We conduct a very detailed experimental study on several real-world social

networks. The experiments looks at the scalability of CBAF, showing that it almost always has a

lower runtime than HyperDC, while achieving high spreads. In particular, CBAF was tested on

networks with over 2M vertices and over 20M edges and achieved acceptable runtime.
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Chapter 4: STUN:Querying Spatio-Temporal Uncertain (Social) Networks 1

4.1 Introduction

There are now numerous ongoing efforts to infer spatial, temporal, and other properties of social

networks. Fig. 4.1 shows a small example of a Facebook style graph that represents various friend

relationships, organized relationships showing who organized a particular event, and attended

relationships showing who attended certain events. In such applications, edge relationships can

be quantified via three types of labels characterizing the relationship. Uncertainty arises when

applications infer edges from Facebook style social networks, e.g. inferring whether A and B

are friends by analyzing the original Facebook friend relationship. Time arises even in original

Facebook friend relationships where the friendship begins at a certain time and may end at a

certain time. Space arises when applications infer the location of an individual or an event which

has a Facebook page.

The friend edge in Fig. 4.1 from Jon to Liz labeled (1, [1, 20]) says that Jon friended Liz at

time 1 upto time 20 (current time) and the certainty that the friendship exists is 1. The friend

edge from Jim to Ed labeled (0.7, [10, 20]) on the other hand may be an inferred friendship

link saying Jim is a friend of Ed with 70% certainty and the friendship is believed to have

started at time 10 and continued to the current time (20).

1 The material appearing in the chapter is based on the paper “STUN:Querying Spatio-Temporal Uncertain (Social)

Networks” [?]
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Fig. 4.1: A STUN knowledge base. The region for all friend edges is S

In this chapter, we present the theoretical framework underlying Spatio-Temporal Uncer-

tain Networks (STUN), together with prototype algorithms, index structures, and a system that

supports some (but certainly not all) aspects of spatio-temporal uncertainty in networks. First

we formally define STUN knowledge bases and their semantics in Section 4.2. Section 4.3 de-

fines STUN subgraph matching queries and answers. Section 4.4 describes an index structure

and a query processing algorithm that uses that index structure in order to process STUN sub-

graph matching queries. The index hierarchically decomposes the network as well as space-time

simultaneously and the query processing algorithm uses this index to effectively prune search.

Section 4.5 introduces STUN ranking queries which attempts to identify important nodes in a

STUN network, extending the well-known PageRank algorithm. In Section 4.6 we provide spe-

cific proposals for applying certainty, time, and space to ranking queries. Finally, Section 4.7

describes our prototype implementation, together with experiments showing the scalability of our

approach.
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4.2 STUN Syntax and Semantics

STUN manipulates graph data consisting of a set of vertices, and a set of labeled edges. These

are then augmented with certainty, space, and time attributes. Thus in Figure 4.1 the individuals

and parties are the vertices and the types of links, namely friend, organized and attended are

the labels. Formally, we write V for the set of vertices and L for the set of labels, with V ∩L = ∅.

Let SNT be a set of triples of the form (v, l, v′), where v, v′ ∈ V and l ∈ L.

In our STUN framework we add uncertainty, space, and time information to such triples.

Uncertainty is added by the use of a certainty factor c ∈ [0, 1] for each triple to form a STUN

quadruple (v, l, v′; c). For example, the quadruple (jim, friend, ed; 0.7) represents the informa-

tion that “Jim” is a friend of “Ed” with certainty 0.7.

We provide spatial information in terms of regions. We assume the existence of a spatial

reference system S ⊆ [0,M ]× [0, N ], withM,N ∈ R that contains a set of two-dimensional real-

valued points. A space point is a member of S that represents an exact position in the reference

system. A region is a set of space points in the reference system that is not necessarily connected.

We use R for the set of regions. Throughout this paper, and in any realistic system, we assume

that regions are “named” and that the names are used rather than the corresponding sets of points.

We provide time information in terms of time intervals. We assume the existence of a

temporal reference system T that is a set of non-negative real numbers. A time point is a member

of T that represents an exact time in the reference system. An interval is a pair [st, et], with

st, et ∈ T and st ≤ et, that expresses a specific period in the reference system. Given a time

interval T = [st, et], we write |T | for et− st and t ∈ T iff st ≤ t ≤ et.

We represent spatial and temporal information as a pair, written [R, T ], called a STUN

annotation, where R is a region (or region name) and T is a time interval. Thus we will annotate
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each STUN quadruple with its corresponding spatial and temporal attributes. In Fig. 4.1, we use

the STUN-annotation [Bethesda, (15, 15)] to denote that “Phil” organized “Party2” at time 15 in

the region named “Bethesda”.

Definition 24 (STUN Tuple). A STUN tuple is an expression of the form (v, l, v′; c) : [R, T ] where

(v, l, v′; c) is a STUN quadruple and [R, T ] is a STUN annotation.

The STUN tuple (Phil,organized, Party2; 1) : [Bethesda, (15, 15)] says that “Phil” orga-

nized “Party2” with certainty 1 and the event occurred at time 15 at some location within the

region “Bethesda”, but we do not know exactly where.

A STUN knowledge base KB is a finite set of STUN tuples. A graph representation of an

example STUN knowledge base is shown in Fig. 4.1. Note that for convenience, in Fig. 4.1 for the

organized and attended links we indicate the certainty factor, region, and time interval; while

for friend links we indicate the certainty and time interval only; the region is taken to be S.

Next we move to the STUN semantics. There are two key concepts. An interpretation

assigns a real number between 0 and 1 to every triple in SNT for every point in space and time. An

interpretation satisfies a STUN tuple if it assigns a large enough certainty value to a STUN tuple

for the given region and interval. Formally, a STUN interpretation I is a mapping SNT×S×T→

[0, 1]. I satisfies a STUN tuple (snt; c) : [R, T ] iff ∀t ∈ T , ∃p ∈ R such that I(snt, p, t) ≥ c.

Thus we require that for every time value in the interval, there is a point in the region for which

the interpretation assigns a value at least as big as c to the triple. A STUN knowledge base is

consistent if there is an interpretation that satisfies all its STUN tuples.

It should be noted that, as things stand, using this semantics makes every STUN knowledge

base consistent because the interpretation that maps everything to 1 satisfies all the STUN tuples.

In order to make the concept of consistency correspond better to real-world situations, we may
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introduce integrity constraints.

As in this chapter we do not deal with consistency checking, we do not define a formal

syntax for STUN integrity constraints. We just indicate what such a constraint might look like

applying a logic formalism to the STUN knowledge base of Fig. 4.1. Here the notation ← F

indicates that formula F is not allowed to hold in a STUN interpretation.

Consider first

← (v, `, v′; c) : [R, T ], (v, `, v′; c′) : [R, T ], c < c′.

This integrity constraint states that there cannot be two links that are identical in all respects except

that the certainty values are different.

Next, consider that all organized labels going to the same vertex have the same time inter-

val. As an integrity constraint we can write this as

← (v,organized, v′′; c) : [R, T ],

(v′,organized v′′; c′) : [R′, T ′],

T 6= T ′, c > 0, c′ > 0.

A similar constraint holds for the attended labels as well as for regions. However, the corre-

sponding constraint for friend

← (v, friend v′′; c) : [R, T ],

(v′, friend v′′; c′) : [R′, T ′],

T 6= T ′, c > 0, c′ > 0.

does not hold for v = “Kai” v′ = “Pam”, v” = “Mia”, c = 0.7, c′ = 0.3, R = R′ = S,

T = [5, 10], and T ′ = [10, 20].
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4.3 STUN Subgraph Matching Queries

Using a STUN knowledge base involves asking queries. For this purpose we need to define the

syntax of such queries. In this section we deal with queries that match subgraphs. Recall first that

the STUN syntax already contains the set of vertices: V , labels: L, regions: R, and intervals: I.

These are the domains of interest: D = {V,L,R, I} where R = 2S and I = {[st, et] | st, et ∈

T, st ≤ et}. The elements of these domains are the constants. For each domain σ ∈ D we

assume the existence of a set VARσ of variables ranging over σ. Variables are expressed by strings

beginning with “?”. We denote the set of all variables as VAR. A term is a member of
⋃
σ∈D

σ∪VAR,

that is, a term is a constant or variable.

For queries that specify spatial and temporal constraints we need a set of predicate symbols.

Queries need the capability of expressing spatial concepts such as “inside” and temporal con-

cepts such as “after”. We assume the existence of a set P of predicate symbols representing spa-

tio/temporal relationships. Each predicate symbol ps ∈ P has an associated arity, arity(ps) ∈ N,

a signature sign(ps) =< σ1, . . . , σn > with arity(ps) = n such that ∀i ∈ [1, n] σi ∈ D, and a

denotation den(ps) ⊆ σ1 × · · · × σn.

For example, the current prototype STUN system supports the spatial predicates inside,

overlap, intersect, equal, and disjoint, and the temporal predicates after, before, overlap, and

during. For the inside predicate, we have arity(inside) = 2, sign(inside) = < R,R >,

den(inside) = {(r, s)} where the region r is inside the region s.

A STUN SM-query is a subgraph matching query which is formally composed of two parts:

the graph part and the constraint part. For the graph part we define the concept of an SM-query

graph tuple as a STUN tuple where a variable may be used for each element. Formally, an SM-

query graph tuple has the form (v, l, v′; c) : [R, T ] where v, v′ ∈ V ∪ VARV , l ∈ L ∪ VARL,
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c ∈ [0, 1], R ∈ VARR, and T ∈ VARI . An SM-query constraint is an expression of the form

ps(t1, . . . , tn) where ps ∈ P, arity(ps) = n, sign(ps) = {σ1, . . . , σn}, and ∀i ∈ [1, n] ti ∈

σi∪VARσi . Thus an SM-query constraint applies one spatial or temporal predicate. An SM-query

constraint is ground iff none of its terms are in VAR. A ground SM-query constraint ps(t1, . . . , tn)

is true iff (t1, . . . , tn) ∈ den(ps).

Next we define the concept of a STUN SM-query and query answer.

Definition 25 (STUN SM-Query). A STUN SM-query q is a pair (Gq, Cq) where Gq is a set of

SM-query graph tuples and Cq is a set of SM-query constraints.

The output variables of an SM-query may be just a subset of those present in the query. To

clarify this issue we underline the names of the variables that are required to be in the output.

We write two SM-queries in graph form in Fig. 4.2. The one on top asks for all people ?I

who attended a party in Maryland at timepoint 5, with certainty at least 0.5. This query can

be written as the STUN SM-query q = (Gq, Cq), where Gq = {(?I, attended, ?P ; 0.5) :

[?s, ?t]} and Cq = {inside(?s,Maryland), during(?t, [5, 5])}. The second query is more

?I?P

0.5; ?s,?t inside(?s, Maryland)

during(?t,[5,5])

Phil?P

?I

Jim

inside(?s1,Maryland)

during(?t1,[0,20])

during(?t2,[10,20])

0.9; ?s2,?t2 1; ?s1,?t1

1; ?s1,?t1

0.6; ?s2,?t2

1; ?s1,?t1

Fig. 4.2: Examples of STUN SM-queries
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complicated. It asks for all people ?I who have been a friend of Jim in the time interval [10, 20]

with certainty at least 0.9 as well as a friend of Phil in the same time interval with certainty

at least 0.6 and who attended a party in Maryland organized by Phil that occurred during the

time interval [0, 20] and was attended by Jim. This query can be written as q = (Gq, Cq),

where Gq = {(?I , attended, ?P ; 1.0) : [?s1, ?t1]), (?I , friend, Jim; 0.9) : [?s2, ?t2]),

(Jim, attended, ?P ; 1.0) : [?s1, ?t1]), (?I , friend, Phil; 0.6) : [?s2, ?t2]), (Phil, orga-

nized, ?P ; 1.0) : [?s1, ?t1])} and Cq = {inside(?s1,Maryland), during(?t1, [0, 20]),

during(?t2, [10, 20])}.

To define the concept of an answer to a STUN SM-query we start with substitutions. A

substitution θ maps variables to ground terms and each ground term to itself.

Possible substitutions for the first query of Example 4.3 are:

• θ1 = {?I/“Jon”, ?P/“Party1”, ?s/“Maryland”, ?t/[5, 5]};

• θ2 = {?I/“Sam”, ?P/“Party1”, ?s/“Maryland”, ?t/[5, 5]};

• θ3 = {?I/“Sam”, ?P/“Party1”, ?s/“Potomac”, ?t/[10, 15]};

• θ4 = {?I/“Ana”, ?P/“Sue”, ?s/“Maryland”, ?t/[5, 5]}.

For the second query we could have:

• θ5 = {?I/“Mia”, ?P/“Party2”, ?s1/“Bethesda”, ?t1/[15, 15], ?s2/“Bethesda”, ?t2/[1, 20]};

• θ6 = {?I/“Mia”, ?P/“Sue”, ?s1/“Bethesda”, ?t1/[15, 15], ?s2/“Bethesda”, ?t2/[1, 20]}.

We denote the application of θ to a term x as xθ. Likewise, we denote the application of θ

to all of the terms appearing in an expression X as Xθ.

Definition 26 (STUN SM-Query Answer). A substitution θ is an answer to a STUN SM-query

q = (Gq, Cq) w.r.t. a STUN knowledge base KB iff

123



• ∀(v, l, v′; c) : [R, T ] ∈ Gq, ∃c′ ≥ c s.t. (vθ, lθ, v′θ; c′) : [Rθ, Tθ] ∈ KB, and

•
∧

cq∈Cq
cqθ is true.

Substitutions θ1 and θ2 of Example 4.3 are answers to the first query of Example 4.3, whereas

θ3 and θ4 are not. Likewise, θ5 is an answer to the second query, and θ6 is not.

4.4 Indexing and SM-Query Answering

In order to efficiently answer SM-queries we use an index that exploits the type of information

stored in a STUN knowledge base. This section gives the details of the indexing algorithm and

how it is used to answer SM-queries. The STUN index is a tree each of whose nodes occupies a

disk page and represents a portion of the STUN knowledge base (i.e., of the corresponding graph).

In addition, each inner node “captures” the subgraph represented by its two children. Each level

of the index tree represents a partition not only of the whole graph, but also a partition of the

entire spatial reference system S and the entire temporal reference system T. The latter two are

induced by the graph partition. Before describing these in detail, we need to introduce the notions

of k-merges of a graph, and minimal bounding rectangles (and time intervals).

In a k-merge, multiple graphs are mapped into a new graph containing at most k vertices –

every vertex (resp. edge) in the “merged” graph represents one or more vertices (resp. edges) in the

original graph. Let G = (V,E) be a graph. Consider graphs Gi = (Vi, Ei), with i ∈ [1, f ], such

that for all i ∈ [1, f ] Vi ⊆ V , k ≤ maxi∈[1,f ](|Vi|, and Ei ⊆ E. The k-merge of G1, G2, . . . , Gf

w.r.t. G is a graph Gm = (Vm, Em) such that (i) |Vm| = k; (ii) there is a merge mapping

µ :
⋃
i∈[1,f ] Vi → Vm (given a vertex v ∈ Vm, we call the vertices which are mapped to v the

represented vertices of v, rep(v) = {v′ ∈
⋃
i∈[1,f ] Vi | µ(v′) = v}), and (iii) em = (v1, v2) ∈ Em

iff ∃v′1 ∈ rep(v1), v′2 ∈ rep(v2) such that e = (v′1, v
′
2) ∈ E.
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Graph GL associated with the left child L of the root of the tree in Fig. 4.3 is a 3-merge of

graphs G1, G2 associated with the children of L. In particular, (i) vertex 1 of GL represents

vertex 1 of G1, (ii) vertex 2 of GL represents vertices 2 of G1 and 1 of G2, and (iii) vertex 3

of GL represents vertices 3 of G1 and 2, and3 of G2.

In order to handle space and time we use the well known notion of minimum bounding rect-

angles (MBRs) of space regions and define minimum bounding intervals (MBIs) of time intervals.

The MBR of a region R is a quadruple MBR(R) = (min(X),max(X),min(Y ),max(Y ))

whereX = {x|(x, y) ∈ R} and Y = {y|(x, y) ∈ R}.2 The minimal bounding interval (MBI) of a

set of time intervals TI is the time interval MBI(TI) = [st, et] where st = min({st′|[st′, et′] ∈

TI}) and et = max({et′|[st′, et′] ∈ TI}).

Each of the nodes in a STUN index tree represents a subgraph KB′ of KB. We employ a

vertex- and edge-weighted undirected graph for representing KB′, denoted WUG(KB′), where

• the set of vertices is that of KB′;

• two vertices have at most 1 edge connecting them;

• there is an edge between two vertices iff there is at least 1 edge between them in KB′;

• each edge e is annotated with an MBR (denoted e[MBR]) and an MBI (e[MBI]).

The notion of k-merge is straightforwardly extended to this kind of graph. For instance, theWUG

associated with the leftmost left node of the tree in Fig. 4.3 is shown below it – vertices “Ed” and

“Party1” are mapped to node 1 in the leftmost inner node.
2 Given a set of MBRs M , MBR(M) = (min(X),max(X),min(Y ),max(Y )) where X =

{x|(x,MX,mY,MY ) ∈ M} ∪ {x|(mX,x,mY,MY ) ∈ M} and Y = {y|(mX,MX, y,MY ) ∈ M} ∪

{y|(mX,MX,mY, y) ∈M}.
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Merge mapping
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are labeled with their MBIs.[5,5]

[15,20]
[5,5]

[1,20]
[10,18]

[10,20]

[10,12]

[10,12]

[10,12]

[5,20]

[1,20]

[10,12]

[10,20]

[10,18]

[1,20] [10,20]

[1,20]

[1,20]
[10,20]

Jon Liz

Ed Party1 Party3

Ana Tim

Sam

Jim

Kai Mia

Party2

Sue

Pat Pam

Phil

LGL

G1
G2

Fig. 4.3: STUN index for the knowledge base in Fig. 4.1

Definition 27 (STUN Index). Given a STUN knowledge base KB, a STUN index IKB of order

k (k ≥ 2) is a balanced tree such that:

• Each node occupies a disk page and represents a subgraph of KB (by storing its WUG).

• The graphs at leaf nodes represent a vertex partition of WUG(KB).

• If nodeN is the parent of nodesN1, N2, . . . , Nf , then the graphGN at nodeN is a k-merge

of the graphs GN1 , GN2 , . . . , GNf w.r.t. WUG(KB).

• For each node N , N [MBR] (resp. N [MBI]) is the MBR (MBI) of the regions (intervals)

associated with the STUN tuples in the subgraph of KB represented by GN .

Fig. 4.3 shows a STUN index of order 3 with f = 2. For clarity, the figure shows only the left

subtree of the root in detail. In particular, the figure shows the merge mappings, the MBIs of

leaf and inner nodes, and the MBIs of subgraph edges.
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The tree structure of the STUN index is similar to that of DOGMA [40]. However, when

building a STUN index, we wish to maximize the “quality” of the graph partitions represented

by each level of the index tree by also taking into account the spatio-temporal annotations on the

STUN tuples. In principle, each index node should represent a subset of the STUN graph that has

(i) few cross edges with the subgraphs in other nodes at the same level; (ii) small overlap with the

regions in the subgraphs in other nodes at the same level; (iii) small overlap with the time intervals

in the subgraphs in other nodes at the same level.

Fig. 4.4 shows the buildSTUNIndex algorithm that, given a STUN knowledge base KB,

builds a STUN index IKB . Lines 1–7 build the initial WUG that represents KB. Vertex weights

are initialized to 1 (line 3). Edge weights are initialized by means of any suitable distance function

δ that measures the spatio-temporal distance between two neighbor vertices (line 5). The MBR

(resp., MBI) associated with each edge e = (v, v′) of the WUG is computed by looking at the

regions (resp., intervals) of the STUN tuples connecting v and v′ in KB (lines 6–7). Lines 8–11

iteratively apply Algorithm coarsenGraph which builds a new, smaller WUG along with an ap-

propriate vertex mapping µ (allWUG’s and µ’s are considered global variables of the algorithms).

The iteration ends when the current WUG is small enough to be stored (together with the vertex

mapping) on a single disk page. Finally, on lines 12–14 the STUN index is built and returned, by

applying Algorithm buildTree on the empty root of the index tree and the coarsest WUG.

Procedure coarsenGraph starts by building a copyG′ of the given graphG and an identity

merge mapping between the two (lines 1–2). Then, until the size of G′ becomes half of that of G,

the procedure repeatedly chooses two vertices v,m of G′ and merges v into m. Vertex v is chosen

at random and m is its closest neighbor in terms of edge weight (ties are broken at random). The

edge between v and m is denoted as g. First, the procedures adds the vertex weight of v to that of

m (line 7). We then consider two cases: (1) v has neighbors other than m; (2) v has no neighbor
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Algorithm buildSTUNIndex

Input: STUN knowledge base KB

Output: STUN index IKB

1 G0 ←WUG(KB) with uninitialized weights, MBR’s and MBI ’s

2 µ0 ← empty mapping

3 for all v ∈ V0, v-weight(v)← 1

4 for all e = (v, v′) ∈ E0

5 e-weight(e)← δ(v, v′)

6 e[MBR]←MBR({MBR(R) |(v, l, v′; c) : [R, T ] ∈ KB})

7 e[MBI]←MBI({T | (v, l, v′; c) : [R, T ] ∈ KB})

8 i← 0

9 while Gi, µi occupy more than 1 disk page

10 i← i+ 1

11 Gi, µi ← coarsenGraph(Gi−1, v-weight, e-weight)

12 root(IKB)← empty node R

13 buildTree(R, i,Gi)

14 return IKB

Fig. 4.4: Algorithm buildSTUNIndex
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Procedure coarsenGraph

Input: G = (V,E), weight functions v-weight, e-weight

Output: Coarsened graph G′, merge mapping µ

1-2 G′ ← G, µ← mapping from each vertex in V to its copy in V ′

3 while |V ′| > |V |
2

4-5 v ← uniformly random chosen vertex from V ′, n← number of neighbors of v −1

6 m← neighbor of v with minimum edge weight

7 v-weight(m)← v-weight(m) + v-weight(v), g ← (v,m)

9 if n > 0

10 for all e = (v, u) ∈ E′ with u 6= m

11 if ∃f = (m,u) ∈ E′

12 e-weight(f)← e-weight(f) + e-weight(e) + e-weight(g)
n

13 f [MBR]←MBR({f [MBR], e[MBR], g[MBR]})

14 f [MBI]←MBI({f [MBI], e[MBI], g[MBI]})

15 else

16 f ← (m,u)

17 e-weight(f)← e-weight(e) + e-weight(g)
n

18 f [MBR]←MBR({e[MBR], g[MBR]})

19 f [MBI]←MBI({e[MBI], g[MBI]})

20 E′ ← E′ ∪ {f}

21 E′ ← E′ \ {e}

22 else

23 n′ ← number of neighbors of m −1

24 for all e = (m,u) ∈ E′

25 e-weight(e)← e-weight(e) + e-weight(g)
n′

26 e[MBR]←MBR({e[MBR], g[MBR]})

27 e[MBI]←MBI({e[MBI], g[MBI]})

28-30 E′ ← E′ \ {g}, V ′ ← V ′ \ {v}, µ(µ−1(v))← m

31 return G′, µ

Fig. 4.5: Algorithm coarsenGraph
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Procedure buildTree

Input: Tree node N , level i, WUG G = (V,E)

1 GN ← G

2 N [MBR]←MBR({e[MBR] | e ∈ E})

3 N [MBI]←MBI({e[MBI] | e ∈ E})

4 if G is not a subgraph of WUG(KB)

5 {G1, . . . , Gf} ← graphPartition(G)

6 for all j ∈ [1, f ]

7 add an empty node Cj as a child of N

8 GCj ← induced subgraph in Gi−1 by vertex set {v | µi(v) ∈ VGj}

9 buildTree(Cj , i− 1, GCj )

Fig. 4.6: Algorithm buildTree

other than m.

In case (1), the procedure considers each of v’s other neighbors, denoted as u, in turn (lines

9–21). The edge between v and u is denoted as e, and it is removed after the merging process

(line 21). If there is already an edge between u and m, its weight is increased by e’s weight and a

portion of g’s weight; moreover, the MBR and MBI of the edge between u andm is extended with

those of e and g (lines 11–14). If no edge between u and m exists, the procedure adds a new such

edge to the graph. The weight of this edge is the sum of e’s weight and a portion of g’s weight,

whereas the MBR and MBI of the edge are computed based on those of e and g (lines 16–20).

In case (2), the procedure adds an equal portion of g’s weight to the edges connecting m to

its neighbors, and extends the MBRs and MBIs of these edges with that of g (lines 22–27).

Finally, g and v are removed from the graph and the merge mapping is updated (lines 28–

30).

Procedure buildTree starts by assigning the WUG G to the index node N (which is at the
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i-th level of the tree) and computing the corresponding MBR and MBI (lines 1–3). Then, if N is

not a leaf node, the procedure employs any external graph partitioning algorithm graphPartition

that, given a vertex- and edge-weighted graph, partitions its vertex set into f sets such that the

total weight of all edges crossing the sets is minimized, and the total vertex weights are as close

as possible (line 5). Finally, for each of these f vertex sets, a child node is added to N , the

subgraph induced in Gi−1 by the vertex set is assigned to N (lines 6–8), and the procedure calls

itself recursively to build the child tree (line 9). Note that obviously G, being at the i-th level of

the tree, is always coarser than Gi−1.

We conclude the description of our algorithms with the following remarks:

1. As a further improvement, during the coarsening phase we keep track of which vertices and

edges are “original”, i.e., present in the WUGs at leaf nodes. For each original edge, we

store the set of labels associated with the STUN tuple represented by that edge (such sets

can therefore be shared among different nodes of the index). Thus, if an original vertex only

has original edges, we can retrieve the labels associated with these edges by just looking at

the current index node.

2. We apply the notion of internal partition distance from [40] to reduce the size of the sets

of candidate ground terms during query answering. In particular, for each index node N

and each vertex v in GN , we compute and store the distance of v from the outside of GN .

This way, besides restricting candidates to immediate neighbors of a vertex, we can apply

additional constraints that take into account “longer-range” distance requirements among

query vertices.

3. We employ a spatio-temporal vertex distance function that looks at the neighborhood of the

two vertices and measures the “amount” of space and time the vertices share with each other
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with respect to their neighborhoods. Moreover, the function weighs the “contributions” of

the various edges with their associated certainty level. Given an edge (v, v′) in a STUN

graph, we define

δ(v, v′) = α · cT (v, v′) ·
(

1
nT (v) + 1

nT (v′)

)
+

β · cS(v, v′) ·
(

1
nS(v) + 1

nS(v′)

)
where

cT (v, v′) =
∑

(v,l,v′;c):[R,T ]∈KB

[c · length(T )] ,

nT (v) =
∑

(v,l,v′;c):[R,T ]∈KB

[c · length(T )] ,

cS(v, v′) =
∑

(v,l,v′;c):[R,T ]∈KB

[c · area(R)] ,

nS(v) =
∑

(v,l,v′;c):[R,T ]∈KB

[c · area(R)] ,

functions length and area have their common meaning, and α, β ∈ R with α+ β = 1.

4. As our graph partitioning algorithm, we employ GGGP [126].

4.4.1 SM-Query Answering Algorithm

Fig. 4.7 shows our answerQuery algorithm for answering STUN SM-queries using the STUN

index. The algorithm has a recursive, depth-first structure and it maintains a set of candidate

substitutions Rx for each variable x in the query. At each recursive invocation, it greedily chooses

the next variable w to find substitutions for (line 6), by taking the one which has the smallest

number of candidates (ties are broken at random). If there is no candidate for w, no further

extension of the current substitution can be found and the algorithm backtracks (line 7). Otherwise,

for each candidatem inRw, it builds a new substitution with w → m and new candidate sets from

the current ones (lines 8–13) by restricting the set of candidates to the “valid” neighbors ofm, i.e.,

those that satisfy the constraints in the query, and calls itself recursively.
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Algorithm answerQuery

Input: STUN SM-query q = (Gq, Cq), substitution θ,

candidate sets {Rx}

Output: Set A of substitutions

Global variables: STUN index IKB , set A initialized to ∅

1 if θ maps every variable in q to a ground term then

2 add θ to A and end-algorithm

3 if θ = ∅ then

4 for each variable x in q

5 Rx ← ALL // placeholder for all the vertices in KB

6 w ← variable in q having minimum |Rw|

7 if Rw = ∅ then end-algorithm

8 for each m ∈ Rw

9 θ′ ← θ ∪ (w → m)

10 for each variable x in qθ′

11 R′x ← Rx

12 for each variable v linked to w by a tuple in Gq

13 R′v ← Rv∩ validNeighbors(q, θ, Rv,m)

14 answerQuery(qθ′, θ′, {R′x})

Fig. 4.7: Algorithm answerQuery
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Procedure validNeighbors

Input: STUN SM-query q, substitution θ, ground term m

Output: Set M of valid neigbhors of m

1 {(v1, N1), . . . , (vh, Nh)} ← followMergeMappings(m)

2 L← N1

3 for each i ∈ [2, h]

4 L← L∪ findLeafNodes(q, (vi, Ni), (vi−1, Ni−1))

5 M ← retrieveNeighbors(m,L)

6 filterInternalPartitionDistance(qθ,M)

7 return M

Fig. 4.8: Algorithm validNeighbors

Procedure findLeafNodes

Input: STUN SM-query q,

(vertex, node) pairs (v,N), (ve, Ne)

Output: Set L of leaf nodes of IKB

1 D ← child nodes of N except Ne

2 if D = ∅ then return {N}

3 L← ∅

4 for each Nd ∈ D

5 if conn(v,N,Nd) and checkSTConstraints(Nd, Cq) then

6 L← L∪ findLeafNodes(q, (⊥, Nd),⊥)

7 return L

Fig. 4.9: Algorithm findLeafNodes

The validNeighbors procedure starts by extracting the list of index nodes that connect the

leaf node containing m to the root node, along with all the vertices that represent m in these

nodes (line 1). Observe that we only need the leaf node itself if m does not have edges that
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cross the boundaries of the leaf node. The algorithm then retrieves all the leaf nodes that may

contain valid neighbors of m (and are not already in memory), extracts these neighbors (applying

the appropriate restrictions on labels), and filters out those that do not satisfy internal partition

distance constraints (lines 3–6).

The findLeafNodes procedure, given an index node N (along with the vertex v that repre-

sents m in N ) and one of its child nodes, recursively finds the other child nodes Nd such that the

subtree rooted in Nd may contain valid neighbors of m (lines 4–6). To achieve this, it uses (i) a

procedure conn that checks whether a vertex in Nd is mapped to v or to one of its neighbors in N ,

and (ii) a procedure checkSTConstraints that checks whether the spatio-temporal constraints in

the query can be satisfied by considering the Nd[MBR] region and the Nd[MBI] interval.

4.5 STUN Ranking and SR-Queries

In this section, we show how to extend the well-known PageRank algorithm [39] to STUN databases,

thus taking into account certainty, space, and time. This then allows users to pose STUNRank

queries which allow them to find important nodes in STUN graphs.

We start by briefly reviewing the PageRank algorithm, which is a way to give scores to

vertices based on the stationary distribution of a random walk on a directed graph. Vertices score

higher if they are visited more often this way.

Basic PageRank starts with a graph G = (V,E) where |V | = n. We can assume that the

vertices (pages) are numbered from 1 to n and use v to refer both to a vertex and its numerical

value. A random walk is described by an n× n transition matrix Mpr where mpr[v, v′] = 1
out(v′)

iff vertex v′ has an outgoing edge to vertex v; 0 otherwise. We write out(v′) for the outdegree of

v′. The Web surfing interpretation is thatmpr[v, v′] is the probability of a random surfer following

a link from page v′ to page v.
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The PageRank (column) n× 1 vector ppr is initialized to ppr0 = 1/n. So initially all pages

get the same rank. Then the transition matrix is applied iteratively as

ppri+1 ← d ·Mprppri + (1− d) · 1/n

where d is a real value in [0, 1] called the damping factor, 1 is an n × 1 vector of all 1’s, and

1/n is called the teleport vector. The Web surfing interpretation is that after the j-th iteration,

pprj [v] is the probability of a random surfer being at page v after following j links and 1 − d

is the probability of “teleporting” to a random page or, equivalently, to introduce a new random

surfer at a random page. Usually, the values of ppr converge to acceptable error limits after a few

hundred iterations. Moreover, Mpr is usually very sparse because the average number of non-zero

elements in a column is the average outdegree of the vertices in the network.

The original PageRank formulation assumes that the PageRank of a vertex is divided equally

among the out-neighborhood of the vertex. We define a transition matrix that also takes into ac-

count space, time, and uncertainty. Moreover, we use the personalized variant of PageRank [108]

that has a non-uniform distribution of the values in the teleport vector (instead of 1/n).

In our STUNRank implementation users can specify how to take into account

(1) space, time, and uncertainty;

(2) the relative importance of vertices and labels;

(3) which labels, regions, time intervals, and minimum certainty level to consider.

(1) involves general concepts, while typically (3) depends on a query. Hence we define two

versions of rank flow functions: query-unaware and query-aware. In more detail, for (1) users

may define 3 query-unaware rank flow functions:

• Fs(v, v′) evaluates how the space-based STUNRank of vertex v flows to vertex v′;
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• Ft(v, v′) evaluates how the time-based STUNRank of vertex v flows to vertex v′;

• Fc(v, v′) evaluates how the certainty-based STUNRank of vertex v flows to vertex v′.

For (2) users may define a function score : V ∪ L → N that expresses the relative impor-

tance of vertices and labels. This function can in turn be used in the specification of the rank flow

functions.

For (3), we introduce the query-aware versions of the rank flow functions. They have a

third argument that is a STUN ranking query (SR-query) of the form

q = 〈Lq, Rq, Tq, τq〉

where Lq is a set of labels, Rq is a set of regions, Tq is a set of time intervals, and τq is a certainty

threshold. The meaning of q is that we consider only the portion of the graph restricted to Lq, Rq,

and Tq – moreover, when looking at certainty values, we consider only those above τq. We require

any user-provided set of functions be such that, for any k ∈ {s, t, c}, Fk(v, v′) = Fk(v, v′, qall)

with qall = 〈L,R, {[min(T),max(T)]}, 0〉.

4.5.1 Computing STUNRanks

Recall from earlier that the PageRank vector ppr is generally computed using ppri+1 ← d·Mprppri +

(1− d) · 1/n. In the computation of the STUNRank vector we modify this computation to

pi+1 ← d ·Mpi + (1− d) · t.

Hence we need to define M and t. The new definition of t uses the function score as follows:

t[v] =
score(v)

Σv′inKBscore(v′)
.

M is defined in two different ways depending on how the iteration is done: combine-first uses

a single matrix, whereas combine-last builds four different matrices then combines the resulting
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rank vectors. We allow users to provide weights α, β, γ ∈ [0, 1] with α + β + γ ≤ 1 to specify

the relative importance of the spatial, temporal, and certainty based components.

Table 4.1 shows the combine-first and combine-last definitions of transition matrices, itera-

tions, and STUNRank vectors in both the query-unaware and query-unaware cases. Note that, in

the query-aware case, besides employing the query-aware versions of the F functions, we modify

the definitions in order to also restrict the computation of the PageRank matrix based on the given

query q = 〈Lq, Rq, Tq, τq〉.

4.6 Proposed Rank Flow Functions

In the previous section we stated that users may specify various rank flow functions. In this section

we give our proposed rank flow functions along with the intuition behind them.

We start by defining query-unaware functions. For the space-based STUNRank we define

Fs(v, v′) =

∑
(v,l,v′;c):[R,T ]∈KB [|R| · score(l)]∑
(v,l,v′′;c):[R,T ]∈KB [|R| · score(l)]

.

The intuition is that the STUNRank flowing from a vertex v to each of its out-neighbors v′ is

proportional to the total amounts of space occupied by the regions annotating the edges from v to

v′. Regions are also weighted by the score of edge labels.

Similarly, for the time-based STUNRank we define

Ft(v, v′) =

∑
(v,l,v′;c):[R,T ]∈KB [|T | · score(l)]∑
(v,l,v′′;c):[R,T ]∈KB [|T | · score(l)]

.

where the STUNRank flowing from a vertex v to each of its out-neighbors v′ is proportional to the

total length of the time intervals annotating the edges from v to v′.

Then again, for the certainty-based STUNRank we define
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Transition matrices Iterations STUNRank vector

Query-unaware

Combine-first

m[v, v′] = π ·mpr[v, v′]+

α · Fs(v′, v)+

β · Ft(v′, v)+

γ · Fc(v′, v)

pi+1 ← d ·Mpi + (1− d) · t p

Combine-last
∀k ∈ {s, t, c},

mk[v, v′] = Fk(v′, v)

ppri+1 ← d ·Mprppri + (1− d) · t

∀k ∈ {s, t, c},

pki+1 ← d ·Mkpki + (1− d) · t

p = π · ppr + α · ps

+β · pt + γ · pc

Query-aware

Combine-first

m[v, v′] = π ·mprq [v, v′]+

α · Fs(v′, v, q)+

β · Ft(v′, v, q)+

γ · Fc(v′, v, q)

pi+1 ← d ·Mpi + (1− d) · t p

Combine-last
∀k ∈ {s, t, c},

mk[v, v′] = Fk(v′, v, q)

ppri+1 ← d ·Mpr
q ppri + (1− d) · t

∀k ∈ {s, t, c},

pki+1 ← d ·Mkpki + (1− d) · t

p = π · ppr + α · ps

+β · pt + γ · pc

Tab. 4.1: Definitions of transition matrices, iterations, and STUNRank vectors, where (i) π = 1−α−β−γ,

and (ii) given an SR-query q, Mpr
q is the PageRank matrix computed by only considering edges

(v′, l, v′′; c) : [R, T ] such that l ∈ Lq

Fc(v, v′) =

∑
(v,l,v′;c):[R,T ]∈KB [c · score(l)]∑
(v,l,v′′;c):[R,T ]∈KB [c · score(l)]

.

so the STUNRank flowing from a vertex v to each of its out-neighbors v′ is proportional to the
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total certainty annotating the edges from v to v′.

Fig. 4.10 shows a graphical representation of the query-unaware combine-first transition ma-

trix for the example of Fig. 4.1 obtained with:

• label and vertex scores set to 1;

• α = β = γ = 0.25;

• “Bethesda” and “Potomac” regions in “Maryland” and their areas set to 49, 100, and

10,000, respectively.
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Fig. 4.10: Graphical representation of a query-unaware combine-first transition matrix for the example of

Fig. 4.1

Given an SR-query q = 〈Lq, Rq, Tq, τq〉, we define the query-aware STUNRank flow func-

tions shown in Fig. 4.11. The difference with the query-unaware functions is the use of Lq for all

of them, Rq for the space-based function, Tq for the time-based function, and τq for the certainty-

based function.
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Fs(v, v′, q) =

∑
(v,l,v′;c):[R,T ]∈KB,l∈Lq

[
|R ∩ (∪R′∈RqR′)| · score(l)

]∑
(v,l,v′′;c):[R,T ]∈KB,l∈Lq

[
|R ∩ (∪R′∈RqR′)| · score(l)

]

Ft(v, v′, q) =

∑
(v,l,v′;c):[R,T ]∈KB,l∈Lq [|{t ∈ T | ∃ T ′ ∈ Tq, t ∈ T ′}| · score(l)]∑
(v,l,v′′;c):[R,T ]∈KB,l∈Lq [|{t ∈ T | ∃ T ′ ∈ Tq, t ∈ T ′}| · score(l)]

Fc(v, v′, q) =

∑
(v,l,v′;c):[R,T ]∈KB,l∈Lq ,c≥τq [c · score(l)]∑
(v,l,v′′;c):[R,T ]∈KB,l∈Lq ,c≥τq [c · score(l)]

Fig. 4.11: Proposed query-aware similarity functions

Fig. 4.12 shows a graphical representation of the query-aware combine-first transition matrix

for the example of Fig. 4.1 obtained with:

• label and vertex scores set to 1;

• α = β = γ = 0.25;

• “Bethesda” and “Potomac” regions in “Maryland” and their areas set to 49, 100, and

10,000, respectively;

• Lq = {friend,attended};

• Rq = {Bethesda};

• Tq = [3, 11];

• τq = 0.5.

Figs. 4.13 and 4.14 list the vertices of the example of Fig. 4.1 ordered according to the

141



���

��

���

�	�


	���

��	


	�


	�

���


���

�	�

���
��	

���


	���


	���

�����

����

�� ��

�����

���!�

�����

��� �

���" 

����"

��� �

����

�� "�

�����

�� �"
�����

���"�

�� !�

�����

���"�

����

�����

�����

�����

�����

��� �

�����

�����

�� "�

�����

����� �����

Fig. 4.12: Graphical representation of a query-aware combine-first transition matrix for the example of

Fig. 4.1

STUNRanks obtained by employing our proposed rank flow functions in the combine-first (Fig. 4.13)

and combine-last (Fig. 4.14) cases. In each of the figures, we also compare the results obtained in

the query-unaware case with those obtained with two different SR-queries.

It can easily be noticed that the “Party” vertices have the higher ranks in almost all of the

query-unaware combinations, with the “Sam” vertex among the top-3 vertices in the cases where

the temporal component has higher weight. Moreover, in the presence of a query, ranks are heavily

influenced by the query components, as expected. For instance, with Lq = {friend,organized},

vertex “Sam” ranks top-1 in almost all cases, because its outgoing links do not match the query,

thus the fraction of STUNRank it receives from its incoming links can only decrease due to the

combination with the teleport vector.
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Fig. 4.13: STUNRanks obtained with combine-first in the query-unaware (top) and query-aware (bottom)

cases. Label and vertex scores are set to 1. The damping factor is set to 0.85
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Fig. 4.14: STUNRanks obtained with combine-last in the query-unaware (top) and query-aware (bottom)

cases. Label and vertex scores are set to 1. The damping factor is set to 0.85

4.7 Implementation and Experiments

We developed a prototype implementation of the STUN system in about 11,600 lines of Java code.

We ran three sets of experiments to assess the performance of the STUN system when dealing with
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both subgraph matching and ranking queries.

4.7.1 Results with SM-Queries

In the first set of experiments, we used data from YouTube [158] where the vertices included

individuals and groups, and the edges included follows, group membership, and co-located edges.

We randomly assigned time intervals to the first two kinds of edges. To assign regions, we first

selected 20% of the groups and randomly associated regions to them. Then, we added a co-located

edge between two members of such groups if there was a nonempty temporal overlap between

their memberships – this temporal overlap and the region associated with the group were assigned

the edge. All the experiments were run on a dual-core 2.8GHz CPU with 8G of RAM running

Windows 7.

The objective of our experiments was to determine the scalability of the STUN index by

varying three quantites: the size of the graph (number of edges), the complexity (number of edges

and number of variable vertices) of queries, and the number of constraints in the query. Graphs

of a specific size were selected from the YouTube graph by randomly choosing a connected set of

edges till we reached the desired number of edges. Query graphs were also randomly generated.

Fig. 4.15 shows three graphs in which we varied the number of edges of the STUN graph

(100K, 500K, 1M), the number of constraints in the query (0 through 5) and the number of edges

and variable vertices in the query. Though we ran far more experiments than shown in the figure,

due to space limitations, we show three classes of queries – ones with 3 edges and only 1 variable

vertex, ones with 5 edges and 2 variable vertices, and ones with 12 edges and 5 variable vertices.

Every single data point shown in Fig. 4.15 was obtained by running 200 queries.

The results shows that (i) as the number of constraints in a query increases, STUN’s query

processing time decreases – this is because additional constraints enable us to prune more of
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Fig. 4.15: Query execution time versus number of spatial and temporal constraints

the search space; (ii) as expected, the time taken to process queries increases with the query

complexity and the amount of data. However, even with 5 variables in the query (corresponding to

a 5-way join in a relational database), we are able to process queries in a 1M edge graph in 1.5-2

seconds – and for simpler queries, the query processing time can often be well under 0.5 seconds.

Fig. 4.16 shows the same data in the previous figure – only this graph shows how the three

types of queries mentioned above perform as we vary the size of the STUN knowledge base. We

see that the query processing time increases slightly super-linearly with the size of the database,

though the slope of the graph increases with the complexity of the query.

4.7.2 Results with STUNRank and SR-Queries

The objective of our second set of experiments was to determine the compute time performance

of STUN ranking in the query-unaware case when using the rank flow functions defined in Sec-
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Fig. 4.16: Query execution time versus size of the STUN knowledge base

tion 4.6. For these experiments, we varied the size of the graphs and their average outdegree. We

used datasets from YouTube. Graphs of specific sizes (50K, 100K, 150K, and 200K vertices) were

selected from the YouTube graph by randomly choosing a connected set of edges till we reached

the desired number of vertices. We generated 30 datasets for each size. In these data sets, we

assigned time intervals and regions in the same way as the datasets used in the first set of exper-

iments, and in addition we randomly assigned a spatial region to 50% of follow edges. We fixed

the parameters α = 0.25, β = 0.25, and γ = 0.25, and set all label scores and vertex scores

to 1. Numbers were averaged over 5 independent runs with the maximum number of iterations

set to 100 and a tolerance (difference between two consecutive rank vectors) set to 10−5. All the

experiments were run on an Intel Xeon@2.40 GHz, 24 GB RAM.

Fig. 4.17 reports the overall computation times needed to compute STUNRanks versus

dataset size. The results show that, in general, STUN scales gracefully with respect to dataset

size, and that most of the computation is devoted to the construction of the transition matrices.

The most important difference between the combine-first and the combine-last scenarios is the

time needed to perform the iterations – as expected, iterations take around 4 times more for the
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combine-last scenario.
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Fig. 4.17: Overall STUNRank computation times in the query-unaware case

Figs. 4.18 and 4.19 report the computation times measured when using each of the datasets,

versus the average outdegree of the datasets. The results clearly show that, while iteration times

naturally depend on the size and average outdegree of the graph, the construction of the transition

matrices is much more influenced by the specific characteristics of each different dataset.

In the third set of experiments, we assessed the performance in the query-aware case, by

varying the “coverage” of the Rq and Tq components of an SR-query (area(Rq)/area(S) and

length(Tq)/length(T)) in the [0.01, 0.6] range. We randomly generated 10 datasets of 100K

vertices each and 100 queries for each value of the coverage and each dataset. We assigned time

intervals and regions in the same way as for the datasets used in the first set of experiments. We

fixed the parameters α = 0.25, β = 0.25, γ = 0.25, Lq = {follows} and τq = 0.5, and set all

labels and vertex scores to 1. Numbers were averaged over 100 independent runs per each value of

the coverage and each dataset with a maximum number of iterations of 100 and a tolerance equal

to 10−5. These experiments were also run on an Intel Xeon@2.40 GHz, 24 GB RAM.
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Fig. 4.18: Matrix (top) and iteration (bottom) computation time for various network densities in the

combine-first query-unaware case

Fig. 4.20 reports the matrix building time in the combine-last case when varying query

coverage, averaged over the whole set of average outdegree values employed. The results show

that the performances are rather stable, with an increase of just 19.2% when moving from the

minimum to the maximum coverage value.

Finally, Fig. 4.21, which reports iteration time in both the combine-first and combine-last

scenarios versus coverage for two specific values of average outdegree (1.8 and 3.6), shows that

the performances are basically constant in the combine-first case, whereas in the combine-last
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Fig. 4.19: Matrix (top) and iteration (bottom) computation time for various network densities in the

combine-last query-unaware case

case, computation time increases at most 35% when moving from the minimum to the maximum

coverage value.

4.8 Related Work

To date, the only system capable of performing subgraph matching in the presence of space, time,

and uncertainty when they are all present at the same time is the Annotated RDF system [197]

in which edges can be annotated with any complete lattice of truth values, including, in princi-
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Fig. 4.20: Average matrix computation time in the combine-last query-aware case

ple, triples of spatial regions, time intervals, and uncertainty. Annotated RDF query processing

algorithms are all in memory algorithms. However, as shown in [197][Table II], even for a graph

database with just 549K edges from the ChefMoz data set used in those experiments, it takes

1.243 seconds in memory, while with just over 1M edges (1.234M edges) on the GovTrack data

set, it takes almost 18 seconds to process simple queries. In contrast to their in memory times

which one would expect to be fast, our on-disk times for comparable queries on 500K edge data

is under 200ms for the first two types of queries shown in Fig. 4.15. Our work here is also closely

related to the DOGMA work [40] in which we previously developed an index structure to store

RDF graphs on disk to support subgraph matching. In this paper, we show how such a framework

can be augmented with four quantities – constraints, space, time, and uncertainty – and show that

we can still answer complex queries on social network data efficiently.

Many approaches to graph storage and querying in the Semantic Web community use re-

lational databases as their back-end [194], for instance by inferring the relational schema of the

given RDF data [185], or using a triple based denormalized relational schema [203]. Other RDF

databases rely on classical index structures, such as the B-tree and its generalizations [106].
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Fig. 4.21: Iteration time in the combine-first (top) and combine-last (bottom) query-aware case

Existing work on general subgraph matching (e.g., [57, 70, 205, 206, 207, 208]) typically

employ heuristics to predict the cost of answering strategies based on statistics about the dataset

and the current state of query processing. For instance, [208] transforms vertices into points in a

vector space, thus converting queries into distance-based multi-way joins over the vector space.

In particular, [57] proposes a two-step join optimization algorithm based on a cluster based join

index. GADDI, proposed in [205], employs a structural distance based approach and a dynamic

matching scheme to minimize redundant calculations. In [206] the authors propose SUMMA,
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which improves over GADDI and employs more advanced indices. The algorithm in [207] em-

ploys an aggressive pruning strategy based on an index storing label distributions. In [70], the

authors propose an index over sets of data graphs with the objective of enabling efficient pruning

over graphs with tens of thousands of vertices. In contrast, our work focuses on query answering

over single, very large graphs that contain edges that may be labeled with a combination of space,

time, and uncertainty – something none of these papers address.

The PageRank algorithm and its many variants have the general objective of appropriately

ranking linked objects in various scenarios. They have received a tremendous deal of attention

in the last decade [15, 26, 35, 51, 60, 108, 141, 162, 39]. The initial problem formulation [39]

has been extensively studied in order to improve its feasibility and performances in fastly grow-

ing networks [16, 26, 35, 81, 141, 39]. Many works have also been targeted at exploiting the

flexibility of the personalized variant of PageRank [16, 26, 51, 81, 108, 141]. For instance, [51]

presented an approach targeted at proximity search in entity-relationship graphs. The main intu-

ition was to compute and index “sketchy” random walk fingerprints for a subset of vertices, which

were then adaptively loaded to various resolutions to form approximate personalized PageRank

vectors. Finally, some work has been devoted to the idea of exploiting “context” information to

make the PageRank of a vertex flow non-uniformly to its out-neighborhood [15, 51, 60, 162]. For

instance, [15] presented a variant of PageRank where link weights were computed based on their

relative position in the Web page, associated tags, and length of the anchor text. In [60], a dynamic

query-dependent ranking technique was proposed that, given a link- and vertex-labeled directed

graph, applied a flow-based model to dynamically rank vertices with respect to any of the original

labels. [162] employed a given clustering of Web pages and gave different weights to each link by

looking at the positions of the connected vertices with respect to the clusters. To the best of our

knowledge, none of the approaches proposed in the past takes into account spatio-temporal, cer-
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tainty, and vertex/label importance information to derive suitable PageRank-based vertex rankings

in complex graphs.

4.9 Conclusions

With the growing importance of social networks, there are now many efforts to learn properties

of such networks. For instance, learning relationships between people is a complex problem, and

there is much work in identifying links between individuals [132]. However, such links are almost

always uncertain. Likewise, when we look at real-world social networks like Facebook, there is

spatial and temporal information often present. For instance, a page associated with an event being

organized on FaceBook has an associated location and an associated time.

In this chapter, we extend classical social network data management with spatial, temporal,

and uncertain attributes, leading to the STUN framework. We propose a theoretical model for

STUN as well as a STUN subgraph matching query language that extends classical graph matching

queries with space, time, and uncertainty. Furthermore, we develop an index structure to store

STUN databases. The graph structure, time, and space are hierarchically decomposed into a single

index. We also develop a STUN subgraph matching algorithm that effectively utilizes this index,

pruning away large parts of the search space. Finally, we introduce STUNRank queries where

users can ask queries about important nodes in a STUN database. STUNRank queries come in

two flavors – query-aware and query-unaware. Moreover, we provide two classes of STUNRank

definitions – combine-first and combine-last. Additionally, our framework allows a user to specify

the relative importance of space, time, uncertainty, and traditional network flows in his query,

allowing the user greater expressive power. Finally, we report on experiments using real-world

YouTube data showing that our algorithms work well in practice.
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Chapter 5: Malware Infection Prediction

5.1 Introduction

The goal of this research is to develop methods to predict the percentage of hosts in a given popu-

lation (we use country in our experiments) that will be infected by a particular piece of malware,

given some historical data about the malware and the hosts, but with no information whatsoever

on how the hosts are connected together. This is made even more challenging by the fact that not

all truly infected machines are actually detected to be infected (by say using some anti-virus soft-

ware). This problem is an important one with immediate applications in web and cyber security.

For example, a better prediction of the number of infections in a country will enable anti-virus

companies and security firms to better deploy patches and safety measures to counter threats.

In order to achieve this, we make several contributions. First, we define a very novel set

of features that are related to the ability of hosts to detect malware and patch vulnerabilities. In

order to achieve this, we present a novel host-malware bipartite graph and a bi-fix-point algorithm

to compute these features. These lead to a feature-based prediction model (FBP). Then, build-

ing upon the well-known SIR-model of disease spread, we develop an epidemiologically-inspired

predictive model called DIPS in which each host is either in a detected, infected, patched, or

susceptible state. We define the model and show how to learn the parameters of the model in

a data-driven way. We also define a variant of DIPS called DIPS-EXP. The outputs of these

models, as well as outputs of past work on predicting epidemic spreads, are then fed into three
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different ensemble models: ESM0, ESM1and FBP+
Funnel. We study the relative predictive accu-

racies of all of these models. On split-sample 10-fold cross validation tests, ESM0 provides the

best performance, significantly outperforming past work by large margins, irrespective of whether

we use root mean squared error (RMSE), normalized RMSE (NRMSE), or Pearson Correlation

Coefficient (PCC) as our measure. All the experiments use large-scale extensive real-data from

Symantec’s Worldwide Intelligence Network Environment (WINE) data set.

The paper is organized as follows. We describe our dataset and set-up in the next section.

Section 5.3 describes statistical features we develop for our task and the feature based predic-

tion model (FBP). In Section 5.4, we propose a novel non-linear time-series model (DIPS). The

ensemble models (ESM) to combine two suggested models (FBP and DIPS) is described in Sec-

tion 5.5. In Section 5.6 we present our empirical data analysis including the prediction task. We

review related work in Section 5.7, and we discuss the implications of our results in Section 5.8.

5.2 Dataset and Set-up

Symantec’s WINE data is collected from real-world hosts running Symantec anti-virus software.

Users of Symantec’s product line have a choice of opting-in to report telemetry about the security

events1 (e.g. executable file downloads, virus detection) that occur on their hosts. The WINE

dataset contains information about the hosts, files of the hosts and malware recognized on a file of

a host.

We selected the 100 most frequently detected malware from the WINE data and extracted

infection information about hosts infected by these malware using the following records.

Anti-virus telemetry. Anti-virus (AV) telemetry records detection history of known malware over

hosts. From each record, we extracted the detection time and the hash (MD5 and SHA2) of the
1 The events included in WINE are representative of events that Symantec observes around the world [167].
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malicious file detected. Each record indicates that the anti-virus has blocked an attack that may

have resulted in an infection.

Binary reputation. The binary reputation data records all binary executable files – benign or ma-

licious – that were downloaded/copied on end-hosts worldwide. From each record, we extracted

the creation time of the malicious file in the host (infection time) and the country where the host

was when the file was infected.

time

...t1 t2 t3 t4 t5 t6 t7 t8 t9 

# of infected hosts

# of detections

1 2 4 5 4 3 4 4 3

0 0 1 1 0 0 20 1

Host E

Host D

Host C

Host B

Host A

Infection interval

Infection time Detection time

Fig. 5.1: Examples of infections/infection intervals

We note that an infection interval is the period from the infection time to the detection time

of a malware in a host (See Figure 5.1). When the length of the infection interval is larger than 0,

we call it an infection.2 The number of infections over the 100 most frequently detected malware

during 640 days was 3,170,669 (for the US alone, it was 989,263).3 The infection patterns are

very different (See Figure 5.2). We adopt the following approach to address this problem: (a) we

first carefully define and extract novel domain-based features from the WINE datasets including
2 If the anti-virus software blocked a file containing a malware immediately when the files appeared, then the detec-

tion record is not an infection in our framework.
3 Note that we do not know the number of infected hosts that have not been detected.
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Fig. 5.2: Examples for infection patterns of 2 malware in the US in our dataset. Number of infected hosts

(bold red) and number of detection (blue) vs time (in days). Note that the number of detection are

a fraction of the number of infected hosts and that both time-series are highly non-linear.

measures of hosts’ detection ability and incompetence — we call this feature-based prediction

(FBP) ; (b) we then construct a novel non-linear temporal model called DIPS (Detected, Infected,

Patched, and Susceptible) based on epidemiological principles, and then (c) utilize sound regres-

sion methods to link both the features as well as the epidemiology-based models to the dependent

variable (the number of malware infections). Because the inputs of FBP as well as multiple DIPS

variants and FUNNEL[153] are themselves predictors that feed into yet another predictor, our

overall framework is an ensemble prediction method.
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5.3 Feature-based prediction ( FBP)

In a very dynamic environment like malware infections and patching, it is not possible to predict

infection patterns solely based on infection trends. Some amount of domain knowledge has to be

incorporated (for example, when the number of detected infections are small). Hence as a first step,

we build a feature-based prediction model (FBP), where given past history we extract meaningful

features of hosts and malware. Essentially these features encode the defending abilities of hosts

and infection properties of the malware as relative scores.

Next, we describe the domain-based features we constructed for our analysis in more de-

tail. We define H and M as the set of host and the set of malware, respectively. For each host

h ∈ H, F(h) denotes the set of files of h. For f ∈ F(h), thf is the time stamp representing

the time when f appears on h. For each host h ∈ H, the malware detection set dH(h) of h is

a set of tuples of the form (f,m, t) where f ∈ F(h), m ∈ M and t is the time stamp when

the file f infected by the malware m is discovered on the host h. By using the the malware

detection sets for each host, we define the set of host detection dM(m) of the malware m as

dM(m) = {(f, h, t)|h ∈ H, f ∈ F(m), (f,m, t) ∈ dH(h)}.

Vulnerabilities: Let V be the set of all vulnerabilities. Given a malwarem ∈M the set V u(m) is

the set of all vulnerabilities used by this malware. For each vulnerability v ∈ V , two time stamps

are important [28]:

• Anti-virus signatures released. Once the vulnerability is disclosed, anti-virus vendors

release new signatures for ongoing attacks and created heuristic detection for the exploit.

After this point, the attacks can be detected on end-hosts with updated A/V signatures. We

denote this as tsv. We can retrieve this information from Symantec website or the National
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Vulnerabilities Database (NVD)4 maintained by NIST (National Institute of Standards and

Technology of the US Government).

• Patch released. On the disclosure date, or shortly afterward, the software vendor releases

a patch for the vulnerability. After this point, the hosts that have applied the patch are no

longer susceptible to the exploit. We denote this as tpv. This information is readily available

from NVD.

5.3.1 Incompetence

Given a host h ∈ H and a tuple (f,m, t) ∈ dH(h), we define two classes of features: hosts’

incompetence in detecting malware and incompetence in patching (DI and PI , respectively). For

each, we consider an absolute case and a relative case (i.eADI ,API ,RDI andRPI). These four

measures measure the incompetence of a host in detecting and patching the malware m associated

with file f . The only difference between the relative case and absolute case is that the absolute

case does not consider the time tsv for each vulnerability v contained in a malware.

ADI(h, f,m, t) = t− thf

RDI(h, f,m, t) = maxv∈V u(m) max(0, t−max(tsv, t
h
f ))

API(h,m) = (max(f,m,t)∈dH(h) t)− (min(f,m,t)∈dH(h) t
h
f )

RPI(h,m) = maxv∈V u(m) max(0, (max(f,m,t)∈dH(h) t

−max(tpv, (min(f,m,t)∈dH(h) t
h
f ))))

For instance, absolute detection incompetence,ADI(h, f,m, t) of host hw.r.t. a file f of malware

m and the time t when f was detected by host h is simply (t − thf ), i.e. the time that passed

from the detection time to the time of original infection. The relative detection incompetence

RDI(h, f,m, t) looks at all possible vulnerabilities v that malware m exploits. For each such

4 https://nvd.nist.gov/
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vulnerability, it looks at the time elapsed between when the file f was detected by host h and

when either the file infected the host or when an updated anti-virus signature could have detected

it. The longer this time gap, the more incompetent the host. The absolute and relative (API, RPI)

patching incompetence are similarly defined.

Estimation by using only the WINE datasets. The relative detection and patch incompetence

formulas can be rewritten as:

RDI(h, f,m, t, ) = max(0, t−max((minv∈V u(m) t
s
v), t

h
f )))

RPI(h,m) = max(0, (max(f,m,t)∈dH(h) t−

max((minv∈V u(m) t
p
v), (min(f,m,t)∈dH(h) t

h
f ))))

For a malware m, ts(m) = minv∈V u(m) t
s
v denotes the earliest time at which a host down-

loaded an anti-virus signature for the vulnerability (we call this “time signature”), showing that he

might have become aware of the malware, and tp(m) = minv∈V u(m) t
p
v denotes the earliest time

the host applied a patch for a vulnerability for malware m (we call this “patch signature”). Both

these quantities are recorded by WINE. Then, the two measures becomes the following:

RDI(h, f,m, t, ) = max(0, t−max(ts(m), thf ))

RPI(h,m) = max(0, (max(f,m,t)∈dH(h) t)−

max(tp(m), (min(f,m,t)∈dH(h) t
h
f ))))

A possible way to estimate time signature and patch signature of a malware in WINE is:

ts(m) = minv∈V u(m) t
m
f

≈ minh∈H,(f,m,t)∈dH(h) t

tp(m) = minv∈V u(m) t
p
v

≈ minh∈H,(,m′,t′)∈dH(h) max(f,m,t)∈dH(h) t

Average Incompetence. Average/relative detection/patching incompetence of a host h can be de-
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fined by aggregation.

AADI(h) =
∑

(f,m,t)∈dH(h) ADI(h,f,m,t)

|dH(h)|

ARDI(h) =
∑

(f,m,t)∈dH(h)RDI(h,f,m,t)

|dH(h)|

AAPI(h) =
∑
m∈{m′|(,m′,)∈dH(h)} API(h,m)

|{m′|(,m′,)∈dH(h)}|

ARPI(h) =
∑
m∈{m′|(,m′,)∈dH(h)}RPI(h,m)

|{m′|(,m′,)∈dH(h)}|

For instance, average patch incompetence (AAPI) is obtained by adding up the average patch

incompetence of the host w.r.t. all malware files that it patched, and dividing this by the number

of such malware files associated with that host.

5.3.2 Features on Bipartite Host-Malware (HM) Graphs

Given a training set of historical WINE data, we can derive a bipartite graph whose vertices are

hosts and malware, respectively. An edge links a host and malware if the training data shows

that the malware has infected the host. Edges can be weighted with quantities like AD(h,m) or

RDI(h,m) as defined earlier in this section.

We now define some novel features using HM-graphs. The absolute detection ability (ADA)

of a host h captures the host’s ability to detect malware, while the absolute detection hardness

(ADH) of a malware m captures the difficulty in detecting that malware. Clearly, these two quan-

tities are closely intertwined. We define them below in a mutually recursive manner.

ADA(h) =
∑

(f,m,t)∈dH(h)w12(h, f,m, t) ·ADH(m)

ADH(m) =
∑

(f,h,t)∈dM(m)w21(m, f, h, t) ·ADA(h)

where h ∈ H,m ∈M and

w12(h, f,m, t) =
1

ADI(h,f,m,t)∑
(f ′,h′,t′)∈dM(m)

1
ADI(h′,f ′,m,t′)

w21(m, f, h, t) = ADI(h,f,m,t)∑
(f ′,m′,t′)∈dH(h) ADI(h,f

′,m′,t′)

By way of explanation, consider the definition of ADA(h). To do this, we look at every

(f,m, t) triple in the training set. If h can detect m, then the harder m is to detect (captured
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by ADH(m) in the formula), the better h’s detection abilities are. Thus, when considering a

specific (f,m, t) triple, the definition ofADA(h) multipliesADH(m) by a quantityw12 which is

the relative competence (inverse of absolute detection incompetence ADI(h, f,m, t)). A similar

rationale applies to the definition of ADH . As in the previous section, we can define relative

variants, RDA,RDH as well.

RDA(h) =
∑

(f,m,t)∈dH(h)w12(h, f,m, t) ∗RDH(m)

RDH(m) =
∑

(f,h,t)∈dM(m)w21(m, f, h, t) ∗RDA(h)

where h ∈ H,m ∈M and

w12(h, f,m, t) =
1

RDI(h,f,m,t)∑
(f ′,h′,t′)∈dM(m)

1
RDI(h′,f ′,m,t′)

w21(m, f, h, t) = RDI(h,f,m,t)∑
(f ′,m′,t′)∈dH(h)RDI(h,f

′,m′,t′)

5.3.2.1 Fix-point Computation and Convergence Result

As ADA,ADH are mutually recursively defined, one may wonder if they are well-defined.

We show below, an iterative fix-point computation procedures that describes how this may be

achieved. We now define the iterationsADAi, ADH i as follows. LetADA0(h) = 1
|H| , ADH

0(m) =

1
|M| for h ∈ H,m ∈M,then for iteration i > 0,

ADAi(h) =
∑

(f,m,t)∈dH(h)w12(h, f,m, t) ∗ADH i−1(m)

ADH i(m) =
∑

(f,h,t)∈dM(m)w21(m, f, h, t) ∗ADAi−1(h)

We can capture the above computations as a bi-fix-point algorithm, Algorithm 9 that main-

tains two listsADA,ADH . The entryADA(h) specifies the value of the ADA quantity computed

thus far - similarly for the entry ADH(m). These two lists are manipulated. We assume the exis-

tence of an equivalence relation≡ on ADA and ADH lists, telling us when two ADA lists and two

ADH lists are essentially the same. For instance, we can decide that ADA lists `1, `2 are similar
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whenever a measure of distance, such as cosine distance or Jaccard distance, between the two

vectors is below a threshold.

Algorithm 9 BiFixpoint
Input: H,M, T (∗T is a training set ∗)

Output: ADA,ADH

1: forall h ∈ H, ADA(h)← 1
|H| (∗ initialize ∗)

2: forall m ∈M, ADH(m)← 1
|M|

3: change← true;

4: while change do

5: ADA′(h)←
∑

(f,m,t)∈dH(h) w12(h, f,m, t) ∗ADH(m)

6: ADH(m)←
∑

(f,h,t)∈dM(m) w21(m, f, h, t) ∗ADA(h)

7: if ADA′ ∼ ADA and ADH ′ ≡ ADH then

8: change← false

9: else

10: ADA← ADA′ and ADH ← ADH ′

11: return ADA,ADH

The following result shows that this algorithm is guaranteed to converge.

Theorem 1. For any sets (H,M, T ), BiFixpoint(H,M, T ) is guaranteed to converge and the

returned solution is unique.

Proof. The recursive equations describing RDA and RDH have the same structure of those

of a bipartite Markov Chain where the first partition is the set of hosts H and the second is

the set of malware M. In fact we can rewrite the equations in the following way RDA(h) =∑
m∈{m′|(,m′,)∈dH(h)} p12(h,m) ∗ RDH(m) and RDH(m) =

∑
h∈{f |(,h,)∈dM(m)} p21(m,h) ∗

RDA(h) where p12(h,m) =
∑

(f,m,t)∈dH(h)w12(h, f,m, t) and p21(m,h) =
∑

(f,h,t)∈dM(m)w21

(m, f, h, t). Because of the definition of the weightsw12 andw21, it follows that for eachm ∈M,∑
h∈{h′|(,h′,)∈dM(m)} p12(h,m) = 1 and for each h ∈ H,

∑
m∈{m′|(,m′,)∈dH(h)} p21(m,h) = 1.
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In addition both the p1,2(h,m) (with m ∈ M and h ∈ {h′|(,h′,) ∈ dM(m)}) and p2,1(m,h)

(with h ∈ H and m ∈ {m′|(,m′,) ∈ dH(h)}) are greater than zero. Moreover, by construction,

if we have an edge (h,m) also the edge (m,h) exists, both with value (probability) greater than

zero. The last statement implies that for each pair of nodes (a, b) in each connected components

in this Markov chain the probability to reach a from b (and vice versa) after a finite number of

steps is greater than zero. This implies that, for each connect component, the associate transition

matrix is regular, it follows that the BiFixpoint(H,M, T ) algorithm converges and the returned

solution is unique.

5.3.3 Patch Ability

Exactly analogous to the measures defined above, we can define two patch abilities: absolute and

relative. The absolute patch ability (APA) and absolute patch hardness (APH) are defined in the

following way:

APA(h) =
∑

m∈{m′|(,m′,)∈dH(h)}w12(h,m) ·APH(m)

APH(m) =
∑

h∈{h′|(,h′,)∈dM(m)}w21(m,h) ·APA(h)

where h ∈ H, m ∈M, and

w12(h,m) =
1

API(h,m)∑
h′′∈{h′|(,h′,)∈dM(m)}

1
API(h′′,m)

w21(m,h) = API(h,m)∑
m′′∈{m′|(,m′,)∈dH(h)} API(h,m

′′)

The relative patch ability (APA) and relative patch hardness (APH) are defined in the fol-

lowing way:

RPA(h) =
∑

m∈{m′|(,m′,)∈dH(h)}w12(h,m) ∗RPH(m)

RPH(m) =
∑

h∈{h′|(,h′,)∈dM(m)}w21(m,h) ∗RPA(h)
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where h ∈ H, m ∈M and

w12(h,m) =
1

RPI(h,m)∑
h′′∈{h′|(,h′,)∈dM(m)}

1
RPI(h′′,m)

w21(m,h) = RPI(h,m)∑
m′′∈{m′|(,m′,)∈dH(h)}RPI(h,m

′′)

In order to compute the patch ability we can use theBiFixpoint(H,M, T ) algorithm with

opportune modifications according the specific equations. By following the same proof method-

ology of Theorem 1, is possible to prove that the resulting algorithm converge and the returned

solution is unique.

5.3.4 Collaborative Features

LetH be a set of all hosts andH ′ be a subset ofH . We use a memory based collaborative filtering

approach to produce features whose meaning is close to the number of malware infections in a

specific set of hosts H ′, i.e. all the hosts of a specific country. The basic intuition under this

collaborative filtering is that if host h is infected by malware m and host h′ similar to h, then h′

could also be infected by m. We assume the existence of a function sim : H ×H → [0, 1] that

similarity between hosts. Given a host h ∈ H ′, the percentage of infected hosts in H (weighted

by the similarity) by malware m is

infected(h,m) =

∑
h′∈H,∃(,m,)∈dH(h′) sim(h, h′)

|H|

where ∃(,m, ) ∈ dH(h′) is used to check if h is infected by m. Intuitively infected(h,m)

estimates the possibility that the host will be infected by m. In fact, the greater the percentage of

hosts similar to h infected bym, the greater is the possibility (or probability) that hwill be infected

bym. Since we want to predict the expected number of infected hosts inH ′, our resulting variable

is the following: ∑
h∈H′

infected(h,m)

166



If we assume that infected(h,m) is a correct estimation of the probability that the host h will

be infected by m, the value
∑

h∈H′ infected(h,m) estimates the expected number of infected

host in H ′. Since H can be huge (millions of hosts), we consider a reduced subset H̃ obtained by

uniformly sampling H , and then we replace H in Eq 5.3.4 by H̃ .

Similarity Measures. We define different notions of similarity – each of these notions yields

a different feature estimating the expected number of infected hosts. The definitions below show

some examples.

sim1(h, h′) = 1− |ADA(h)−ADA(h′)|

sim2(h, h′) = 1− |RDA(h)−RDA(h′)|

sim3(h, h′) = 1− |APA(h)−APA(h′)|

sim4(h, h′) = 1− |RPA(h)−RPA(h′)|

sim5(h, h′) =

1−
√

(ADA(h)−ADA(h′))2+(APA(h)−APA(h′))2

2

sim6(h, h′) =

1−
√

(ADA(h)−RDA(h′))2+(RPA(h)−RPA(h′))2

2

5.3.5 The FBP Model

The FBP Model is a general framework to predict the ratio of hosts infected by malware m in

country c with a given regression method r such as GPR (Gaussian Process Regression), Elastic

Net, Ridge, Lasso, and etc. The dependent and independent variables for the regression method

are following:

Dependent variable. The dependent variable for each country -malware pair (c,m) is the

percentage of hosts in country c infected by malware m.

Independent variables (features). For each country-malware pair (c,m), we computeADI,API,

RDI,RPI , AADI , ARDI , AAPI , ARPI , ADA, RDA, APA and RPA of hosts in country
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c, APH and RPH of malware m and the collaborative variables of the hosts in c with the 6

similarity measures. Other features are the percentages of the hosts which were not detected form

in countries which are economically similar to country c.5 Two measures, Human Development

Index (HDI) and Per Capita GDP PPP of countries are used to determine the similar countries. The

features are computed for each day d with respect to four different time intervals from 0, d − 60,

d− 30, d− 10 to d day.

Nearest Neighbors (additional feature selection) To make the learned model more robust,

we also take features of the k−nearest neighbors. For a given country-malware pair (c,m) and

similarity measure S, we find the k most similar country-malware pair(s) Pk to (c,m) with respect

to the past infection pattern. We then use the features of Pk as well (in addition to those of (c,m))

for predicting. Various existing techniques can be used for measuring similarity between two

time-series e.g. Dynamic Time Warping (DTW), Euclidean distance etc.

5.4 Time-series model based prediction ( DIPS)

In this section we propose a novel non-linear time-series model called DIPS (short for Detected,

Infected, Patched, Susceptible) which is a variant of the SIR model of disease spread tailored

for malware. Typical infection patterns (see Figure 5.2) are highly non-linear. Hence intuitively

linear approaches are ill-suited to this task. Malware spread has multiple similarities to informa-

tion diffusion and epidemiology (indeed, some of the earliest papers on this topic try to model

it as a disease). Inspired by these models, DIPS adapts a recent model [153] to handle malware

infections. The most challenging part is to deal with difference in the detected and actual infec-

tions. We assume that in the training dataset we have the true (as well as the detected) number of
5 We define that country C and C′ are similar w.r.t. measure T when |T (C)−T (C′)|/(T (C) + (T (C′)) ∗ 0.5 ≤ p

where p = {3%, 6%, 9%, 12%, 15%, 18%}.
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infections but in the test dataset, we are only given the number of actual detection.

5.4.1 Model Parameters

Similar to fundamental models like the Susceptible-Infected-Recovered (SIR) ‘mumps-like’ model,

our model assumes that the machine population can be in one of the following states:

• Susceptible: In this state, a machine is not patched and hence is vulnerable to an attack by a

particular malware.

• Infected: In this state, the machine is now infected, and spreads the malware by infecting

other susceptible hosts.

• Detected: In this state, we have detected that the machine is infected (by say an anti-virus

software running on the machine). Note that not all infected machines may be detected as

infected.

• Patched: As the name suggests, in this state the machine is patched, and cannot get infected.

We temporally track the number of hosts in each of these states. In addition, we assume we

have a variable DET (t) which is the true number of detection at time t.

5.4.2 The DIPS Model

We are now ready to describe the DIPS model. There are a total of N potential susceptible hosts

for the malware (one may also assume that there is an inflow of additional hosts at every time

tick). Each host starts out in the Susceptible state. From the susceptible state, a host may move

into the Patched state (at the rate of θ(t)) or the Infected state. We assume each infected host may

infect a susceptible host at a certain rate (called β(t)), which is also periodic and dictated by users’

habitual behavior. An infected host may move into the Detected state upon detection, after which

the host may become susceptible again (if it is not patched), or be patched (at the rate of δ(t)) and
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never get infected again — these transitions are shown in Figure 5.3.

S

I

D

P

θ(t) β (t)

γ (t)δ(t)

(t)

1-δ (t)

σ 

Fig. 5.3: DIPS model. D, I, P and S are the Detected, Infected state, Patched and Susceptible states

Infection Rate β(t): This is the rate at which an infected host infects susceptible machines. We

assume β(t) has the following form:

β(t) = β0(1 + Pa cos(
2π

Pp
(t+ PS))) where,

• β0: is the infection rate by users’ (who are using the hosts) habitual behavior averaged over

days

• Pp: stands for the period of a cycle. Infection data, like information diffusion data, and

epidemiological data, typically shows obvious periodicity (like weekly) which we want to

capture.

• Pa: represents the amplitude of the fluctuation.

• PS : represents the phase shift in the cycle.

Patching rates δ(t) and θ(t): As mentioned above, we assume that susceptible hosts get patched

at the same rate θ(t) and hosts in the detected state get patched at rate δ(t). More formally:

θ(t) = 0 (t < tp) or θ0 (t ≥ tp)

δ(t) = 0 (t < tp, td) or δ0 (t ≥ tp, td)

where tp is the start time of the patching and td is the first detection time.
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Error rate γ(t): This captures the fact that the number of true detectionsDET (t) may not exactly

match the number of detection in our model (i.e. the number of hosts in the D(t) state).

Finally, putting everything together, the DIPS model can be expressed using the following

differential equations:

S(t+ 1) = S(t)− β(t)S(t)I(t) + (1− δ(t))D(t)− θ(t)S(t)

I(t+ 1) = I(t) + β(t)S(t)I(t)− γ0DET (t)

D(t+ 1) = γ0DET (t)

P (t+ 1) = P (t) + δ(t)D(t) + θ(t)S(t)

Intuitively, S(t), I(t), D(t), P (t) capture the number of hosts in a susceptible, infected,

detected, and patched state, respectively.

5.4.2.0.1 The DIPS-exp model We have another variant of the DIPS model, called DIPS-exp

where we have an inflow of additional susceptible hosts at every time-tick (σ(t)). All the equations

in Equation 5.1 remain the same, except for the equation defining S(t+ 1) which changes to:

S(t+ 1) = S(t)− β(t)S(t)I(t) + (1− δ(t))D(t)− θ(t)S(t) + σ(t)

5.4.3 Model Learning

The parameters of the DIPS model Θ = {N, β0, Pa, PS , γ0,

tp, θ0, δ0} (DIPS-exp additionally has a parameter of σ0) need to be learned. Given two real

time-sequences, Itrue(t) and Dtrue(t), of the number of actual infections and detection (resp.) at

time-tick t, we find the parameters which optimize the following equation:

Θ∗ = arg min
Θ

∑
t

(Itrue(t)− IΘ(t))2.
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The learning algorithm is given in Algorithm 10. Basically, there are two phases to learn the

parameters. The first step is to adjust the initial parameters to fit them on overall infection time-

sequences (Isumtrue (t) and Dsum
true(t)) and fix parameter tp,θ0, Pa and PS . The learning order of

the parameters is N → β0 → γ0(→ σ0) → tp → δ0 → θ0 → Pa → PS
6. The sec-

ond step is to fit the learned parameters on the specific infection pattern of country c for mal-

ware m. Here, we only update the following parameters: N → β0 → γ0(→ σ0) → δ0. The

LearnParameters(Θ, I(t), D(t), f lag) is the function to update the given parameter values Θ

applying parameter p ∈ Θ ← arg minp
∑

t (I(t) − IΘ(t))2 and to return the updated parame-

ters, Θ′ and the error,
∑

t(I(t) − IΘ′(t))
2. The flag represents the learning order of each step

(if flag = 1, the first step, else the second step). Initially, S(0) = N − D(0) − I(0), P (0) =

0, D(0) = DET (0), and I(0) = Itrue(0). We leverage the Levenberg-Marquardt (LM) algo-

rithm [144] for each argmin in LearnParameters.

5.5 Ensemble Models ( ESM)

We have suggested three models: feature based prediction (FBP), and time-series model based

prediction (DIPS and DIPS-exp). We now propose ensemble models, ESM which combine both

of them to improve performance. We add the expected number of infections we get from the

DIPS and DIPS-exp models as features for our feature prediction model. We do not use the

learned parameters Θ∗ of DIPS directly as features. This is because DIPS is highly non-linear;

to take advantage of it, we use the output of DIPS instead.

To summarize, we extract all the features, add the output of DIPS as additional fea-

tures, and then use a regression model to perform prediction. We used a variety of models

like logistic regression and Gaussian process regression.
6 The order affects the prediction performance a lot.
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Algorithm 10 DIPS learning algorithm
Input: country c, malware m and X(m) = {(c′, Itrue(t), Dtrue(t))|c′ ∈ Countries, Itrue(t) and Dtrue(t) for c′

and m}

Output: Θ = {N, β0, Pa, PS , γ0, tp, θ0, δ0, (σ0)}

1: Θ← {N ′, β′0, P ′a, P ′S , γ′0, t′p, θ′0, δ′0, (σ′0)} # Assign default parameter values

2: Isumtrue (t), Dsum
true(t)←

∑
c′∈Countries,(c′,I(t),D(t))∈X(m) I(t), D(t)

# Sum of # of infections/detection over countries w.r.t. each time

3: err ← infinite, err′ ← 0,Θ′ ← Θ

4: while err > err′ do # Learn all parameters

5: err′,Θ′ ← LearnParameters(Θ′, Isumtrue (t), Dsum
true(t), 1)

6: if err > err′ then

7: Θ← Θ′, err ← err′

8: err′ ← 0

9: Let (c′, Itrue(t), Dtrue(t)) ∈ X(m) where c′ equals c

10: Θ′ ← Θ, err′ ← 0

11: while err > err′ do # Learn N, β0, γ0(σ0), δ0 only

12: err′,Θ′ ← LearnParameters(Θ′, Itrue(t), Dtrue(t), 0)

13: if err > err′ then

14: Θ← Θ′, err ← err′

15: err′ ← 0

16: return Θ

5.6 Empirical Analyses

In this section, we empirically analyze the performance of the proposed prediction methods.

Specifically, we study three questions:

• Q1: Can we predict the number of hosts in a country that are infected by a malware?

• Q2: How does predictive accuracy change with the number of infections?

• Q3: Does the prediction performance of the models depend on the number of hosts moni-
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tored?

Experiment setting. We focused on top 50 most infectious malware in the 100 malware

infection data extracted from WINE, and the top 40 countries (by GDP), leading to 2000 (50x40)

country-malware pairs. This data includes over 1.45M unique hosts and 2.99M infections. The

number of reported hosts varies from just from 634 (Iran) to 554,969 (United States). We ran the

experiment over 541 days from 60th to 600th day among total 640 days. In order to ensure reliable

data, we eliminated the first 60 and last 40 days of the 640-day data set.

Performance metrics. We checked RMSE (root mean squared error), NRMSE (normalized

RMSE), and Pearson correlation coefficient (PCC) to evaluate performance. NRMSE =RMSE

/(max(X)−min(X)), where X is a set of ground true infection ratios of each malware-country

pair over all days. Due to space constraints, we focus on NRMSE7.

Train/Test Split. Each prediction model was trained in the first l days (on the features

defined earlier) and tested for the remaining days. We used 80% of the data for training and the

rest for validation.

Prediction models. We tested 7 different prediction models, FUNNEL [153]8, FBP, DIPS,

DIPS-EXP, two different ESM models (ESM0 and ESM1) and FBP+
Funnel. FUNNEL is a recently

proposed time-series model which has been used to predict large scale disease patterns (and like

DIPS, it too is based on epidemiological models like SEIR). ESM0 refers to ESM using FBP

with the expected values of the two DIPS models as additional features for each pair. ESM1 uses

FBP with FUNNEL and DIPS models. To estimate the performance of ESM more precisely, we

also tested FBP+
Funnel which uses FBP with only FUNNEL (but without DIPS).

For FBP, we tested various regression methods such as GPR (Gaussian Process Regres-
7 The other two measures provide similar results.
8 The code was downloaded from http://www.cs.kumamoto-u.ac.jp/∼yasuko/software.html
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sion), Elastic Net, Ridge, Lasso, and etc with k more country-malware pairs whose infection

patterns are similar with each country-malware. We tested with k ∈ {0, 1, 2}. The similarity

was measured by Dynamic Time Wrapping (DTW). For FBP, DTW showed best performance

in our testing among several similarity measures, such as Euclidean distance, average correlation

coefficient, DTW and etc. In testing with 2000 (country,malware) pairs, FBP showed the best

performance with GPR and k = 2 w.r.t. the average RMSE and NRMSE. The average correlation

coefficients were similar for all. We did not consider k > 2 because the performance improvement

from k = 1 to k = 2 was very trivial. In the following experiment sections, we fix k = 2 and GPR

for FBP and the FBP setting was used for ESM0, ESM1 and FBP+
Funnel also.

5.6.1 Performance over all countries and malware

Answering Q1 with overall performance. The overall performance of the prediction models is

shown in Table 5.1. FBP is clearly better than FUNNEL with respect to all four measures, showing

that the features defined in Section 5.3 are useful to predict infection patterns generally. Also,

DIPS shows good prediction performance. The average MAE*, RMSE and NRMSE are 25%,

30% and 73% respectively of FUNNEL. Moreover the average correlation coefficient is more than

6 times that of FUNNEL. ESM models (FBP+DIPS) shows significant performance improvement

from FBP and the best performance with respect to NRMSE. DIPS models show slightly better

prediction performance w.r.t. MAE*, RMSE and Correlation coefficient than ESM0 and ESM1.

We can also confirm that FBP+
Funnel (FBP with FUNNEL only) and ESM1 (ESM0 with FUNNEL)

do not show clear improvement from FBP and ESM0. This suggests that DIPS significantly

improves upon the predictive accuracy of past work. In any case we wish to point out that FUNNEL

was designed and intended for disease patterns and not malware spread.

More detailed analysis: Performance of the prediction models for each country-malware
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Model MAE* RMSE NRMSE C.C.

FBP 73.74 0.00170 0.179 0.12

FUNNEL 127.83 0.00269 0.226 0.08

DIPS 32.36 0.00083 0.165 0.50

DIPS-EXP 36.56 0.00096 0.223 0.48

ESM0 39.41 0.00115 0.150 0.31

ESM1 41.84 0.00118 0.151 0.31

FBP+
Funnel 79.01 0.00189 0.179 0.19

Tab. 5.1: Average of MAE, RMSE, NRMSE and Correlation coefficient over 2000 pairs in testing period.

Training ratio is 0.8. The MAE* values were computed with —# of ground true infected hosts -

the expected # of infected hosts—. Others were based on the infection ratio of each country.
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Fig. 5.4: Scatter plot for NRMSE and Correlation coefficient over 2000 pairs. Each point represents the

performance for each country-malware pair.

pair is shown in Figure 5.4. DIPS models show many cases having very high correlation co-

efficient and very low NRMSE. But there are some cases having very high NRMSE when the

correlation coefficient is very low. On the other hand, NRMSE of FBP is relatively low even

when the correlation coefficient is pretty low. Interestingly, ESM models have the both strength
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of FBP and DIPS. To analyze the performance more, kernel density estimations are shown in

Figure 5.5. As you see in Figure 5.5 (a), the density of ESM models and DIPS models are high in

very high correlation coefficient values. In Figure 5.5 (b), the density of DIPS models and ESM

models are really high with very low NRMSE values. But DIPS models have very long tail having

very high NRMSE values.

(a) Correlation coefficients
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Fig. 5.5: Kernel Density of (a) Correlation coefficient and (b) NRMSE over 2000 pairs

Answering Q2. We define the infectiousness level as the average number of infected hosts
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over all days. Precisely, ln(1 + Avg.# infected hosts over days), here 1 is added as a default

because Avg.# infected hosts over days could be less than 1. In Figure 5.6, we projected

values of correlation coefficients and NRMSE over the infectiousness level w.r.t. each country-

malware pair in order to check how each model works in different infectiousness levels. Each dot

corresponds to a certain country-malware pair — the infectiousness level varies a lot. In terms

of correlation coefficient, DIPS shows the best performance across all infectiousness levels espe-

cially with very high values in highly infectiousness levels, and ESM0 follows after it. Switching

the perspective to NRMSE more interestingly, DIPS still shows very good performance in gen-

eral but some glitches in relatively lower infectiousness levels. This shows the performance of

DIPS may be less robust when the number of infections is low. On the other hand, NRMSE of

FBP is still low in the situation. This means the two models are very complementary to each

other. So, ESM models show very stable and reliable performance regardless of infectiousness

levels for both measures. Shortly, FUNNEL doesn’t show any good performance even in highly

infectiousness levels.

5.6.2 Performance for certain countries

Answering Q3. The number of reported hosts over countries in our data is very different. Fig-

ure 5.7 shows the performance of the models according to each country. The order of countries

from left to right is the descending order w.r.t. the number of hosts in each country. DIPS models

show good correlation coefficients. ESM models show stable and good performance for NRMSE

over countries whose number of monitored hosts are very different. The overall prediction per-

formance of DIPS and ESM do not depend on the size of monitored hosts except the cases when

the number of monitored hosts are really small relatively. But for the countries having really

small number of hosts, such like Nigeria (704) and Iran (634), the models show slightly worse
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(a) Correlation coefficient

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●
●

●
● ●● ●

● ●

●

● ●
●

●●
●

● ●

● ●●

●
●

●

●

●

●
● ●

●
●

●●
●

●●
● ●●

●●
●

●● ●●
●

● ●

●

● ●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●

●

●●●

●

●●
●

●

● ●● ●

● ●
●● ● ●● ●

● ●
●

● ●

●

●● ●● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●
●

●

●
●

●

● ●●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●●
● ●

●

●
●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

0 2 4 6 8 10

−
1.

0
0.

0
1.

0

ln(1+Avg.#infectedHosts over days)

C
.C

. ESM0

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

● ●

●

●●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
● ●

● ●●
●

●
● ●

●
●

● ●

●
●● ●●

●
●●

●
● ●

● ● ●●

●● ● ●●
● ●

● ●● ● ●● ●●
●

● ●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●

●

●●●

●

●

●

●

●

● ●● ●

● ●
●● ● ●● ●● ●

●● ●

●

●● ●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ● ●● ●
●

●

●
●●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●●
● ●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

0 2 4 6 8 10

−
1.

0
0.

0
1.

0

ln(1+Avg.#infectedHosts over days)

C
.C

. ESM1
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
● ●● ●

●
●

● ●● ● ●
●

●● ●
● ●● ●●

●●
●

●
● ●

●

● ●
●

●●
●

●● ● ●●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●
●

●

●

●●
●

●

●● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●

●
●

●
●

●

●

●

●
●

●

● ●
●

●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●
●

●
●

●

●
●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●● ●

● ●
● ● ●

●

●
●●

●

●

●

●● ●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

0 2 4 6 8 10

−
1.

0
0.

0
1.

0

ln(1+Avg.#infectedHosts over days)

C
.C

. FBP

●● ● ●● ●● ●● ●● ● ●● ●● ●
●

●● ● ●●●

●

●● ●● ● ●● ●● ● ●
●

● ●
●

●

●

●

●

● ●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

● ●

●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●●● ●● ●

●

● ●● ●● ● ●● ● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ● ●● ●●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●●● ●
●

●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ● ●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

● ●● ●●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
● ● ●● ●●

●

●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ● ●● ●● ●
●

●● ● ●● ●

●

●
●

●● ●●●●

●

● ●● ● ●● ●

●

●

●

● ● ●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●● ●●
●● ●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●● ●

●

● ●●
●●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●● ● ●

●

●● ● ●● ●● ●● ●
●

● ●● ●● ●

●

●

●

● ●●

●
● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●
● ●● ● ●●

●

●

●

●

●

●

●●● ●

●

● ●●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●● ●
●

●
●

●● ● ●● ●●
●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●
●

●
● ●●

●●
●

●● ●
●●●

●

●

●
●● ●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ● ●
● ●●

●

●
●

●

● ●● ●● ●

●

●

●
●●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●
● ●

●

●
●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●●

● ●

●

●

●● ● ●● ●● ●● ●

●

● ●● ●●●

●

●
●

●
●

●
●

●

●

●● ●●●●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
1.

0
0.

0
1.

0

ln(1+Avg.#infectedHosts over days)

C
.C

. DIPS

●● ● ●● ●● ●● ●● ● ●● ●● ●
●

●● ● ●●●

●
●● ●● ● ●● ●● ● ●● ● ●●

●

●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●
●

●

●● ●

●

● ●● ●

●

● ●● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●● ●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●
●

●
● ● ●

● ●● ● ●● ● ●● ●● ●
●

●
●

● ●

●

●

● ● ●●

●● ●

●

●●
●

●

●

●
●

●

●

●

●

●
●

● ●
●

● ●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
● ● ●● ●●

●

●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ● ●● ●● ●● ●● ● ●● ●

●

●

●
●● ●●●●

●

● ●● ● ●● ●

●

●
●

● ● ●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●

●

●● ●

●

● ●● ●● ●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●● ● ●

●

●● ● ●● ●● ●● ●
●

● ●● ●● ●

●

●
●

● ●●

●

● ●

●

●●●● ●

●

●●
●

●

●

●
●● ● ●● ●● ●● ●

●
● ●● ●● ●● ●● ● ●●

●

●

●
● ●

●

●●● ●

●

● ●●
●

●●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

● ●

●

●
● ●● ●

●

● ●

● ●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●● ●●
●

● ●● ● ●● ●●
●

●

●

●

●● ●●
●

●

●

●

●
●

●

●

●

●
● ●● ●●

●
●●

●● ●
●●●

●

●

●
●● ●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●●
●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●● ●●
●

●● ●

●

●
●

●

●●
●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●● ●●●

●

●

●

●

●

●●

●

●

●

● ●●●●
● ●●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

−
1.

0
0.

0
1.

0

ln(1+Avg.#infectedHosts over days)

C
.C

. DIPS−Exp
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●●

●● ● ●● ●
● ●● ●● ● ●●●● ●

●
●● ●●●

●●
●●● ● ●●

●
●● ● ●● ●● ●●

●●
● ●● ●● ●

●
●●

●●●●
● ●

●

●

●

● ●
●

●

●

● ●● ● ●●

●● ● ●● ●● ●● ●●
● ●

●

●

●

●●

●●
● ●●●

●
●

●

●

●

● ●● ●●
●

●

●

● ●

●

●

●●
● ●● ●

●
●● ●

●
● ●● ●● ●● ●● ●

●
●

●●
●● ●

● ●
●●

●●

●

●●
●

●● ●● ● ●● ●● ●● ●● ● ●
● ●● ●●

●
● ● ●

●
●

●● ●
● ●

●
●●

●
●

●
● ●

●

●

●

●● ● ●● ●● ●● ●●
● ●

●
●●

●
●

●
● ●

● ●
● ●●

●
● ●

●
●● ● ●

●
● ●

●

●
● ● ●● ●● ●● ●

●

● ●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●
●

●● ● ●● ●● ●● ●● ● ●● ●● ●●
●● ●●●●● ●● ●● ●● ●● ● ●●● ●●

●● ● ●● ●● ●●
●● ● ●● ●

●
●

●

●●
●

●●
● ●

●
● ●

●
●●

●
●

●
●

●

●

●
●

● ●● ●● ●
●

●

●

●

●● ●
●

●
● ●

●
●●●

●
●

●
●

● ●
●

●
●

●
● ●

●

●

●
● ●

● ● ●
● ●●

●
● ●●

●
●●

●●

●

●
●

●
●●

●
●

●

●
●

● ●

●
●

●

●
●●

●

●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●
●

●● ●●●● ●● ●●
●

●● ●
● ●●● ● ●●

●
● ●

●● ●● ●
● ●● ● ●

●
●

●
●

● ●

●
●●
●

●

●●

●●
●

●
●

●

● ●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●● ● ●● ●● ●● ●●
●● ●● ●●● ●●

●
●

●

● ●●
●

● ●
●

●● ● ●● ●● ●
●

●● ● ●● ●● ●●●
●●●●●

●
●

●
●

●

●● ● ●
●

●● ● ●● ●● ●● ●● ● ●● ●● ●●● ● ●●● ●●●●● ●
●●

●

●
●

●
●● ● ●● ●● ●● ●●

● ●● ●● ●●● ● ●●● ●●
●●● ●● ● ●●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●

●
●

● ●
●

●●●
● ●

● ●●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●● ● ●● ● ●● ●●
●

●
●

●
●

● ●
●

●
●

●

●

●

●
● ●

●● ●

●

●
● ●

● ●●

●

●
●

●

●

●

●●●●●
●

●
●

●

●

●

●
●

● ●●
●● ●

●
●●

●
●

●●

●

●● ●●●
●

●

●
●

●●●

●● ● ●
●

●● ●● ●● ●● ●●
●●

●
●

●
●● ●●●

●
●● ●●

● ●
●

●● ●
●

●
●

●

●
●

●●
● ●

●

●

●

●

● ●

●

●

●●
●● ●

●

●
●
●●●

●●

●

● ●
●

● ●
● ●● ●● ●

●
● ●● ●●

●

●●
●
●●

●●●
● ● ●

●

●

●

●
●

●

●

●

●
●

●

●
●● ●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●●

●

● ●
●

●

●

●
●

●●

●

●

●●● ● ●●

●

●

●
●● ●

●●● ●
● ●

●
●

●●●

●
●

●

●

●
● ● ● ●

●

●
●

● ●●
●

●

●

●

●
●

●

●

●
●

●
●

● ●●

●

●

●
●

●

●

●● ●●●
●●

●
●●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●●●
●● ●● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●●

●

●

●

● ●
●

● ●●
●●

●

●●
●

●
●●●

●

●

0 2 4 6 8 10

−
1.

0
0.

0
1.

0

ln(1+Avg.#infectedHosts over days)

C
.C

. FUNNEL

(b) NRMSE

●
● ● ●

●

●

●
●

●
●●

●
●

●
●

●
●

●
●

●
● ●●●

● ●

●

●

●
●

●●

●
●

● ●

●
● ●

●

●● ● ●● ●
● ●

●

●● ● ●
●

●

●

●
● ●●

●

●
●●● ●

● ●
●

●

●

●
●

●

●
●● ● ●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●

●

●●●● ●● ●
●

● ●● ●● ● ●● ● ●●

●● ● ●● ●●
●●

●

●

●
●●

●
● ●

● ●
●

●
●

●●

●

●
●

●● ● ●●
●● ● ●●

● ●●
●● ● ●● ●

● ●● ●

●
● ●●

●
●

●
● ●

●

● ●
●●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●
●

●●●● ●● ●● ● ●● ●● ● ●●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●
●

●●

●

●●●
●

●● ●● ● ●● ●● ● ●●
●

●●

●● ● ●
●

●
●

●
● ●●

●
●●

●

● ●

●

●
● ●

●
●●● ●● ●

●

●
●

●

●●
● ●●

●

●

●
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●

●

●●●● ●● ●
●

● ●● ●● ● ●● ● ●● ●● ● ●●
●

● ●● ●● ● ●
●

●
●

●
●

●

● ●

●●●● ●● ●● ● ●
● ●● ●

●
●

● ●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●● ●●● ●● ●● ●● ● ●● ●●●● ●●

●

●●●● ●● ●
●

● ●● ●● ●●● ● ●●
●● ● ●●

●● ●●
●●

● ●● ●● ●
●

●●
●

●
●●

●

●● ●

●

●

●●

●● ●
●●

● ●● ●● ● ●● ●● ●● ●
●

● ●● ●
● ●● ●

● ●

●●
●

●
●

●
●

●

● ●
●

●●
● ●●● ●● ●● ● ●● ●● ●● ●● ● ●●

●
●

●●
●●

●

●

●●
● ●● ●

● ● ●
●

●● ●
●●●

●

●
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●

●
●● ●

●

● ●● ●● ● ●●● ●●

●● ● ●
● ●● ●● ●

● ●
●

● ●●
●●

●● ●
●●●

●
●●

●
● ●●●

●
●

●
●●

●
●

● ●●

● ●

●

●
● ●

● ●● ●
●● ●

●

●

●
●● ●●

●●

● ●●
●●

●
●

● ●●

●
●● ●
●

● ●
●

● ●
● ●● ●● ●

●

●
●●

●
●

●●

●●
●
●
●

●●
●

● ●
● ●●

●

●
● ●●

● ●
●●

●● ● ●●
●

● ●● ●● ● ●● ●●●● ●●

●

●●●● ●● ●

●

● ●● ●● ● ●● ●
●● ●● ●●●

●

● ●● ●● ● ●● ●●●● ●●
●

●●●● ●● ●

●

● ●● ●● ●
●● ● ●●

●●
● ●

● ●● ●● ●● ● ●
●

●
● ●● ●●

●
●●

●

●

●●
●

● ●
●● ●● ●

●
●

● ●●
●●

● ●● ●● ●● ●●
● ●● ●

● ●
●

●●

●

●
●

●
● ●● ●● ●

●
● ●

● ●●●● ●●

●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●●

●

●●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
● ●

●●

●

●
●●

●
● ●

●
● ●●

●●
●●

●

●
●

●
● ●

●

●
●

● ●

● ●
●

●
●● ● ●

● ●
●

● ●●

●

●

●
●

●●
● ●● ●

●

●

●

●

●

●

●

●
●

● ●●
●

●

●
●●

●

●

●
●

● ●

●

●

●● ● ●●
●

● ●● ●
●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●
●

●

●

● ●
●

●
●

●
●

●●

●

●●
●

●
●

● ●●

●
●●

●

●

●● ●
●

● ●
●

●

●

●
●

●●
●

●

●

●● ●●● ●
●

●

●●

●

●
● ●

●

●
● ●

●

●
●● ●●

●

●

●
● ● ●

●

●
●

●

●
●

●

● ●

●

●
●

●

●

●
●

●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ●●●● ●●

●● ●

●
●

●
●

●
●

●
●

● ●●
●

●
●

● ●● ●●
●●

●

●

●

●

●

●
●

● ●
●

●

●●

●
●

●

●

●● ● ●●

●

● ●● ●
● ● ●● ●●●● ●

● ●●●●● ●● ●● ● ●● ●● ● ●
●

●
●

● ●
● ● ●

●
●●

●●
●● ●

●● ●●●

● ●
●

●

●●

●

●
●

● ●
●

●
●

●
●●

●

●
● ●

●

●

●● ● ●●

●

●●●
●

● ●

●
● ●

● ●●
●

● ●
●●●● ●

●
●

●

●
●

● ●●
●

●
●● ●● ●

● ●

●

●

●
●

●● ●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●●

●

●

● ●
● ●

●●

●

●
●

●

● ●●

●●

●

●

● ●
●

●
●

●●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●●
●

●
● ●●

●
● ●

● ● ●●
●

●

●
●

●

●

●
●●

●

●

●●
●

●
●

●●
●

●

● ●
●

● ●
●

●●
● ●●

●●

●●
●

● ● ●

●●
●●

●
●● ● ●●

●

●● ●
●

●●● ●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ● ●
● ●

●●
● ●● ●●

●
●

●
● ●●

● ●

● ●
●

● ●
●
●

●●
●

●
●●●

●●

●● ●● ●
●

● ●
●

●●
●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

● ●●

●● ●●● ●●

●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●
●

●

●

● ●

●

● ●
●●

● ●

● ●● ●●
●

●

●

●
●

●●
●● ● ●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

● ●
●

●●
●

●

●

● ●

●●
●

●
●

● ●●

●
●

● ●

●●
●

●
●

● ●
●

●

●

●

●

●

● ● ● ●●
●

●
●

● ●
●

● ●
● ● ●

●
●

●

●

●

●

●

● ●

●

●●
●

●
●

●
●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
● ● ●

● ●●
●

●

●

●
●

● ●● ●
●

●

●

●●
● ●

●

●
●●

●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●
●

●

●
●

●

●● ● ●
●

●
●

●

● ●
●

●

●
●

●

● ●● ●
●

●●
●● ●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●

●● ●

●
●

●
●

●
●

●

●

●● ● ●●

●

●●
●

●

● ●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

0 2 4 6 8 10

0.
0

1.
0

2.
0

ln(1+Avg.#infectedHosts over days)

N
R

M
S

E ESM0

●● ●

●

●

●

● ●●

●
●

●
●●

●
●

●

●
●● ●

●●

●
●

●●

●

●
●

●●

●

●
● ●

●
●

●
●

●
●

●
●

● ●● ●
●

●
● ● ●

●

●

●

●● ●●
●

●
●●

● ●

● ●

●

●

●

●
●

●

●

●● ● ●
●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●

●

●●●● ●● ●

●

● ●● ●● ● ●● ● ●●

●
●

●
●● ●● ●●

●

● ●
●●

●

●
●

● ●● ●●●●● ●
●

●● ● ●●

●
● ● ●● ● ●● ●● ● ●●

●
● ●● ●

●

● ●●
●

●
●

● ●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●
●

●●●● ●● ●
●

● ●● ●● ● ●●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●
●

●●

●

●●●
●

●● ●● ● ●● ●● ● ●●
●

●●

●● ● ●
●

●
●

●
● ●●

● ●
●

●
●

●

●

●
● ●

●
●●● ●●

●

●

●
●

●

●
● ● ●● ●

●

●
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●

●

●●●● ●● ●

●

● ●● ●● ● ●● ● ●● ●● ● ●●
●

● ●● ●● ● ●
●

●
●

●
●

●

●

●

●●
●

● ●● ●● ● ●
● ●● ●

●
●

● ●
●

●

● ●
●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●● ●●● ●● ●● ●● ● ●● ●●●● ●●

●

●●●● ●● ●● ● ●● ●● ●●● ● ●●
●● ● ●● ●● ●● ●●

● ●●
●● ●●

●●
●

●
●

●

●

●

●

●

●

●

●●

●● ●
●●

● ●● ●● ● ●● ●● ●● ●
●

● ●● ●
● ●● ●

●

●●●●●
●● ●

●

● ●
●

●
●

●
●

●● ●● ●● ● ●● ●● ●● ●● ● ●●
●

●
●●

●
●

●

●

●●
● ●● ●

● ● ●
●

●● ●
●●●

●

●
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●

●
●●●

● ●● ●

●

● ●● ●● ● ●●● ●●

●● ● ●
● ●

● ●● ●
● ●

●
● ●● ●●
●● ●

●
●

●

●
●●

●● ●●●
●

●
●

●●

●
●

● ●●

● ●

●

●
● ●

● ●● ● ●● ●
●

●

● ●

●
●●

●●

● ●●
●●

●
●

● ●●

●●
● ●

●
● ●

● ● ●● ●● ●●
●●

●
●●

●
●

●●
●●

●
●
●●● ●

●
●

●

●●
●

●
● ●●

● ●
●

●
●● ● ●●

●

● ●● ●● ● ●● ●●●● ●●

●

●●●● ●● ●

●

●
●● ●● ● ●● ● ●● ●● ●●●

●
● ●● ●● ● ●● ●●●● ●●

●

●●●● ●● ●

●

● ●● ●● ● ●● ● ●●
●

●
● ●

●
●●

●
● ●● ● ●●

●
● ●

● ●●

●

●●
●

●

●●
●

●
●

●● ●●
●

●
●

● ●●
●●

● ●● ●● ●●
●

● ● ●● ●● ●
●

●
●

●

●●
●

● ●● ●● ●
●● ●● ●●●● ●●

●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●● ●●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
● ●

●●

●

●
●●

●
● ● ●● ●●

●●
●●

●

●
●

●
● ●

●

●
●

● ●

● ●
●

●
●● ● ●

● ●
● ● ●●

●

●

●
●

●
●

● ●● ●
●

●

●

●

●

●

●
●

●

● ●●
●

●

●
●●

●

●

●
●

●

●

●

●

●
● ● ●●

●
● ●● ●●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●
●

●

●

● ●

●
●

●
●●

●●

●

●●
●

●
●

● ●●

●
●●

●

●

●● ●
●

●
●

●

●

●

●
●

●●

●
●

●

●● ●●● ●
●

●

●●

●

●
● ●

●

●
●

●

●

●
●● ●●

●

●

●
● ● ●

●

●
●

●

●
●

●

● ●

●

●
●

●

●

●

●

●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ●●●● ●●

●● ●

●
●

●
●

●
●

●
●

● ●●
●

●
●

● ●● ●●
●●

●

●

●

●

●

●
●

● ●
●

●

●●

●
●

●

●

●● ● ●●

●

● ●● ●
● ● ●● ●●●● ●

● ●●●●● ●● ●● ● ●● ●● ● ●●
●

●
● ●

● ● ●
●

●●

●●
●● ●

●
● ●●●

● ●
●

●

●●

●

●
●

● ●
●

●
●

●
●●

●

●
● ●

●

●

●● ● ●●

●

●●●
●

● ●

●
● ●

● ●●
●

● ●
●●●● ●

●
●

●

●
●

● ●●
●

●
●● ●● ●

● ●

●

● ●

●

●● ●
● ● ●

●

●●

●

●

●

●
●●●

●
●

●
●

●

●

●
●●

●

●

● ●
● ●

●●

●

●
●

●

●

●
●

●

● ●

●

● ●
●

●

●
●●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●●
●

●
● ●●

●
● ●

● ● ●●
●

●

●
●

●

●
● ●●

●

●

●●
●

●
●

●●

●●

● ●
● ●

●
●

●●
●

●
●

●
●

●●
●

●
● ●

●●
●●

●
●●
● ●●

●
●

● ●
●

●●
● ●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ● ●
●

●

●●
● ●

● ●●

●●
●● ●●

● ●

● ●
●

● ●
●
●

●●
●

● ●●●
●●

●● ●● ●
●

● ●
●

●●
●

●

●

●●

●

●

●

●
●

●

●
●

●

● ● ●

●

●
●
●

●● ●●● ●●

●

●

●

●

● ●●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●
●

● ●

●

●

● ●

●

● ●
●

●

●

●
● ●●

●
●

●
●

●

●
●

●● ●
● ● ●

●

●

●● ●

●

●
●●

●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

● ●
●

●●
●

●

●

● ●

●●

●

●
●

●
●●

●
●

● ●

●●
●

●
●

● ●
●●

●

●

●

●

● ● ● ●●
●

●
●

● ●

●
●

●● ●

●●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●
● ●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
● ●

●

●
●●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●●
●

●

●

●

●
●

●●
●

●

●●

●
●

●

●
●

●

●● ● ●
●

●
●

●

● ●
●

●

●
●

●

● ●● ●
●

●●
●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●

●
●

●● ●

●
●

●
●

●

●

●

●

●● ● ●●

●

●●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

● ●
●

0 2 4 6 8 10

0.
0

1.
0

2.
0

ln(1+Avg.#infectedHosts over days)

N
R

M
S

E ESM1

●● ● ●
● ●● ●●

●
● ● ●

●

●
● ●

●

●●

●
●

●●● ●● ●● ●
●

● ●● ●
●

●
● ●●

●
●

●
●

● ●
● ●

●
●

● ●
●●

●
●

●

●
●

● ● ●●●

●

●
●

●●
●

●
●

●

●

●
●

●
●

●

●
●● ●

●● ●● ●● ●● ● ●
● ●

● ●● ●● ●
●●

●
● ●● ●● ●

●● ●● ● ●● ● ●●

●● ● ●●
●

● ●● ●● ● ●● ●● ●● ●● ●●●
●

●
●

●
●●

●

●●
●● ● ●● ●
●●

●● ● ●●

●

● ●● ●

●

● ●● ●●

●

● ●●

●

●●●

●

●

● ●

●

●●
●

●

●
●

●●

●

●
●

●●
● ●●

●●
●

●
●● ●

●
●

●● ●
● ●● ●●

●●
● ●

● ●
●

● ●
●

●
●

●
●

●●
●

● ●● ● ●● ●
●

●● ●
●

● ●● ●● ●

●

●● ● ●●
●●

●● ●● ● ●
●

●● ● ●● ● ●●

●

●

●
●

● ●

●

●●
●

● ● ●

● ●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●
● ● ●
●

●

●●
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●

●
●●●● ●● ●

●
● ●● ●● ● ●● ● ●●

●● ● ●●
●

● ●●
●

● ● ●● ●●

●
●

●●

●

●●●
●

●
● ●● ●

●● ●● ●
●● ●

●●

●

● ●
●●

●●

●
●

●

●

●
●

●

●●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
● ●

●●
●

●

●

●● ●●●

●

● ●● ●● ●● ●
●

●● ●●

●

●●●● ●
● ●● ● ●● ●● ●●● ● ●●

●● ● ●

●
●

●
●● ●

● ● ●

●
●

●

●
● ●●

●
●

●

●

●
●

●
●

●

●

●
●

●● ●
●● ●

●

● ●● ● ●●
●●

●● ●

●
● ●●

●●

●●

●
● ●●●●●

●

●
●

● ●

●

● ●
●

●
●

●

● ●●
●● ● ●● ●● ●● ●

● ● ●● ●
●

●●
●

●

●

●
●●● ●● ●

● ● ●● ●● ●

●
●●

●

●
●● ● ●●

●

● ●● ●● ● ●● ●● ●● ●● ●●●
●● ●● ●

●

● ●● ●● ● ●●● ●●

●
● ●

●
●

●
● ●● ●

● ●
●

● ●
●

●● ●● ●
●●●

●
●●

●
● ●

●
● ●●

● ●
●

● ●●
●

●

●
●

●

●

● ●
● ●

● ●
●

●
●

●
●● ●● ●

●
●●

●
●

● ●
● ●

●● ●●

●

●● ● ●
●

●● ● ●● ●●
●

● ●● ● ●● ●

●

●

● ●● ●

●
●●

●

●

●
●

●

●

●
●

●

●
●
●

●
●

●
●

●
● ● ●● ●● ●● ●● ● ●

●
●

●●● ●●

●

●●●● ●● ●

●

● ●●
●

●
●

●● ● ●● ●● ●●●

●
● ●● ●● ● ●

●
●●●● ●

● ●●●●●
●● ●

●

● ●● ●● ● ●● ●
●●

●

● ● ●●
●●

●
●

●
● ● ●●

●

●

●● ●

● ●

●●

●
●

●
● ●
●

●●
● ●

●

●

●
● ●

●

●
●● ● ●●

●

●
●

●
●

●

● ●●

●

● ●●

●

●

●

●
●●●

●

● ●●

● ●
●

●● ●
●●

●
●●

●

●
● ●

●
●● ●

●

●

●

●

●
●

●

● ●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●
● ● ●

●
●

● ●● ●
●

●
●

● ●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

● ●

● ●
●

●

●
● ● ●

● ●
●

● ●●

●
●

●● ●● ● ●●
●

●
●

●
●

●

●

●●
●

● ●● ●
●

●
●

●
●

●
●●

●

●
●●

●

●
●

●

●

●

●
●

● ●
● ● ●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●● ●

● ● ●

●

●
●

●
●

●

●

●● ●

●
●●

●

●

●

●● ●
●

●

● ●
● ●

●
●

●

●

●
●

●
● ●

●

●
●● ●●● ● ●

●

●
● ●

●
● ●

●

●
●

●

●

●

●●
●● ●●

●
● ●

●

●

●
●

●●

●

●

● ●

●

●
●

● ●
●

●

●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●
●●●●● ●● ●● ● ●●

●● ●●●● ●●

●● ●

●
● ●●

●
●

●
●

● ●●
●

●
●

● ●● ●● ●●
●

●

●

●

●

●
●

● ●
●

●
●

●

●
●

●

●

●● ● ●●
●

●
●

●
●● ●

●
● ●●

●● ●● ●●●
●● ●●

●●
●

●● ●●
● ●

●
● ●● ●

●
● ●

●

●●
●

●
●

● ●
●● ●

●

●
● ●

●

●

●
●●

●

●

● ●
●

●
●

● ●● ● ●

●
●

●

●

●● ● ●●

●

●●● ●
● ●

●● ●
● ●

● ●●

●

●●●● ●
● ●

●
●

●
● ●● ●

●
●● ●●

●
●

●
●

●
●● ●●

●●
●

●

●
●●

●

●

●

● ●
●

●

●

●

●
● ●

●

● ●● ●

●
● ●

● ●

●
●

●
●

●
●

●

●

●

●● ●

●

● ●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

● ●
●

●
●

●

●
●● ●

●

●●
●

●
● ●● ●● ●

● ● ●●
●

●

●
●

●

●

●
●●

●

●

●●
●

●
●

●●

●
●

● ●
●

● ●
●

●● ● ●● ●●
●●

●● ● ●

●●●●
●

●
● ● ●

●

●
●

● ●●

●●● ●● ●
●

●
● ●●

●
●

● ●● ●● ●
●

●● ● ●
●

●●
●

●
●

● ●
●●

● ●
●

●●

● ●

● ●● ●
●●

● ●●
●

●

●

●● ●

●
●● ●● ● ●

● ●
●

●●

●● ●
●●

●

●

●

●
●

●

●● ●
●

●
●

●●
●
●

●● ●●● ●●

●

●

●

●

● ●●
●

●
●●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●●
● ●

●
●

●

●

●

●● ●
● ●●

●

●

●

●

●
●●

●●
● ●

●

●

●●

●
●● ●●
●●

●●
●●

● ●
●

●

●

●

●

●

●

●●
●

●
●

● ●
●

●
●

●

●
●●

●●
●

●

●●

●

●●
●●

●
●

●●

●
●

● ●

●●

●
●

●

● ●
●

●

●

●

●

●

● ● ●

●

●
●

●

●

● ● ●
●

●

● ●

●
●

●

●

●

●

●

●

● ●●

●●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●● ●

● ●

●
●

●

●

●●
●

●

●

●
●●

●●●

●

●●
●

●

●
●

●

●

●●
●

●

●
●

●
●

● ●
●

●

●
●

●

● ●● ●
●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●● ●

●
● ●●

●

●

●

●

●● ●
●●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

0 2 4 6 8 10

0.
0

1.
0

2.
0

ln(1+Avg.#infectedHosts over days)

N
R

M
S

E FBP

●● ●
●

● ●
● ●

● ●
●

●
●● ●● ●

● ●
● ● ●●●●

●● ●
● ● ●● ●

● ● ●
● ●

●
●

●● ● ●● ●● ●● ●● ● ●● ●● ●

●

●
●

● ●●
●

●

●

●
●● ●●

●
●

●
●●● ● ●

● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●● ● ●● ● ●●
●●

● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●
●

● ●● ●● ● ●● ● ●● ●● ● ●● ●
●

●● ●● ● ●●
●● ●● ●

● ● ●●●
● ●

●
●

●

●●●
●● ● ●●

●
●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●
●

●
● ● ●●●● ●

● ●
●

● ●
● ●● ● ●●

● ●●

●● ● ●●
●●

●
●

●
● ●

●●
●

●

●

●

●● ●●

●
●● ●

●

●

●

● ●
●

●●

●
●●

●

●
●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●● ● ●● ● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ●●● ● ●●
●● ● ●

●
●●

●● ●●
●

●
●

●● ●
●

●●
● ●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●
●

●
● ●● ●

●● ●
● ●● ●● ● ●● ●

● ●●
●

● ●●●●● ●● ●
●

● ●● ●● ● ●
●

● ●●
●● ● ●● ●● ●● ●● ● ●● ●

● ●

●
●

●
●●●

●

● ●
●

●
● ● ●● ●

●

●●
●

●
●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●●● ●●

●● ● ●●
●

● ●● ●● ● ●● ●
●

●● ●●
●

●●●

●

●● ●● ●●● ●
● ● ●●

●

●● ●● ● ●● ●
●

●● ●●
● ●● ●

●
●

●
●●

●

●●
●●

●●
●● ●

●
●

●

● ●●
●

● ●● ●● ● ●● ●● ●● ●
●

● ●● ●● ●●
●● ●●●●

●

●

●
●

●
●●● ●● ●●

●
● ●●

●● ● ●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ●●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●●

●● ● ●● ●● ●● ●
●

● ●● ●● ●
●

●
●

●●●

●

●

●
●

●

● ●

●
● ●●

●
●●

● ●●
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●●● ●● ●● ● ●●

●●
●

●●● ●●

●

●
● ●

●

●

●
●

●

●

●

●

●
● ●●
●

●

●
● ●

●

●●●

●

● ●●

●

●●

●

● ●

●

●

●

●

●

●
●

● ●
●

●● ●● ●● ● ●● ●● ●●
●●

●●●
●

●

●

●

●●
● ●● ●

●

●
●

● ● ●● ●● ● ●● ●● ●● ●● ● ●● ●
●

●
● ●● ● ●●

●● ●● ●
● ●

●

● ●

●
●

●
● ● ●

●

●● ●
●● ●● ●● ●● ● ●●

●
●

●

●

●● ● ●

●

●

●

●

●

●●
●●

●
●● ●

●
●

●

●

●
●

●

●
●

●

●
● ●

●

●
● ●

●● ●

●

●
●

●

●

● ●
●

●
● ●

●

●

● ●
●

●

●

●

●
●

● ●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ●●●● ●●

●
● ● ●

● ●● ●

●
●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●
●

●●
●

●

● ●

●

●

●

● ●
●

●

●

● ●● ● ●● ●● ●● ●
●

● ●● ●●●● ●
●

●●●●● ●● ●● ● ●● ●● ● ●●
●

●

● ●● ● ●● ●● ●

●

●● ● ●
● ●

●●●
●●

●●●

●

● ●

●

●

●

●
●● ●

●
● ●●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●●
●

●● ●

●

●
● ●●

●
●

●

●
●

●
●

●●

●

●●

●

● ●

● ●

●

●

●

●

●

● ● ●●
●

●

●
●

●
● ●

●
●

● ●● ●●
●

●
●

●
●

●

●
●

●
●● ●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●
●●●

●

●
● ●

●

●

●

●
●

●

●

●
●●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●●

●

●

●

●●
●

●
●

● ●

●

●

●

●

●

●

●

●

●● ●● ●● ●●● ●● ●● ●● ● ●●
●● ●

●

●●

●

●●
●

●

●

●

● ●

●
●

●

●

● ●
●

●

●

●

●
●

●
●● ●

● ●

●

●● ● ●●
●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●●●
●

●

●

●●

●

●

●
●

●
●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●
●● ●

●

●
●● ●

●●● ●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●● ● ●● ●● ●● ●
●

● ●● ●
●

●

● ●

● ● ●●

●

●

●●
●

●

●

●
●

●
●

●
●● ●

●● ●
● ● ●

●

●
●

●
●

●

●

●
●

●
●

● ●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

● ●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●● ● ●
●

●
●

●● ●

●

● ●● ●●●

●
●

●

●

●

●

●

●

●

●
●

●●●

●
●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●
● ●
●

●
●

●

●●

●
●
● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

0 2 4 6 8 10

0.
0

1.
0

2.
0

ln(1+Avg.#infectedHosts over days)

N
R

M
S

E DIPS

●

●
● ●

● ●● ●●
●

● ● ●● ●

●
●

● ●●
●

●
●

●●

●●
●● ● ●● ●

● ● ●●
●

●● ●● ● ●● ●● ●● ●● ● ●● ●● ●
●

●● ● ●●●●
●

●

●
●

●●

●

●

●

●●
●

●
●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●● ● ●● ● ●●
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●

●
● ●● ●●

●
●

● ●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ● ●●
●● ●● ●

● ● ●●

●
●

●

●
●

●

●●●
●

●

● ●● ● ●
●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●●● ●●
●● ● ●● ●● ●● ●

●
● ●● ●● ●● ●● ● ●●●

● ●● ●● ● ●
● ●● ● ●● ● ●●

●
● ● ●

●
●● ●

●

●
● ●

●●
●

●

●

●

●●
●

●
●●

● ●

●
●

●

● ●
●

●●

●

●● ●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ●
●

● ●
● ●

●

●● ●

●

● ●
●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●● ●●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ●●● ● ●●
●● ● ●

●
●●

●● ●●
●

●
●

●● ●
●

●●
● ●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●
●

●● ●● ● ●● ●● ●
● ●●

● ●● ●● ●● ●● ●●
●

●
● ●

●
●

●
● ●

● ●● ●
●

●
● ●●

●● ● ●● ●● ●●
●

●
● ●● ●

● ●
● ●●

●●
●

●

● ●
●

●
●

● ●● ●
●

●
●

●
●

●●
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●●● ●●

●
● ● ●● ●● ●● ●

●

● ●
●

●● ●● ●

●

●●●●●

●● ●●

●
●

●

●●

●
●●

● ●
●

●● ● ●● ●
●

●● ●●
● ●● ●

●

●
●

●●
●

●●
●●

●●
●● ●

●
●

●

● ●●
●

● ●● ●
● ● ●● ●● ●

● ●● ● ●● ●●
●

●
●●

●●●
●●

●

● ●
● ●●●

●● ●●●
●

●

●

●● ● ●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ●●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●●

●● ● ●● ●● ●● ●
●

● ●
● ●● ●

●
●

●
●●
●

●

●

●● ●

● ●

●

●
●

●
● ●● ● ●● ●● ● ●● ●

●
●

●

●

●
● ●● ●

●

●
●

●
●

● ●●

●●

●

●

●

●
●

●

● ●

●
●●

●
●

●●

●

●
● ●

●

●

●
●

●

●

●

●

●
● ●

● ●

●

●
● ●

●

●●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●● ●● ●● ●●
● ●

● ●● ●●
●● ●●●

●●
●

●

●●

●

●
● ●

●

●●
● ● ●

● ●● ● ●●
●

●
●● ●

●
● ●● ●

●
●

● ●
●

●
●

●●

● ●● ●

●
●

●

●
●

● ●

●
● ●

●
●

●● ●
●● ●● ●● ●● ● ●●

●
● ●

●

●●
● ●

●●

●

●● ●

●

●
●

●
●

● ●
●●● ●●

●

●

●
●●

●
●

●
●

●
● ●

●● ●

●
●

●

●

●

● ●●
●

● ●

●

●

● ●
●●

●
●

●

●●

●
●

●

●

●
●

●

● ●
●

●● ●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ●●●● ●●

●

●
● ●●

●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●
● ●● ● ●● ●● ●● ●

●
● ●● ●●●● ●

●

●

●

●●● ●● ●● ● ●
●

●● ● ●●

●

●
● ●● ● ●● ●● ●

●
●

●
● ●

● ●
●●

● ●
● ●●●●● ●

●

●

●

●

●
● ●● ●

●●
●

●● ●● ● ●● ●●●
●

●● ● ●● ●●
●

●
●● ●●●●

● ●●
●

● ●●● ●● ●
●●● ●● ●

●
●

●● ●

●

●●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

● ●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●
●●●

●

●
● ●

●
●

●

●

●

●

●

● ●
●

●
●●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●● ●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
● ●

●
●
●

●
● ●● ●●● ●● ●● ●

● ● ●●
●● ●

●

●

●

●

●●

●

●

●

●

● ●

●
● ●●

● ●

●

●

●

●

●
● ●

●

● ●

●

●

●

●
●

●
●

●
●●

●

●

●

●

● ●

●

●●

●

●

●●

●

●
●

●

●
●

●
●●

●
● ●

●

●

●
●

●
● ●●
●

●
●

●

●

●

●
●

●●
●

●

●

●

● ●

●

●

●

●
●

●

●
●● ●

●
●

●● ●
●●●

●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●
●●

●

●●

●

●

●

● ●

●

●
●

●● ●

●

●

●

●●●
●

●

●

●

●

●

●●
● ●●

●●
●

●
●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●
●

● ●

●

●● ●

●

●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

●●

●●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0.
0

1.
0

2.
0

ln(1+Avg.#infectedHosts over days)

N
R

M
S

E DIPS−Exp

●● ● ●● ●● ●● ●
● ● ●● ●● ●●

●● ● ●●●
●

●● ●●
● ●● ●

●
● ●● ● ●● ●

●
●

●●
●

● ●●
●

● ●

●●
●

●
●

●
●

●
● ●
●●

●
●

●
●

●

●
●●

●●

●●
●

●
●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●● ● ●● ● ●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●
●

● ●● ●● ● ●● ● ●●

●● ● ●● ●● ●● ●● ● ●● ●
● ●

●
●● ● ●●●● ●●

●
● ●●● ●● ● ●● ● ●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●●● ●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●
● ●●●

●
●● ●

● ● ●
●

●● ● ●●
● ●●

●● ●
●● ●●

●
●

●

●

● ●
●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●
●

● ●

●
● ●

●
●

●
● ● ●● ●

● ●●
●

●
●

●
● ●● ●● ●● ●●●●

●
●● ●

● ●
●● ●● ● ●● ● ●

●

●● ● ●● ●● ●● ●● ● ●
● ●●

●

●
●

●
●

●
●●

● ●

● ●●
●

●

●

●
●

● ●

● ●

●
●

●
● ● ●● ●●

●●
●

●

●
●

●
●●●

●

●●

●

● ●
●●

●

●

●
● ●

●

●
●

● ●

●

●
●

●
●

●● ●●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ●●● ● ●●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●
●

● ●●
●

●

●● ●

●

●
●● ●●

● ●
●

● ●●

●● ● ●● ●● ●
●

●●
● ●●

●●
●● ●

●

●
●

●
●●

●

●
●

●

●
●● ●

●
●

●
●●

●
●

●● ● ●● ●● ●●
●

● ● ●●
●

●
●

●

●● ●●
●

●
● ●● ●●

● ●●
●

● ●

●●
● ●

●
●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ● ●●● ●●

●
● ● ●● ●● ●● ●● ● ●● ●

● ●
●

●
●

●●●
●

●

●

●

●

●

●●● ●●
● ●●● ●●

●
●

● ●● ●
● ●

●
●

● ●
●

● ●●●

●

●

●
●●●●● ●

●

●
● ●

●●
●

● ●
●

●
●

●●

●● ● ●● ●● ●● ●● ●
●

● ●● ●
●

●● ●●●●

●

●

●

●

●
●●● ●●

●
●● ● ●

●

●● ● ●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ●●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ● ●● ● ●●

●

●

● ●

●

●

●
●

●
●

●
● ●

●

●●
●

●
●

●

●●
●

●

●

●

●

●

●

●●
● ●

●

●
●

●

●
●●

●● ● ●● ●● ●● ●● ● ●● ●● ●
●

●● ● ●●●● ●● ●● ● ●● ●● ●●●● ●●

●
● ●

●● ●●
●

●

●

●

●

●●
●

●

●

●

●

● ●

●●

●
●

●

●

●

● ●

●

●
●● ● ●

●

● ●

● ●● ●
●● ●

●
●● ●● ● ●● ●

●

●
●

●●

●
●●

●

●

●
●

●
●

●

●
● ●

●

●

●●
● ●

●

●
●

● ●
●

●

●
●● ●● ●

●● ●● ●

●

●●

● ●●
●

●

●

●

●

●

●

●
● ●

●

●
●●

●
●

●
●● ●

●
●

●●
●● ●

●
● ●● ●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●●
●

●

●
● ●

●
●

●●
●

●

●

●
● ●● ●● ●

●
●

●●

●

●

●

● ●
● ● ●●

●

●

●●

●

●

●●
●

●

●

●●

●

● ●
●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●
●●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●●

●

●

● ●

●

●

●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ●●●● ●●

●● ●
●

● ●
●

●● ●

●

●
●

●

●
●●

●
●

● ●
●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●● ●● ● ●● ●● ●● ●● ● ●● ●●●● ●● ●●●●● ●● ●● ● ●● ●● ● ●●● ●●

●●
● ●●

●● ●● ●

●

●
●

● ●●
●

●

●

●

●
●●

●
●

●●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

● ●●●●● ●● ●● ●●● ●● ● ●●● ●●

●

● ●●● ●●
●

●
●

●
● ●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

● ●
●

●

●

● ●
● ●

●
● ●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
● ●●

● ●●
●

●
●

● ●
●●

●
●

●
●

●●
●

●

●

●

●

●● ●

●

●

●
●

●●

●

●

● ●

●
●

●● ● ●● ●
●

●● ●
●

● ●

●
●

●

●
● ●
●

●
●●

●

●
●

●
●

●

●
●

●
●

●●●● ●
●

●● ● ●● ●●
●

●
●

●

● ●
●

●
●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●
●●

●
●●● ●

● ●
●

●●● ●
●

●● ●
●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●●
●

●
●

●
●
●

● ●
● ●

●

●●

●
●●

●
●

●
●

●

●

●●

● ●

●

●
●

●
●

●●

●

●●

●

●●
●

●
●●

●
●● ●●

●

●

● ●
●

●●●

●

●

●

●● ●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●
● ●● ●●

●
●

●
●

● ●
●

●●●

●

●

●

●●
●

●
●

●
●

●

●
● ●● ●

●

●

●

●

●

●● ●
●

● ●
● ●

●
●

●

●
●

●
●●●

● ●●
●

●

●●●
●

●
●

● ● ●
●●

● ●
●

● ● ●●

●● ● ●
● ●● ●

●
●

●
● ●●
●

●

●

●

●●

●●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●● ●

● ●

●

●●
● ●● ●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

● ●● ● ●
●

●
● ●● ●

●

● ●● ●●●
●

●

●

●● ●
●●

●

●●
●●●

● ●
●

●

●

●

● ●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

● ●● ●
●

●
●

●

●●

●

●

●

●

●

●
●●

●●●

●

● ●

●

● ●
● ●

●

●

●

●

●
● ●

● ●
●

●
●

●

●

●
●

●

● ●●

●

●●

●

●

● ● ●● ●

●

●

0 2 4 6 8 10

0.
0

1.
0

2.
0

ln(1+Avg.#infectedHosts over days)

N
R

M
S

E FUNNEL

Fig. 5.6: (a) Correlation coefficient and (b) NRMSE by ln(1+ Avg.# infected hosts over all days)

correlation coefficient.

5.6.3 Summary of experiments

ESM and DIPS have low prediction errors and relatively high correlation coefficient values on

average over all 2000 (country,malware) pairs. Both models have better prediction performance

for the country-malware pairs having more infected hosts. For the cases having lower infectious

levels, DIPS was not reliable and sometimes yielded very large errors. Interestingly, in the lower

infectious levels, DIPS and FBP showed complementary performance. So, the combination of

two techniques, ESM showed good and very stable performance for almost all cases except the

very small number cases where DIPS was originally the best.
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(b) NRMSE
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Fig. 5.7: (a) Correlation coefficient and (b) NRMSE by each country. The order from left to right is the de-

scending order by the number of hosts over countries. Each red line is the average over countries.

5.7 Related Work

We considered related work in cyber-security, data mining and epidemiology. Much research has

tried to model malware propagation. In July 2001, the Code Red worm infected 359,000 hosts on

the Internet in less than 14 hours [160]. Code Red achieved this by probing random IP addresses

(using different seeds for its pseudo-random number generator) and infecting all hosts vulnerable

to an IIS exploit. Staniford et. al. [187, 186] analyzed the Code Red worm traces and proposed

an analytic model for its propagation. They also argue that optimization like hit-list scanning,

permutation scanning can allow a worm to saturate 95% of vulnerable hosts on the Internet in

less than 2 seconds. Such techniques were subsequently employed by worms released in the wild,

such as the the Slammer worm [159] (infected 90% of all vulnerable hosts within 10 minutes) and
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the Witty worm [201]. Gkantsidis et al. study the dissemination of software patches through the

Windows Update service and find that approximately 80% of hosts request a patch within a day

after it is released; the number of hosts drops by an order of magnitude during the second day,

and is further reduced by factor of 2 in day three [89]. Additionally, [199] [138] [145] conducted

measurement studies into routing instability in Broder Gateway Protocol (BGP) routers caused

by catastrophic events, such as worm outbreaks or power outages. Other recent research also

includes using machine learning methods like belief propagation on the file-machine graph [52] to

infer files’ reputations (say malicious or benign). Papalexakis et. al. [167] propose the SharkFin

and GeoSplit models of spatio-temporal propagation of malware based on an analysis of the WINE

data. Their system models only the total volume of malware attacks as a whole over time using

a simplified model. In contrast, in this paper we model the magnitude of malware attacks per

machine in context of the machine usage and using many more sophisticated variables. As such,

our work can be also thought of as providing a fine-grained picture of malware attacks than just

gross-volume.

Remotely related work also comes from the area of information diffusion. Information

diffusion is the phenomena in which an action or idea becomes widely adopted due to the influence

of others, typically, neighbors in some network [27, 91, 98]. There are a lot of dynamic process

on graphs, all of which are related to virus propagation like blogs cascades [5, 137, 101] and

information cascades [152].

Finally our DIPS model is inspired by epidemiological models. The canonical textbooks

and surveys discussing fundamental epidemiological models like SIS and SIR include [111, 11].

Much work has gone into in finding epidemic thresholds (minimum virulence of a virus which

results in an epidemic) for a variety of networks [17, 154, 11, 130, 87, 169].
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5.8 Conclusions

In this chapter, we studied the problem of predicting the volume of actual malware infections in

a country given past data. This is a challenging problem because we can only detect a fraction of

malware infections. There are many potential benefits of accurately predicting malware volume,

which can have implications for better anti-virus software, and targeted patching. Using Syman-

tec’s extensive malware database WINE, we investigated the infection patterns of 50 malware in

more than 1.4 million hosts spread over two years in several countries. We present ESM, an en-

semble based approach which carefully leverages well-designed domain-specific features (FBP)

and a novel non-linear time-series model DIPS which incorporates detection and infections seam-

lessly. We show that our approach gives robust and stable predictions, even in case of low volume

of infections, across all the countries over several metrics (correlation coefficients and NRMSE).
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Chapter 6: Systemmatic banking crises prediction

6.1 Introduction

The global financial crisis has underscored the role of financial connectedness as a potential source

of systemic risk and macroeconomic instability. It has also highlighted the need to better under-

stand whether an increase in connectedness leads to a higher probability of a financial crisis. In

this section, we contribute to the literature on “early warning systems” (EWS) by investigating

whether measures of systemic risk, which are based on modeling the global financial system as

a network, can serve as early warning indicators and improve the performance of standard crisis

prediction models. In doing so, we use two commonly-employed prediction methods – a data

mining algorithm and an econometric crisis incidence model.

We build on the literature that links connectivity in the global banking network (“GBN”) to

systemic risk and contagion that arise during systemic banking crises.1 In particular, we compute

indicators of interconnectedness based on the pattern of financial linkages worldwide and test

their performance as leading crisis indicators. The EWS literature has traditionally focused on

balance of payments and currency crises in emerging market countries,2 and has identified several
1 See [85], [64], and [8].
2 Seminal contributions include [74], [121], [67], [122], and [24]. [23] caution that the out-of-sample performance

of EWS, especially over long horizons, has been mixed. In recent years, the literature has received a new stimulus,

with a focus on evaluating factors associated with recessions and growth collapses [66, 34], fiscal crises [18], and

financial crises in advanced economies [113]. Credit bubbles have been identified as the most robust determinant of

banking crises over very long time spans [181]. For an examination of how traditional models fared in predicting 2009

183



macroeconomic factors that are robustly correlated with crises. These include asset price bubbles,

low international reserves, real exchange rate appreciation, hyperinflation, and excessive short-

term and foreign exchange borrowing. Our approach adds to this literature by focusing on the role

of financial connectedness in predicting systemic banking crises. It also speaks to the concern that

complex linkages among nations and financial institutions may be a source of systemic risk and

accentuate business cycle downturns [204, 188, 182].

Our strategy is two-pronged. First, we assess the ability of a wide range of network-based

connectedness measures to predict crises according to a data mining technique, namely a “classifi-

cation algorithm” patented by one of the authors ([189]). Classification algorithms have been used

extensively in applications in the medical sciences, genetics, finance, meteorology, web research,

and terrorism research. Classification algorithms allow us to evaluate the predictive ability of a

large number of potential crisis indicators and to narrow down the set to the “most promising”

indicators that we can use in a parsimonious regression model. Second, we employ a standard

econometric model of crisis prediction – a probit – and evaluate its performance with and without

this set of indicators. Probit models have been used with varying degrees of success to predict

balance of payments, debt, and banking crises.3

Our findings indicate that network-based measures of financial connectedness help predict

systemic banking crises. In particular, increases in a country’s interconnectedness and decreases

in the connectedness of that country’s direct financial partners (or neighbors) are associated with

a higher probability of crisis. We also find evidence of non-linearities – interconnectedness has a

more pronounced influence on crisis probability at higher levels. The results of the classification

algorithm suggest that measures of financial connectedness are useful in predicting both crisis-

years and the onset of crises. This is especially true when we focus on the most recent wave of

emerging market crises, see [44].
3 See [68], [1], [61] and [73] for reviews of the large econometric literature on EWS.
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crises (2007-2010). The probit analysis reinforces these results. Estimates from a probit model

that incorporates connnectedness indicators in addition to standard macroeconomic fundamentals

generally outperforms, in and out of sample, a model based on fundamentals alone.

Our approach adds to a growing literature on the evolution of financial connectedness over

the business cycle. In this literature, cross-country linkages are captured in many different ways.

[59] build a GBN using data on cross-country debt flows and equity investments. The authors

show that countries that are more connected, hence more centric, in the GBN prior to the recent

crisis experienced a smaller loss of output during 2008-2009. [105] and [46] construct GBNs using

granular information on bank-level exposures in the syndicated loan market. [105] finds that US

recessions are associated with lower network connectivity. [46] show that the home countries

of banks that are “central” in the GBN experienced lower stock market crashes during 2007-

2008 compared to other countries. [86] argue that direct and indirect financial exposures can

act as conduits for the transmission of banking crises internationally. [157] construct a GBN

based on cross-border bank lending and securities investments and show that connectivity tends

to rise before systemic banking crises and to fall afterward. This body of work underscores the

importance of financial connectivity for economic performance during crises.

Few studies look directly at the question whether financial connectedness can serve as an

early warning indicator. [29] show that linkages across four US financial sectors – hedge funds,

banks, broker/dealers, and insurance companies – have become more significant prior to the 2007-

2009 crisis. In particular, the impact of returns of banks and insurers on those of hedge funds

and broker/dealers was stronger than the other way around before the crisis. This finding suggests

that measures of connectedness from the returns correlation network may be useful out-of-sample

indicators of systemic risk. [45] measures financial integration based on the network of inter-

bank lending and borrowing in the syndicated loan market, and finds that country-level indicators
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of financial connectivity, which are proxies for financial integration, have predictive power for

the incidence of banking crises during 1980-2007 after controlling for credit growth and other

macroeconomic fundamentals.

Our work differs from these studies in several ways. First, while [29] focus on US financial

institutions and hence on systemic risk in the US economy, we look at the ability of global financial

linkages to predict systemic banking crises in a cross-country setting. Second, we investigate the

performance of EWS augmented with measures of financial connectivity and include 2008-2010

crises (not covered in [45]). Including the latest generation of crises – which account for 74 out of

430 country-years over 1978-2010 – is important because financial connectedness may arguably

have played a more important role during the most recent wave of crises compared to earlier

ones. Third, while we use less granular information than [86] and [105], who employ bank-level

information on syndicated loan contracts, our data gives a comprehensive view of cross-border

banking system exposures – of which syndicated loans are only one component. Finally, we

consider a wide range of network-based connectedness indicators – 27 distinct indicators – along

with their lags and growth rates up to five years prior to a crisis.

To construct the GBN we use annual data on cross-border banking system exposures from

the BIS locational statistics over 1978-2010. The BIS locational statistics have been used ex-

tensively to analyze geographical patterns in financial linkages [157, 107], financial integration

[120], and factors associated with capital flows [33, 32]. The data represent foreign exposures of

banks in BIS reporting countries vis-a-vis residents (borrowers) in all other countries. The data are

representative of banking activity in each location as reporting banks typically account for more

than 90 percent of total banking assets in each BIS reporting country. For each year we construct

a directed GBN with countries as “nodes” and cross-border exposures as “edges,” and compute

network indicators using both the binary and weighted versions of this network (defined in Section
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2.1).

Our analysis addresses several related, yet distinct, dimensions of systemic risk. The first

one is connectedness narrowly understood as direct exposures among economic agents (such as

financial systems or institutions). Connectedness matters for crisis incidence because the failure

of an economic agent can lead to the failure of another agent through this direct channel. An

indirect channel is contagion, by which an agent’s failure leads to panic among agents not directly

connected to him/her. It is difficult to empirically separate the effects of connectedness from those

of contagion. In this section, we take a view of connectedness that encompasses the two concepts

and refers to both direct and higher-order (indirect) exposures. We take this concept to the data

by mapping financial linkages across countries and extracting information from the pattern of

connections by means of network analysis.

The remainder of this chapter is organized as follows. In Section 6.2, we introduce the data,

describe the construction of the GBN and present discuss long-term trends in financial connectiv-

ity. We also describe the classification algorithm. In Section 6.3, we present the results, ranging

from simple correlations between connectivity and crises to the performance of the classification

algorithm and that of the regression analysis. In Section 6.4 we conclude. Additional results are

available in an online appendix.4 In this chapter, figures and tables are in the end of this chapter.

6.2 Data and Methods

6.2.1 Data Description

We use data from the BIS bilateral locational statistics – a component of the BIS international

banking statistics – that provide a comprehensive view of international banking transactions. The
4 The online appendix is available for download from www.camelia-minoiu.com/crisis-prediction-appendix.pdf. Ta-

bles and figures cited in the text are labelled “A” for this online appendix.
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data represent stocks of cross-border assets (such as loans, debt securities, and other assets) held by

banking systems in 210 countries during the 1978-2010 period. Similar to balance-of-payments

statistics, these data are defined on a locational basis, i.e., they capture exposures of reporting

banks in a given location regardless of their ownership structure [30, 31]. As such, the BIS loca-

tional statistics are useful for measuring financial integration across countries and territories (such

as off-shore financial centers) that report financial data. 5

The sample comprises 29 BIS reporting countries and 181 non-reporting countries. In what

follows, we refer to the former as “core” countries and to the latter as “periphery” countries. Note

that the core countries comprise advanced economies, emerging market countries, and several

offshore financial centers.6,7 The GBN is constructed solely on the basis of data from the core

countries. These countries also report liabilities, which we use to impute assets of periphery

countries vis-a-vis core countries. To understand how representative these data are of true global

linkages, we can imagine the full network as consisting of three layers: the links among core

countries, those between core and periphery countries, and those among periphery countries. Since

core countries report positions to the BIS, we observe the full extent of linkages within the core.

We similarly observe exposures of core countries vis-a-vis periphery countries. The liabilities of

core countries vis-a-vis periphery countries are used as the claims of periphery countries vis-a-vis
5 See Table A1 in the online appendix for a list of countries and territories included in our sample.
6 Countries are invited to report financial data to the BIS when their financial sector becomes large. In order to

minimize the effect of changes in sample composition on our results – due to countries starting to report to the BIS

at different points in time, or because some countries become independent states during the sample period – we also

experimented with a GBN based on data from the 13 core countries that report their claims continuously and the 175

countries that exist as independent entities since 1978, but the results were largely unchanged.
7 We use the “core” and “periphery” labels for the nodes in the GBN based on the structure of the data rather than a

formal core-periphery model. [180] shows that the international financial network underpinned by cross-country asset

holdings had a core-periphery structure before the global financial crisis.
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core countries, so we also observe linkages from the periphery toward the core.

It is important to note that we do not have data on linkages among periphery countries; in

other words, within-periphery connections are missing from the GBN. This data limitation should

be kept in mind when interpreting the results as our network variables may suffer from measure-

ment error and we cannot know if these errors are systematic. To date, data availability remains a

major problem in studies of global systemic risk (as discussed, for instance, in [48]). Nonetheless,

ours is a first attempt to utilize core countries’ liability-side data from the BIS locational statistics

to obtain as comprehensive a view as possible of cross-country banking linkages.8

The GBN is directed: a directed edge is created from country A to country B if country

A has non-zero claims vis-a-vis borrowers in country B. In the binary GBN, an edge exists if a

country has non-zero banking exposures vis-a-vis another country. The data for each year between

1978 and 2010 is modeled as a separate GBN.

In the analysis we consider two variants of the GBN with different edge weighting schemes.

The first one – the “baseline network,” used in the chapter – refers to edge weights given by log-

exposures divided by the log-product of GDPs within each pair of nodes. PPP-adjusted GDP data

come from the Penn World Tables (Mark 7.1). The advantage of this weighting scheme is that

banking system claims are scaled by the economic size of countries, which ensures that increases

in weighted indicators of connectedness are not driven solely by economic growth. The second

network – the “alternative network,” for robustness tests – uses real log-exposures as edge weights.
8 Exposures from asset- and liability-side data are not strictly comparable because the former refer to assets of

banking systems in core countries vis-a-vis residents in periphery countries, while the latter refer to assets of residents

in periphery countries vis-a-vis banks in core countries. This inconsistency is unlikely to affect our binary GBN,

but may lead to some measurement error in the weighted GBN. For purposes of our analysis, we need to obtain as

comprehensive a view of cross-country financial linkages as possible; therefore we prefer to use an imperfect measure

of periphery-core linkages rather than assume that they do not exist.
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(Weighted exposures are deflated using the US CPI.) The results based on the first GBN are largely

robust to using the alternative network. 9

6.2.2 Global Connectivity: Stylized Facts

We assess the extent and trend in global connectivity during 1978-2010 using selected indicators

of connectedness, complementing earlier work on the topological properties of the international

financial network [59, 157, 180]. (See Appendix Ap.2.1 for formal definitions of all network

indicators.) The GBNs for 1980 and 2007 are shown in Figure 6.1. The visualizations depict an

increase in global financial connectivity both in the full sample (top panels) and the core (lower

panels), with the latter showing a significantly denser network in 2007, before the global financial

crisis.

Figure 6.2 depicts network density and total exposures during 1978-2010. Network density

refers to the share of observed edges in the total number of possible edges, and ranges in the full

GBN between 5 percent at the beginning of the sample period and 12 percent in 2007. These

figures are markedly larger in the core network, with density rising from 17 percent in 1978 to 46

percent in 2007. While network density has increased continuously over the past three decades,

at an annual average rate of 3 percent, cross-border exposures have also risen, but almost three

times faster (at an annual average rate of 8 percent). At the peak of network density in 2007, total

cross-border exposures amounted to USD 90 trillion – about twice the size of global GDP.

Averages for our network indicators are reported in Table 6.1 at different points during the

sample period. The last column in the table shows the percent increase in each network indicator

between 1978 and 2010, indicating that financial integration – proxied by our rich set of intercon-

nectedness measures – has been on the rise since 1978. Average degree and strength, representing
9 See Tables A3, A7, Figure A5 in our online appendix.
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the number of financial partners and the magnitude of cross-border banking system exposures in

the GBN, exhibit the largest increases among all indicators, by a factor of 1.5 over 1978-2010.

Clustering coefficients capture the tightness of link formation around a node and are bounded

between 0 and 1. The clustering coefficients developed by [78] answer the following question:

Given that a node has connections to two neighbors, what is the probability that those neighbors

are also connected with each other (i.e., that they form a triangle)? For the 2000s the answer is 80

to 90 percent, which implies a high tendency for nodes to form triangles. The second clustering

coefficient we consider, proposed by [148], captures the effectiveness with which a node’s neigh-

bors are connected with one another and has also risen over the sample period. Overall, the rise in

average clustering coefficients – by between 59 and 85 percent during 1978-2010 – suggests that

not only has the number and intensity of bilateral financial links increased, but countries’ financial

neighbors have also become more tightly linked with one other.10

The next set of indicators refers to connectivity among a country’s neighbors. Average

nearest-neighbor degree (ANND) is the number of creditors or debtors that each country’s im-

mediate neighbors have. For instance, “out-out” ANND is the average number of creditors of a

creditor country. Similarly, “in-in” ANND is the average number of debtors of a debtor country.

ANNS indicators take into account the magnitude of exposures, too. All neighbor connectivity

indicators until 2007 and fall in the aftermath of the crisis.

Our last indicator is the Herfindahl-Hirschmann index (HHI), a measure of market competi-

tion. Although this is not a network indicator, it helps assess the degree of portfolio diversification

in the GBN. The HHI, computed from the debtor countries’ perspective, is equal to the sum of

squared shares a country represents in its creditors’ portfolios. (For instance, if country A has 50
10 Recent work argues that clustering coefficients based on different triangle patterns in banking networks have dif-

ferent implications for systemic risk [192].
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percent of its liabilities vis-a-vis country B and 50 percent vis-a-vis country C, then A’s HHI is

equal to 0.5.) The HHI indicates a relative lack of concentration in the first half of the period, but

increases during the 1990s to levels of moderate concentration. By the end of the period the HHI

declines again, with debtor countries increasingly diversifying their pool of creditors. This trend

coincides with a period of high economic growth coupled with increased capital account openness

and financial system reform in many countries.

In sum, our network measures depict a general trend towards greater financial integration

during 1978-2007 – both in terms of countries’ direct connectivity and the tightness of their neigh-

bor networks. This trend was interrupted by the global financial crisis. But was this increased

financial integration higher than what would be expected conditional on the GBN’s observed den-

sity? To answer this question, for each year we generate a sample of 10,000 random networks

that have the same density as the GBN but we re-shuffle either (i) the location of the edges, or

(ii) the edge weights while keeping edge locations fixed (for a similar approach, see [79]). We

then compute, for each year, average network indicators (across nodes) in the random networks

and compare them to the observed ones. 11 We find that our observed GBNs are more “intercon-

nected” than expected, which indicates that the increase in financial integration observed during

1978-2010 is not merely the result of higher network density.12

6.2.3 Classification Algorithm

We first evaluate our connectedness measures’ effectiveness as early warning indicators with a data

mining method, namely a “classification algorithm.” The 27 indicators we consider are included

in the algorithm in levels lagged up to 5 years, and in growth rates computed over the past 1, 2,..,

up to 5 years (for a total of 270 indicators). We set up the GBN as a matrix whose rows corre-
11 See Figure A4 in our online appendix.
12 We thank an anonymous referee for suggesting this comparison.
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spond to country-year observations and whose columns correspond to (i) our set of network-based

indicators of connectedness, and (ii) the crisis incidence variable crisis. The crisis variable

takes value 1 if a systemic banking crisis occurred in the country during the specified year and

0 otherwise. (See Section 3.1 for the formal definition of systemic banking crises.) We run the

algorithm on the full set of crisis-years (rather than the onset of crises) to preserve the maximum

amount of variation in the data and improve the algorithms’ chances to learn from it.

The output of the classification algorithm is a series of association rules that describe re-

lationships between measures of connectedness and the probability of a crisis ([6]). Association

rules are of the form “If condition C holds over the network indicators, then the crisis variable

takes value 1.” The condition C can take the form `1 ≤ V1 ≤ u1 ∧ · · · ∧ `n ≤ Vn ≤ un (a

collection of sub-rules) where each Vi is a network indicator and the `i, ui’s are real numbers.

(Here all network indicators have real valued attributes.)

For an association rule to be acceptable, it needs to have a high confidence and a high

support. Confidence is the conditional probability P(crisis = 1|C), i.e., the share of correctly-

called crises. In most applications, the confidence is required to be above a pre-specified thresh-

old. However, confidence alone does not define “goodness” of an association rule because a rule

may have a high probability (e.g., probability of 1) with C being true just once and crisis

being true on that one occasion. In addition to confidence, we use support, which is defined as

|{r|r.crisis = 1 ∧ r.C}|where r is a row in the matrix described above, r.crisis is the value

of the crisis entry in row r and r.C is true iff row r satisfies condition C. Thus support is simply

the number of times (i.e., rows) for which both C and crisis = 1 are simultaneously true for a

given country-year pair. As in the case of confidence, support is required to exceed a threshold –

i.e., the two conditions must co-occur sufficiently many times – in order for the association rule to

be acceptable.
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We also require association rules to satisfy the property that “negative probability” be low

where negative probability is defined as P(crisis = 1|¬C). This computes the probability of

a crisis occurring when C is not true (the ¬ denotes negation). By ensuring that P(crisis =

1|¬C) is below a pre-specified threshold, we ensure that condition C acts like a “canary in a

coalmine.” When C is true it predicts a crisis with high probability - when it is not true, it predicts

a crisis with very low probability.

Algorithms like the one described here have been useful in a wide range of applications that

involve classification problems – that is, separating data into multiple buckets (e.g., two buckets,

one consisting of situations where some event occurred and one where the event did not occur).

For instance, classification algorithms have been used to predict whether some patients have breast

cancer [124], to explore associations among genes [65], and to predict upticks in terrorism [190].

In Internet research, classification algorithms are used to predict the category (e.g., sports vs.

politics) to which a webpage belongs, whether a particular email constitutes spam, and classifying

Internet traffic into various categories.

Although classification algorithms have not been used much in the economics literature,

there have been applications to finance. For instance, classification algorithms have been used to

predict individual stock movements [149], to classify individuals according to their credit scores

[14], and to separate buyer- from seller-initiated trades [164, 13, 76]. To the best of our knowledge,

this is the first application to a macroeconomics question – the prediction of systemic banking

crises – one that is made possible by the availability of a large number of potential predictors

obtained through network analysis. Results based on the classification algorithm are presented in

Section 6.3.2.
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6.3 Results: Connectivity and Systemic Banking Crises

6.3.1 Exploring the Data: Conditional Correlations

Here we explore the ability of financial connectedness indicators to predict crises. We start by

examining whether network indicators display a different behavior before vs. after the onset of

a crisis. Crisis incidence data come from [139]. Systemic banking crises are defined as years in

which the banking sector exhibits significant distress and is subject to important policy interven-

tions – that is, at least three out of the five following interventions are present: public guarantees,

liquidity support, asset purchases, nationalizations, and large restructuring costs (for more details,

see [139, 140]). The number of systemic banking crises thus defined is shown in Figure 6.3 for

the 1978-2010 period. As shown in the figure, periphery countries account for most of the crises

that took place prior to the mid-2000s, while systemic events are roughly equally split between

core and periphery countries during 2007-2010.

To allow for the impact of connectedness on the likelihood of crises to be driven by global

and country-specific factors, we start by regressing the network indicators from our baseline GBN

against a full set of country and year dummies and obtain the residuals. We then plot these resid-

uals – averaged across all country-year observations – within a window of five years around the

onset of systemic banking crises. Figure 6.4 shows the evolution of selected network indicators

around banking crises after controlling for unobserved heterogeneity as described above. Note

that here we do not account for the impact of macroeconomic fundamentals (we do so in Section

3.3).

The three panels in Figure 6.4 present several notable patterns. In Panel 6.4a we notice that

degree and strength increase steeply before the onset of a crisis and level off subsequently. The

signal here is the rapid growth in interconnectedness captured by these simple network measures.
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The degree of clustering also rises before banking crises and peaks 1-2 years before their onset,

after which it begins to decline (Panel 6.4b). The pre-crisis decline in clustering reflects a lower

probability that a given country’s financial partners are connected, and suggests that there is tur-

bulence in the network right before the onset of a crisis. What happens to a country’s neighbor

connectedness before crises? Panel 6.4c shows that neighbor degree and strength decline 3-4 years

before the onset of a crisis. This suggests that there is link destruction among countries’ higher-

degree connections long before the onset of crises; and that the decline in neighbor connectivity

can also be informative about the arrival of a crisis.

In the panels of Figure 6.4 we also show a dotted line that captures most of the informa-

tion in our indicators. It represents the first principle component (henceforth labelled “1st PC”)

extracted from the variation in three groups of indicators through Principal Component Anal-

ysis (PCA). (See Appendix Ap.2.2 for details.) The first group of measures comprises degree

and strength indicators. The second group includes all the clustering coefficients (both binary

and weighted). The third one includes all the neighbor degree and strength indicators. The first

principal component (PC) generally explains between 80 and 90 percent of the variation in the un-

derlying indicators, and helps summarize the information from many variables into a single factor,

reducing the dimensionality of our data. Working with PCs instead of the full set of variables is

useful in an EWS if we wish to estimate parsimonious models.

Following this preliminary evidence that hints at the ability of financial connectedness to

predict crises, we next seek to strengthen our findings using the classification algorithm and re-

gression analysis.
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6.3.2 Results from the Classification Algorithm

We ran the classification algorithm on the baseline GBN for the full period (1978-2010) and two

sub-periods: 1978-2002, which covers first- and second-generation crises mainly affecting de-

veloping economies; and 2003-2010, which covers the latest wave of banking crises. Table 6.2

summarizes the in-sample performance of the algorithm in predicting crisis-years for the full sam-

ple and separately for core and periphery countries. For each sample and period, we report the

number of actual crises (column 1), the number of crises predicted by the algorithm (2), support

(3), precision (4), recall (5), and the number of sub-rules (6). Precision and recall are measures of

the performance of the algorithm. Precision is defined as the number of correctly predicted crises

divided by the number of predicted crises. It takes maximum value when are no “false alarms”

(Type 1 error is 0). Recall refers to the number of correctly predicted crises divided by the number

of actual crises. It attains a maximum when there are no “missed crises” (Type 2 error is 0).

For the sample of countries included in the baseline GBN there were 409 crisis-years during

1978-2010, of which more than 75 percent occurred before 2003. The algorithm produces 34

association sub-rules (Table 6.2, column 6) which we can combine into one giant rule to predict

crises.13 To give an example of several sub-rules, the algorithm yields that “A crisis will occur

in a given year if (i) out-degree at t − 3 is between 155 and 171 or (ii) the “in” BCC at t − 5 is

between 0.115 and 0.118 or (iii) in-strength at t−5 is between 63.5 and 66.5,” etc.(See the table in

Figure 6.6 for all the sub-rules generated by the algorithm for core countries during 2003-2010.)

The rules can be expressed by GAP (Generalized annotated program, [131]) directly. For example,

the gap rule for (i) would be simply crisis(c, t) : 1 ← outdegree(c, t − 3) : µ & µ ≥ 155 &

µ ≤ 171 where c is a country and t is a target year. The set of gap rules can be a diffusion and
13 Each association rule has the form crisis if C1,..., crisis if Cn. These rules can be combined into one large

rule crisis if C1 or · · · or Cn saying that a crisis occurs if any of the conditions C1, . . . , Cn is true.
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infection model for banking crises for countries.

Over the full period, precision is very high, reaching 94 percent for the full sample and 88

percent for core countries (column 4). Recall is relatively low at 11 percent for the full period,

but higher by subperiod: 94 percent for 1978-2002 and 40 percent for 2003-2010 (column 5).

Precision and recall are lower for core countries compared to periphery countries during the full

period, which may be partly due to the lower number of crisis-years experienced by advanced

economies overall, and hence the lower ability of the algorithm to learn about them from that

sample.14 By contrast, for the 2003-2010 period which mainly contains crises for core countries,

the algorithm has high precision and recall (0.85 and 0.83 respectively), thus performing quite

well in identifying crisis-years for the latest wave of banking crises.15

The consistently low Type 1 and Type 2 errors produced by the classification algorithm

add to our preliminary evidence that network-based measures of connectedness can serve as early

warning indicators. When we carefully examine the sub-rules, we notice that almost of all the

indicators considered are selected by the algorithm in some rule, but lagged levels show up more

frequently than lagged growth rates 16. In the next step, we use this information to construct a

relatively parsimonious empirical model that uses as covariates those indicators identified by the

algorithm as the most promising. Specifically, we estimate a regression-based EWS that controls

for standard macroeconomic fundamentals and adds measures of financial interconnectedness. To

keep the number of covariates manageable, we group the indicators into three categories – as in
14 Another reason is that four advanced economies that experienced crises during 2007-2008 are in fact part of our

periphery because we do not have cross-border exposure data for them.
15 Notice also that the algorithm produces a larger number of sub-rules when there is less variation in the data. This is

the case, for instance, in the full sample (1978-2002) and the subsample of periphery countries, which were more likely

to experience crises before 2003 but are also less interconnectedness due to the absence of within-periphery edges. For

these countries, network measures have less predictive content for banking crises.
16 See Table A4 in our online appendix for the frequency with which different indicators appear in sub-rules
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Figure 6.3 – and retain the first or two PCs from each group. Our rule for selecting the PCs is that

they have eigenvalues greater than one.

6.3.3 Results from Regression Analysis

We estimate a benchmark binary dependent variable model in the full sample of countries over

1978-2010. The dependent variable is an indicator that takes value 1 for the onset of systemic

banking crises.17 We draw on the recent crisis prediction literature to specify a small set of key

macroeconomic fundamentals that have previously been identified as leading indicators of crises.

Specifically, we control for per capita income (at PPP), net foreign assets (in percentage of GDP),

foreign exchange reserves (in percentage of GDP), real exchange rate (RER) misalignment, and

periods of sustained capital inflows. RER misalignment is computed relative to the purchasing

power parity-implied real exchange rate and is further adjusted for the Balassa-Samuelson effect,

as in [175].

The net foreign asset and foreign exchange positions, as well as periods of RER overval-

uation are systematically associated with increased likelihood of currency and/or external crises

[121] while credit booms fueled by large capital inflows – captured in our model by a dummy

variable for capital flows bonanzas [173] – play a prominent role in the run-up to banking crises

[181, 7]). We also include a standard variable that allows for the possibility of contagion – a

dummy variable for at least one neighbor experiencing a crisis. Our regressors are a mixture of

variables that predict financial crises in general, since banking, currency, and debt crises often

occur together ([122]). All regressors are lagged one year.

Estimates from the benchmark model with macroeconomic fundamentals are reported in
17 Following [92], the dependent variable takes value 1 in the year of crisis onset, is set to missing for the subsequent

four years (as countries often lack access to international capital markets in the years of the crisis), and is 0 in non-crisis

years.
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Table 6.3 for the probit and logit estimators. We notice that the coefficients on the macroeconomic

characteristics have the expected signs across specifications: a more favorable net foreign asset

position and higher foreign exchange reserves are negatively associated with the likelihood of

crises. The probability of a banking crisis goes up when countries experience sustained periods of

high capital inflows or an overvalued RER and hence a loss of competitiveness. Having at least

one neighbor in crisis also raises the probability of the country itself experiencing a crisis – which

hints at the possibility of contagion.

While our preferred specifications do not include country or year fixed effects, for com-

pleteness we also show models with them. Country fixed effects control for omitted time-invariant

characteristics that may systematically drive a country’s predisposition towards crises. Year fixed

effects control for global shocks that may cause crises to cluster together (e.g., the 1997-1998

East Asian crises). Including these dummies leaves the coefficient estimates largely unchanged;

however, we see such models as less helpful for crisis prediction. One reason is that we cannot

anticipate future global shocks, so year fixed effects are unknown ex-ante. Another reason is that

estimated country fixed effects are not informative from a policy perspective because they do not

possess economic content. Furthermore, we wish to utilize all the information in our sample, in-

cluding from countries that have never experienced a crisis, which would be precluded if country

effects were added. As the probit vs. logit models yield similar results, in the remainder of the

analysis we only estimate probits and take as our baseline the model presented in column 4.18

To discriminate among competing crisis prediction models we can use a metric based on the

Receiver Operating Characteristic (ROC) [62, 80]. The ROC depicts the relationship between true
18 As a general check of model performance, we run Kolmogorov-Smirnov tests for the distributions of predicted

probabilities across crisis/non-crisis years. For each regression, we reject the null that the two samples of predicted

probabilities are drawn from the same distribution, which suggests that the models systematically yield different pre-

dicted probabilities across the two regimes (See Table A5).
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and false positives for a range of probability thresholds. The ROC lies above the 45-degree line

if the model generates crisis predictions that are superior to random guessing. According to this

criterion, the best model is the one that maximizes the area under the curve (AUROC). Random

guessing implies an AUROC of 0.5. Looking the AUROC estimates in Table 6.3, we notice that

they are in the 0.6-0.7 range, which is similar to the AUROCs obtained in recent studies of crisis

incidence [181, 118].

Next, we add measures of financial interconnectedness to the benchmark model. These are

the 1st and 2nd PCs extracted from our rich set of network indicators. In each specification we

add the chosen PCs based on all the lagged levels of the indicators as well as the one-year lagged

growth rates (labelled “growth”). The estimates are presented in Table 6.4. In column 1 we add the

PCs for a country’s own level of connectedness captured in degree, strength, and clustering. In the

richest specification (column 4) we add the PCs for neighbor connectedness as well as the HHI.

The coefficients on the degree/strength and clustering PCs are positive and statistically significant,

which suggests that an increase in a country’s own financial connectedness is associated with a

higher probability of crises one year later. By contrast, the coefficient on the neighbor connected-

ness PC is negative and statistically significant, suggesting that a decline in the country’s neighbor

connectedness increases the probability of a crisis. A decline in neighbor connectedness may be

a sign that turbulence is occurring further out in the network and is ultimately transmitted to the

country in question through higher-degree connections.

How do the augmented probit models fare in terms of overall ability to predict crises? As

seen in Table 6.3 (column 4), the benchmark model has an AUROC of 0.703, which rises to 0.749

for the model augmented with all connectedness measures (Table 6.4, column 4). Compared to the

benchmark of a random guessing model which has an AUROC of 0.5, adding the network indica-

tors improves the predictive performance of the model by almost 23 percent. In addition, when we
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test the null hypothesis that the two AUROCs are equal, we reject it with 99 percent confidence

(p-value=0.001). The ROCs corresponding to these two models are shown in Figure 6.5. The

figure shows that the augmented-model ROC lies above the fundamentals-only ROC, especially

at high false positive rates, which are obtained by setting low probability thresholds to call crises.

Such low probability cutoffs would be chosen by policy-makers who prefer a higher positive rate

– i.e., to be alerted often even when there is no crisis – over missing crises. This implies that the

connectedness-augmented model may be particularly useful to conservative policymakers.

Having established that the augmented probit outperforms that based solely on macroeco-

nomic fundamentals, we next ask if there are nonlinearities in the effects of financial connected-

ness on the likelihood of systemic banking crises. The financial networks literature argues that

connectedness has a non-monotonic effect on network stability. At low levels of connectivity, ini-

tial shocks may not have a large impact on the network’s stability, but beyond a certain “threshold,”

such shocks – if they are large enough or sufficiently many – can lead to systemic instability [2, 9].

To examine this question, we estimate regressions that allow for our main connectedness measures

to have a different impact on the likelihood of crises at high/low levels of connectedness. We do so

by splicing the main variables into above/below median (for own connectedness PC and neighbor

connectedness PC) and top/bottom 25th percentile (for own clustering PC). The results, shown

in Table 6.5, provide some evidence of non-linearities: across specifications we notice that the

positive (negative) effect on crisis probability of own (neighbor) degree and strength is stronger in

the top range of the PC distributions. The same is the case for clustering, for which we find that

increases in clustering for countries that are in the top 25th percentile of the clustering distribution

are positively associated with crisis probability, but not for countries in the bottom 25th percentile

of the clustering distribution.

For policymaking purposes it may be also be useful to monitor a more parsimonious set
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of specifications as shown in Table 6.6. These are augmented probit models that include only

the 1st PC of our three groups of network measures: degree/strength, clustering, and neighbor

degree/strength. To unmask any underlying heterogeneity, we split the sample by country type

and also try to isolate the effects of interconnectedness on the likelihood of experiencing a crisis

solely after 2007. Table 6.6 estimates suggest that during the full period an increase in clustering

and a decrease in neighbor connectedness are associated with a higher probability of crisis in the

subsequent year, after controlling for macroeconomic fundamentals (column 1). This full sample

result is driven by core countries (column 3) while for periphery countries the coefficients on clus-

tering and neighbor connectedness PCs retain their signs but are less precisely estimated (column

2). This loss of statistical significance is not surprising as periphery countries are necessarily less

interconnected in the network due to the absence of within-periphery edges, so network indicators

such as clustering and neighbor connectivity are less relevant for them. Instead, for these coun-

tries, direct linkages – both in terms of number and intensity – seem to matter for the likelihood

of crisis.

To test whether interconnectedness has played a more pronounced role for the most recent

wave of crises, which occurred between 2007 and 2010, we replace the dependent variable with a

modified variable that takes value 1 only for post-2007 crises. This modified dependent variable

allows us to examine whether the recent crises were structurally different than earlier ones. The

results, shown in column 4, are telling: for the most recent crises, per capita GDP is positively

associated with crisis probability, unlike in the full period where poorer countries were more

likely to experience financial turmoil. As before, countries with higher net foreign asset positions

faced a lower probability of crisis, and countries with a higher degree of RER overvaluation also

had a higher probability of crisis. Finally, for the 2007-2010 wave of crises, all connectedness

measures matter – higher direct and indirect financial linkages increase the likelihood of distress
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in the banking sector.

6.3.4 In- and Out-of-Sample Performance

We conclude the analysis by examining the performance of our data mining and regression ap-

proaches in predicting the most recent wave of systemic banking crises. Nineteen high-income

countries and six emerging market countries experienced a crisis during 2007-2010.

We focus on crisis prediction for fourteen advanced economies listed in Table 6.7 for which

we have data on all variables. We notice that the classification algorithm correctly predicts in-

sample the onset of 5 out of the 14 systemic crises (column 1). The benchmark probit, which

exploits only lagged information about the state of the economy, generates relatively low in-sample

crisis probabilities (which is not unusual, as crises are relatively rare events), ranging from 2.6

percent for Denmark in 2008 to 10.2 percent for Greece in 2008 (column 3). For all but two

countries (Portugal and the US), these probabilities increase when we augment the probit model

with variables on financial connectedness. The starkest increase is for the UK, where the predicted

probability of a crisis rises from 5.5 to 26.4 percent between the benchmark and augmented model.

This result suggests that connectedness measures for most countries have substantial predictive

content. We find this plausible given the relative importance of these countries’ banking systems

in the GBN.

When both the algorithm and probit model are re-run on the subsample of core countries

over the 2003-2010 period, when connectedness may arguably have paid a more important role

as a conduit for financial stress, both techniques yield better in-sample performance. Now the

classification algorithm correctly identifies 11 of 14 onsets of crises (column 2); and the fitted

crisis probabilities are larger for both the benchmark and augmented probits (columns 5-6). The

augmented probit now consistently outperforms the benchmark model as it generates higher crisis
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probabilities for all crisis onsets during 2007-2008.

Continuing to focus on the latest wave of crises, we find that the classification algorithm

has a remarkable out-of-sample performance for core countries. Table 6.8 reports the precision

and recall associated with different crisis prediction windows. When k = 1, we look at the

performance of the algorithm in predicting the onset of a crisis in the year ahead; when k = 2

the window expands to include the following year, etc. We notice that recall is consistently high

across subsamples, which suggests that the algorithm misses few crisis onsets (columns 2, 4,

and 6). However, precision – the algorithm’s ability to not issue false alarms – is relatively high

only for the core countries (column 1). This hints at the fact that financial connectedness, not

surprisingly, is more useful for crisis prediction in core rather than periphery countries.19

One last piece of evidence on the out-of-sample performance of our methods is summarized

in Table 6.9, which lists the crises predicted by the algorithm for the 2006-2008 period (columns

1-3); as well as the probit’s out-of-sample predicted probabilities for the years 2007 and 2008

(columns 4-7). We find that the algorithm issues crisis alerts for Belgium, Ireland, The Nether-

lands, Portugal, Spain, and Sweden in 2006 (and even earlier for some of these countries). It issues

a maximum number of alerts for the year 2007, but it does so correctly only for the US. In 2008,

the algorithm correctly anticipates 6 of the 14 crises in advanced economies.20

Looking at the augmented probit’s out-of-sample predicted probabilities, we note that they

are generally small: only those for the UK and the US are larger than 10 percent (column 5).

The augmented probit does not fare very well in predicting 2007 crises, with predicted crisis

probabilities for the UK and the US slightly above 2 percent (column 7). For this model to issue
19 Here we focused on the algorithm’s ability to predict all crisis-years, but it also does well in predicting the onset of

crises (see Table A2).
20 The algorithm also issues false alarms during this period, e.g., predicting banking crises in South Africa in 2006,

and in Canada in 2007-2008.
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a crisis alert in 2008 based on macroeconomic fundamentals, the policymaker would have had to

set a probability threshold of around 10 percent (column 4). With this threshold, the augmented

probit would have predicted systemic banking crises in 2008 in Ireland, Spain, the UK and the

US. Importantly, the out-of-sample probabilities do increase when the probit incorporates data on

financial interconnectedness.

6.4 Conclusions

It is widely believed that extensive financial linkages across countries have played an important

role in the severity and spread of the global financial crisis. In thischapter, we examined the

performance of financial interconnectedness as an early warning indicator for systemic banking

crises. To this end, we used data mining and econometric methods to examine the predictive

content of a rich set of network-based connectedness measures. We constructed these measures

using data on cross-border banking assets from a large sample of countries over the past four

decades.

Our results suggest that financial connectedness can predict crises. Higher levels of a coun-

try’s own connectedness – captured by simple indicators such as the number and intensity of its

financial ties in the global banking network – are associated with a higher probability of crises.

Lower connectivity among a country’s direct financial partners hints at turbulence in the network

and potential contagion, and it too is associated with a higher probability of crisis. We found ev-

idence of nonlinearities in that connectedness influences the probability of crises more at higher

levels of connectedness. A classification algorithm that searches for patterns in the data and as-

sociates levels and growth rates of network indicators with crisis incidence, has good ability to

predict the onset of crises. A probit model of crisis prediction generally yields higher crisis prob-

abilities, both in and out of sample, when it includes information on financial connectivity as
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opposed to macroeconomic factors alone.

We see these results as a first step towards exploiting the potentially rich informational con-

tent of network-based measures of financial connectivity for purposes of crisis prediction. While

our findings suggest that there is a useful amount of information in the measures we considered,

the list of indicators we used is by no means exhaustive. Future work could expand the scope of

the analysis. Our findings could further be probed on financial networks underpinned by different

types of cross-country linkages. Such work could result in improved early warning systems and

more lead time for designing appropriate policy responses.

Note. The material in Section 6 has been published in [156]. The authors agree that I made a

significant contribution and may use this work in my thesis.
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Fig. 6.1: Global banking network in 1980 vs. 2007: Visualization of the baseline GBN for the largest 100 countries by GDP. Node color is proportional to GDP
(black is lower, red is higher). Edge weight is proportional with the intensity of the edge color (from light to dark green). In panels (a)-(b), the nodes on
the inner ring are core countries and the nodes on the outer ring are periphery countries; red edges connect core countries and green edges connect core
with periphery countries.
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Fig. 6.2: Network density and total exposures: Network density is defined as the number of edges in the

GBN divided by the number of possible edges. Total exposures, representing cross-border banking

claims, are expressed in constant (2005) USD trillion.
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Fig. 6.3: Number of systemic banking crises by country type: Number of crises by year and type of country

(periphery vs. core). “Core” countries are BIS-reporting countries. “Periphery” countries are the

remaining (non-reporting) countries. Crises dates are from [139].
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Fig. 6.4: Financial connectedness around systemic banking crises: The chart depicts average levels of se-

lected network indicators during 5 years before and after systemic banking crises (t=crisis).

The indicators are conditional on country and year fixed effects. The dotted line represents the

first principal component (labeled “1st PC”) extracted from each of the three groups of indicators

(see Section 3.1 and Appendix B for details).
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Fig. 6.5: ROCs for benchmark vs. augmented probit model: The chart shows the ROCs corresponding to

the benchmark probit model (Table 6.3, column 4) vs. the probit model augmented with principal

components extracted from network indicators (Table 6.4, column 4).
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1978 1985 1995 2007 2010 % increase 1978-2007

Degree and strength

Degree-in/out 9.3 12.2 15.4 23.7 23.5 154%

Strength-in/out 3.3 4.3 5.4 8.3 8.2 152%

Binary clustering coefficients

BCC Lopez-Fernandez 2004 0.56 0.66 0.85 0.89 0.89 59%

BCC Fagiolo 2007 (“cycle”) 0.49 0.59 0.78 0.89 0.89 84%

BCC Fagiolo 2007 (“middleman”) 0.49 0.59 0.78 0.90 0.89 82%

BCC Fagiolo 2007 (“in”) 0.53 0.62 0.78 0.88 0.88 66%

BCC Fagiolo 2007 (“out”) 0.51 0.61 0.80 0.89 0.89 75%

Weighted clustering coefficients

WCC Lopez-Fernandez 2004 0.23 0.27 0.36 0.37 0.36 64%

WCC Fagiolo 2007 (“cycle”) 0.18 0.21 0.28 0.32 0.32 85%

WCC Fagiolo 2007 (“middleman”) 0.18 0.22 0.28 0.33 0.32 83%

WCC Fagiolo 2007 (“in”) 0.19 0.23 0.28 0.32 0.31 64%

WCC Fagiolo 2007 (“out”) 0.18 0.22 0.29 0.33 0.32 78%

Average nearest neighbor degree and strength

ANND (out-in) 54.5 66.5 92.9 117.0 110.6 115%

ANND (out-out) 52.2 66.7 87.3 114.6 110.8 119%

ANND (in-in) 50.9 63.6 106.7 119.1 113.5 134%

ANND (in-out) 49.9 65.5 102.8 124.1 122.4 149%

ANNS (out-in) 19.9 24.6 33.5 42.0 39.5 111%

ANNS (out-out) 19.1 24.7 31.5 41.3 39.8 117%

ANNS (in-in) 18.2 22.8 37.9 43.1 40.4 136%

ANNS (in-out) 17.8 23.6 36.4 45.0 43.8 152%

Herfindahl-Hirschmann index

HHI 0.11 0.13 0.20 0.12 0.13 12%

Tab. 6.1: Average network indicators over time: The table reports average values (across nodes) for selected

network indicators in selected years.
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(1) (2) (3) (4)

Degree and strength-1st PC 0.200*** 0.176*** 0.177*** 0.189***

(0.053) (0.049) (0.048) (0.054)

Degree and strength, growth-1st PC -0.003 0.002 -0.016 0.021

(0.038) (0.038) (0.044) (0.047)

Degree and strength, growth-2nd PC -0.001 0.001 0.009 0.059

(0.040) (0.042) (0.044) (0.062)

Clustering-1st PC 0.231*** 0.333*** 0.348*** 0.372***

(0.074) (0.074) (0.074) (0.084)

Clustering-2nd PC 0.790 0.947* 0.914* 0.935*

(0.483) (0.489) (0.494) (0.487)

Clustering, growth-1st PC -0.003 -0.003 0.010 0.017

(0.009) (0.009) (0.018) (0.018)

Clustering, growth-2nd PC -0.027 -0.033 -0.031 -0.002

(0.051) (0.053) (0.059) (0.059)

Neighbor connectedness-1st PC -0.189*** -0.205*** -0.218***

(0.049) (0.049) (0.051)

Neighbor connectedness, growth -1st PC -0.048 -0.062

(0.041) (0.040)

Neighbor connectedness, growth -2nd PC -0.013 -0.030

(0.044) (0.044)

Herfindahlindex 0.216

(0.575)

Herfindahlindex, growth 0.004

(0.003)

Observations 3,368 3,368 3,368 3,368

AUROC 0.723 0.742 0.744 0.749

Tab. 6.4: Augmented probit results: The table reports the estimates of the benchmark probit model aug-

mented with principal components extracted from network indicators of financial connectivity.

The models are estimated on the full sample of countries over 1978-2010. The dependent variable

takes value 1 for the onset of a systemic banking crisis. All macroeconomic variables from Table

6.3 (column 4) and a constant are included, but the coefficients are as expected and not shown.

Standard errors are clustered at the country level. *** indicates statistical significance at 1 percent,

** at 5 percent, and * at 10 percent.
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(1) (2) (3)

Degree and strength-1st PC * Above median 0.318*** 0.378*** 0.180**
(0.088) (0.104) (0.075)

Degree and strength-1st PC * Below median 0.014 0.185** 0.188
(0.015) (0.075) (0.125)

Degree and strength, growth-1st PC -0.022 0.002 -0.016
(0.032) (0.039) (0.044)

Degree and strength, growth-2nd PC -0.027 0.002 0.009
(0.037) (0.043) (0.044)

Clustering-1st PC * Above p75 0.158** 0.202*
(0.079) (0.105)

Clustering-1st PC * Between p25 and p75 0.001 0.017
(0.053) (0.054)

Clustering-1st PC * Below p25 0.066 -0.085
(0.140) (0.159)

Clustering-2nd PC 0.892* 0.828*
(0.494) (0.467)

Clustering, growth-1st PC -0.009 0.003
(0.011) (0.017)

Clustering, growth-2nd PC -0.037 -0.031
(0.055) (0.058)

Neighbor connectedness-1st PC * Above median -0.171***
(0.062)

Neighbor connectedness-1st PC * Below median 0.126
(0.141)

Neighbor connectedness, growth-1st PC -0.041
(0.040)

Neighbor connectedness, growth-2nd PC -0.015
(0.043)

Observations 3,524 3,368 3,368
AUROC 0.720 0.729 0.751

Tab. 6.5: Augmented probit results (non-linearities): The table reports estimates of the augmented probit
models presented in Table 6.4 in which we splice each of the 1st PC of the three groups of network
indicators into two or three variables to detect nonlinearities. Degree/strength and neighbor de-
gree/strength 1st PCs are spliced above and below the median; the clustering coefficient 1st PC is
spliced into three variables: top 75th percentile, bottom 25th percentile, and middle portion. The
dependent variable takes value 1 for the onset of a systemic banking crisis. The models are esti-
mated over 1978-2010 on the full sample. All macroeconomic variables, the HHI, and a constant
are included, but the coefficients are as expected and not shown. Standard errors are clustered at
the country level. *** indicates statistical significance at 1 percent, ** at 5 percent, and * at 10
percent.
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(1) (2) (3) (4)

Full Periphery Core Core, Alt DV

Log-per capita GDP -0.069** -0.138*** 0.526 5.174***

(0.034) (0.041) (0.339) (1.926)

Net foreign assets/GDP -0.095* -0.105* -0.776** -2.492**

(0.058) (0.063) (0.350) (1.119)

Capital inflows bonanza 0.382*** 0.326*** 0.584** 0.474

(0.097) (0.108) (0.244) (0.581)

Forex reserves/GDP -0.014*** -0.010** -0.073** -0.027

(0.005) (0.004) (0.035) (0.048)

RER misalignment 1.087** 0.949* 6.532*** 5.421**

(0.490) (0.485) (2.128) (2.714)

At least 1 neighbor in crisis 0.202** 0.245** -0.381 0.652

(0.091) (0.097) (0.271) (0.720)

Degree and strength-1st PC 0.028 0.307** 0.037 0.333**

(0.018) (0.131) (0.040) (0.132)

Clustering-1st PC 0.128** 0.034 1.027*** 4.513***

(0.055) (0.106) (0.244) (1.101)

Neighbor connectedness-1st PC -0.134** -0.095 -1.520*** -7.683***

(0.053) (0.076) (0.391) (2.018)

Observations 3,949 3,409 540 540

AUROC 0.722 0.738 0.831 0.983

Tab. 6.6: Augmented probit results (parsimonious version): The table reports estimates of a more parsimo-
nious version of the augmented probit model presented in Table 6.4 in which we retain only the
1st PC of each group of network indicators. In columns 1-3 the dependent variable takes value 1
for the onset of a systemic banking crisis. The models are estimated over 1978-2010 on the full
sample (column 1), periphery countries (column 2) and core countries (column 3). In column 4
the dependent variable is modified to take value 1 only for the 2007-2010 crises. A constant is
included, but the coefficient is not shown. Standard errors are clustered at the country level. ***
indicates statistical significance at 1 percent, ** at 5 percent, and * at 10 percent.
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(1) (2) (3) (4) (5) (6)

Algorithm Probit

Full Core Full Core

Benchmark Augmented Benchmark Augmented

Belgium 2008 2008 3.5% 11.5% 3.0% 6.4%

Denmark 2008 2008 2.6% 3.9% 1.4% 2.4%

Germany 2008 3.7% 15.3% 3.6% 7.9%

Greece 2008 10.2% 12.5% 23.1% 26.7%

Ireland 9.3% 10.7% 19.9% 36.2%

Italy 2008 4.1% 5.8% 6.0% 12.1%

Luxembourg 2008 2008 . . . .

Netherlands 2008 . . . .

Portugal 2008 5.0% 2.9% 10.8% 16.8%

Spain 2008 10.1% 17.3% 23.2% 48.5%

Sweden 3.5% 3.7% 4.4% 6.2%

Switzerland 2008 2008 . . . .

United Kingdom 2007 2007 5.5% 26.4% 19.6% 44.1%

United States 5.7% 2.4% 24.4% 26.1%

Tab. 6.7: Classification algorithm and probit model in-sample performance: The table summarizes the in-

sample performance of the classification algorithm and probit models, focusing on the 2007-2008

crises. The algorithm and probits are run, respectively, on the full sample (1978-2010) and core

country subsample (2003-2010). Columns 1-2 report the year in which the algorithm predicts

a crisis. Columns 3-6 report predicted crisis probabilities from the benchmark and augmented

probits; missing values refer to countries for which data on at least one macroeconomic variable

is missing. 219



(1) (2) (3) (4) (5) (6)

Core Full Periphery

k-year ahead prediction Precision Recall Precision Recall Precision Recall

k=0 0.12 0.50 0.02 0.15 0.01 0.17

k=1 0.26 0.64 0.03 0.23 0.02 0.25

k=2 0.37 0.71 0.06 0.42 0.03 0.33

k=3 0.44 0.71 0.09 0.46 0.05 0.42

k=4 0.49 0.71 0.10 0.50 0.07 0.58

k=5 0.53 0.71 0.13 0.58 0.08 0.58

Tab. 6.8: Classification algorithm out-of-sample performance: The table summarizes the out-of-sample

performance of the classification algorithm in predicting the onset of crises for the full sample,

core, and periphery countries. The algorithm is run on the 2003-2010 period. The measures of

performance are precision (correctly predicted crises/total predicted crises) and recall (correctly

predicted crises/total actual crises).
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(1) (2) (3) (4) (5) (6) (7)

Algorithm Probit

Benchmark Augmented Benchmark Augmented

2008 2007 2006 2008 2007

Belgium xx x x 0.7% 1.1% 0.1% 0.3%

Denmark xx x 0.3% 0.4% 0.1% 0.1%

Germany x 0.8% 1.4% 0.1% 0.3%

Greece 4.9% 4.2% 3.0% 1.9%

Ireland xx x x 5.8% 10.1% 0.1% 0.4%

Italy 0.9% 1.5% 0.2% 0.4%

Luxembourg . . . .

Netherlands x x . . . .

Portugal x 1.3% 1.6% 0.3% 0.7%

Spain xx x x 5.6% 12.1% 1.3% 2.0%

Sweden xx x x 0.9% 1.1% 0.1% 0.2%

Switzerland xx x . . . .

United Kingdom 10.9% 20.0% 0.9% 2.3%

United States xx 12.9% 12.0% 1.4% 2.4%

Tab. 6.9: Classification algorithm and probit model out-of-sample performance: The table summarizes the

out-of-sample performance of the classification algorithm and probit models, focusing on the

2007-2008 crises. In columns 1-3, “x” marks a predicted crisis in the year given by the column

heading. “xx” marks crisis predictions that are accurate. Columns 4-7 report crisis probabilities

predicted for the years 2007 and 2008 by the benchmark and augmented probits. Both the algo-

rithm and the probits are run on the core country subsample on a rolling basis, i.e., over 1978-2006

for 2007 prediction, and over 1978-2007 for 2008 prediction.
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Fig. 6.6: Classification algorithm - Examples of rules. The table reports examples of sub-rules generated

by the classification algorithm when run on the subsample of core countries over 2003- 2010

Network indicator Type of variable Lag structure
Lower 

Bound

 Upper 

Bound

ANND (in-in) growth rate t-3 0.01589 0.02977

ANND (in-out) growth rate t-5 0.04853 0.06859

ANND (out-in) growth rate t-1 0.00744 0.01215

ANND (out-out) growth rate t-2 0.01424 0.01991

ANNS (in-out) growth rate t-5 0.09538 0.10602

BCC Fagiolo 2007 ("cycle") level t-3 0.18191 0.19096

BCC Lopez-Fernandez 2004 growth rate t-5 -0.28473 -0.22316

HHI level t-5 0.00583 0.00607

HHI level t-4 0.00574 0.00597

HHI level t-1 0.00570 0.00581

HHI level t-2 0.00571 0.00585

In-degree growth rate t-5 0.02041 0.03529

In-degree level t-5 167.00 174.00

In-degree level t-4 170.00 177.00

In-strength level t-5 63.51 66.46

In-strength level t-4 64.05 68.03

In-strength level t-3 65.10 68.58

In-strength level t-2 66.33690 68.57583

AN-in growth rate t-3 -0.00229 0.00408

AN-in level t-5 0.91924 0.96267

Out-degree level t-3 154.00 171.00

WCC Fagiolo 2007 ("cycle") level t-3 0.06724 0.06957

WCC Fagiolo 2007 ("middleman") level t-3 0.06822 0.07180

WCC Fagiolo 2007 ("out") level t-3 0.07107 0.07164
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Appendix Ap

Ap.1 Diffusion Centrality

Ap.1.1 Diffusion Models

Below we provide details on the diffusion models used in the experimental evaluation.

The Flickr model consists of the following rule

p(v) : µv′,v × µp × µq × dpF ← e(v′, v) : µv′,v ∧ p(v′) : µp ∧ q(v′) : µq

saying that if vertex v′ has properties q and p then it can diffuse property p to its neighbor v. The

value dpF is a constant representing the probability that the vertex v will receive property p.

The Jackson-Yariv model is a diffusion model stating that a vertex will receive (adopt) a

property p according to the cumulative effect of its neighbors and the ratio of the benefit to the

cost of the vertex for adopting p. Suppose that vi is an agent having a default behavior that can

be changed in the new behavior p, and that vi has specific cost ci and benefit bi for adopting the

behavior p. Then, the Jackson-Yariv model can be expressed by the rule

p(vi) : bici × r(
∑
j Ej)×

∑
j wj∑
j Ej
× wq × dpJY

←∧
vj |(vj ,vi)∈E

(
e(vj , vi) : Ej ∧ p(vj) : wj

)
∧ q(vi) : wq

where

1. r(
∑

j Ej) is a function describing how the number of neighbors of vi affects the benefits to

vi for adopting behavior p,

2.
∑
j wj∑
j Ej

is the fraction of the neighbors of vi having property p, and
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3. dpJY is a constant representing the probability that the vertex v will adopt the property p.

In our experiments we set the function r(
∑

j Ej) to be a logarithmic function normalized by the

logarithm of the maximum in-degree dinmax of the network, and having values within the interval

[0.1, 2], i.e., r(
∑

j Ej) = 1.9 × ln(
∑
j Ej)

ln(dinmax)
+ 0.1. When the annotation µ of an atom p(v), with

v ∈ V , becomes greater than 1, then we set µ = 1. Moreover, observe that the vertex vi can adopt

property p only if it also has property q.

For the STEAM data, we set bici = 1 for all vertices, while for the Non-Game Social Network

Data we randomly assigned bi
ci

to the vertices according to a normal distribution with 0.5 ≤ bi
ci
≤

1.5.

The SIR model is a classic disease model which labels each vertex with susceptible if it

has not had the disease but can receive it from one of its neighbors, infectious if it has caught the

disease and t units of time have not expired, and recovered when the vertex can no longer catch or

transmit the disease. The diffusion rules are following

p(v) :(1−R)× µev′,v × µ
p
v′ × (1−R′)× µqv × dpSIR ←

rt(v) : R ∧ e(v′, v) : µev′,v ∧ p(v′) : µpv′ ∧ rt(v
′) : R′ ∧ q(v) : µqv

ri(v) :µrv ← ri−1(v) : µrv, i ∈ [2, t]

r1(v) :µpv ← p(v) : µpv

Here, only the vertices having property q can be susceptible and the diffusion property p

represents that a vertex is infected. Properties ri (i 6= t) express that the vertex is in the infectious

state at time t− 1 and rt means that the vertex is recovered. In our experiments, we set t = 2. The

constant dpSIR is the probability that the vertex v will be infected.
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Ap.1.2 STEAM Data Runtime

(a) STEAM Data: Runtime of HyperDC algorithm for Exact Diffusion Centrality computation with Flickr,

Jackson-Yariv, and SIR diffusion models compared with Classical Centrality Measures Averaged Per

Vertex when δq ∈ {1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%}.
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(b) STEAM Data: Runtime of HyperDC algorithm for Exact Diffusion Centrality computation with Flickr,

Jackson-Yariv, and SIR diffusion models compared with Classical Centrality Measures Averaged Per

Vertex when δq ∈ {1%, 2%, 3%, 4%, 5%}. Detailed view of part of part (a).
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Fig. Ap.1: STEAM Data Runtime
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Fig. Ap.2: STEAM Data: p-values of T-test for runtimes of each centrality measure and HyperDC algo-

rithm. When p-value is less than or equal to 0.5, the cell color is green.

1% 2% 3% 4% 5% 10% 15% 20% 25% 30%

Flickr 0.014 0.014 0.014 0.015 0.015 0.015 0.015 0.016 0.016 0.017

Jackson-Yariv 0.014 0.015 0.016 0.027 0.033 0.043 0.047 0.058 0.065 0.069

SIR 0.014 0.014 0.015 0.015 0.015 0.015 0.016 0.017 0.018 0.019

1% 2% 3% 4% 5% 10% 15% 20% 25% 30%

Flickr 0.004 0.082 0.890 0.333 0.121 0.030 0.021 0.019 0.019 0.017

Jackson-Yariv 0.775 0.328 0.329 0.337 0.331 0.320 0.302 0.288 0.250 0.226

SIR 0.021 0.923 0.129 0.041 0.022 0.013 0.011 0.014 0.012 0.012

1% 2% 3% 4% 5% 10% 15% 20% 25% 30%

Flickr 0.010 0.140 0.977 0.284 0.105 0.029 0.021 0.019 0.019 0.017

Jackson-Yariv 0.857 0.319 0.328 0.337 0.331 0.320 0.302 0.288 0.250 0.226

SIR 0.044 0.802 0.112 0.037 0.020 0.013 0.011 0.014 0.012 0.012

Model

T-Test, Betweenness and Diffusion centrality runtimes in STEAM networks

p-value when % of vertices having condition property q is

T-Test, Degree and Diffusion centrality runtimes in STEAM networks

Model

p-value when % of vertices having condition property q is

T-Test, PageRank and Diffusion centrality runtimes in STEAM networks

Model

p-value when % of vertices having condition property q is
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Ap.1.3 Spread for Non-Game Social Network Data

Tab. Ap.1: Non-Game Social Network Data, Case 1: Average ratio of the spread generated by diffusion

centrality to the best spread generated by any of the classical centrality measures for different

δq .

Average ratio of the DC spread to the best spread of other centrality measures for different δq .

Model Network 1% 2% 3% 4% 5% 10% 15% 20% 25% 30%

FlickrModel Douban-dataset 56.2 14.3 31.6 18.0 8.1 4.9 3.7 2.7 2.1 1.9

BlogCatalog-dataset 3.9 2.9 2.6 1.6 1.8 2.0 1.2 1.2 1.2 1.1

email-Enron 5.3 3.0 2.6 3.5 3.0 1.8 1.7 1.5 1.5 1.4

email-EuAll 240.1 6.1 4.4 4.3 6.3 3.3 3.1 2.6 2.4 2.2

soc-Epinions 36.7 11.4 6.5 4.2 3.8 3.9 2.0 2.0 1.9 1.7

wiki-Vote 9.2 13.5 2.0 4.1 2.7 1.7 1.5 1.3 1.2 1.3

Average 58.6 8.5 8.3 5.9 4.3 2.9 2.2 1.9 1.7 1.6

JYModel Douban-dataset 4.8 3.8 2.9 2.6 2.3 1.8 1.5 1.3 1.1 1.1

BlogCatalog-dataset 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

email-Enron 1.3 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0

email-EuAll 1.8 1.7 1.6 1.5 1.5 1.5 1.4 1.4 1.4 1.4

soc-Epinions 1.7 1.5 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3

wiki-Vote 1.7 1.4 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.1

Average 2.0 1.8 1.6 1.5 1.4 1.3 1.2 1.2 1.2 1.2

SIRModel Douban-dataset 2.3 1.7 1.4 1.4 1.3 1.1 1.0 1.0 1.0 1.0

BlogCatalog-dataset 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

email-Enron 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

email-EuAll 1.6 1.6 1.5 1.4 1.4 1.4 1.3 1.3 1.3 1.3

soc-Epinions 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.2 1.1

wiki-Vote 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Average 1.4 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1
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Tab. Ap.2: Non-Game Social Network Data, Case 1: Average ratio of the spread generated by diffusion

centrality to the best spread generated by any of the classical centrality measures for different k.

Average ratio of the DC spread to the best spread of other centrality measures for different k.

Model Network 10 20 30 40 50 60 70 80 90 100

FlickrModel Douban-dataset 20.8 25.4 17.2 17.6 14.7 10.4 9.2 9.4 9.4 9.4

BlogCatalog-dataset 3.2 2.4 2.0 1.9 1.8 1.7 1.6 1.6 1.6 1.6

email-Enron 3.5 3.1 2.8 2.7 2.6 2.2 2.2 2.1 2.0 2.0

email-EuAll 73.0 82.9 86.9 6.0 5.7 5.4 3.9 3.8 3.8 3.3

soc-Epinions 11.7 10.8 9.0 8.5 8.6 5.8 5.5 4.8 4.8 4.7

wiki-Vote 5.2 5.9 4.7 4.8 4.6 3.8 2.5 2.5 2.4 2.3

Average 19.6 21.7 20.4 6.9 6.3 4.9 4.2 4.0 4.0 3.9

JYModel Douban-dataset 2.5 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.2 2.2

BlogCatalog-dataset 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

email-Enron 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

email-EuAll 2.0 1.8 1.6 1.5 1.4 1.4 1.4 1.4 1.4 1.3

soc-Epinions 1.6 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.3

wiki-Vote 1.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3

Average 1.6 1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

SIRModel Douban-dataset 1.2 1.2 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4

BlogCatalog-dataset 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

email-Enron 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9

email-EuAll 1.8 1.7 1.5 1.4 1.3 1.3 1.3 1.3 1.2 1.2

soc-Epinions 1.4 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1

wiki-Vote 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Average 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1
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Tab. Ap.3: Non-Game Social Network Data, Case 2: Average ratio of the spread generated by diffusion

centrality to the best spread generated by any of the classical centrality measures for different δp

values.

Average ratio of the DC spread to the best spread of

other centrality measures for different δp .

Model Network 0% 0.1% 0.2% 0.3% 0.4% 0.5%

FlickrModel Douban-dataset 124.0 145.3 123.9 127.6 129.7 14.7

BlogCatalog-dataset 383.3 392.1 6.7 5.0 2.0 7.6

email-Enron 198.7 245.3 224.5 226.1 3.0 2.2

email-EuAll 181.1 236.1 194.1 205.1 251.8 7.2

soc-Epinions 266.1 227.3 222.3 232.4 208.0 8.5

wiki-Vote 106.9 119.5 112.6 106.0 5.3 8.3

Average 210.0 227.6 147.3 150.4 100.0 8.1

JYModel Douban-dataset 4.4 5.1 4.7 5.2 5.4 2.7

BlogCatalog-dataset 3.4 3.4 3.4 1.9 1.1 1.0

email-Enron 5.4 5.6 5.7 5.8 1.9 1.1

email-EuAll 3.5 3.9 4.4 4.1 3.7 1.6

soc-Epinions 3.3 3.2 3.2 3.2 3.4 1.4

wiki-Vote 1.7 1.8 1.7 1.8 1.7 1.3

Average 3.6 3.8 3.8 3.7 2.9 1.5

SIRModel Douban-dataset 9.4 21.0 10.2 12.6 14.6 1.6

BlogCatalog-dataset 26.5 26.7 24.4 24.5 1.5 1.0

email-Enron 26.5 26.5 28.6 29.8 27.2 1.0

email-EuAll 22.5 31.0 38.8 34.0 25.5 1.5

soc-Epinions 25.3 23.8 24.0 24.2 25.0 1.3

wiki-Vote 6.3 6.2 6.4 6.4 6.8 1.0

Average 19.4 22.5 22.1 21.9 16.8 1.2
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Tab. Ap.4: Non-Game Social Network Data, Case 2: Average ratio of the spread generated by diffusion

centrality to the best spread generated by any of the classical centrality measures for different k

values.

Average ratio of the DC spread to the best spread of other centrality measures for different k.

Model Network 10 20 30 40 50 60 70 80 90 100

FlickrModel Douban-dataset 963.2 23.8 20.9 16.9 16.8 16.6 13.4 12.3 12.3 12.1

BlogCatalog-dataset 1298.9 8.9 4.2 3.3 2.6 2.2 2.1 2.0 1.8 1.7

email-Enron 1466.8 6.6 4.2 3.9 3.7 3.2 3.0 2.9 2.7 2.7

email-EuAll 1743.6 9.3 8.8 5.9 5.4 4.5 4.2 3.8 3.5 3.2

soc-Epinions 1895.9 8.7 6.2 5.3 5.0 4.3 4.0 4.0 3.9 3.8

wiki-Vote 724.8 9.9 6.7 4.8 3.9 3.3 3.0 2.8 2.7 2.5

Average 1348.9 11.2 8.5 6.7 6.2 5.7 4.9 4.6 4.5 4.3

JYModel Douban-dataset 18.9 3.2 3.1 3.1 3.0 2.9 2.9 2.9 2.8 2.8

BlogCatalog-dataset 14.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

email-Enron 32.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

email-EuAll 21.2 2.1 1.9 1.7 1.6 1.5 1.4 1.4 1.4 1.4

soc-Epinions 16.8 1.6 1.5 1.4 1.4 1.4 1.4 1.3 1.4 1.4

wiki-Vote 4.9 1.1 1.3 1.4 1.3 1.3 1.3 1.3 1.4 1.3

Average 18.1 1.7 1.6 1.6 1.6 1.6 1.5 1.5 1.5 1.5

SIRModel Douban-dataset 101.7 1.4 1.4 1.5 1.5 1.6 1.6 1.7 1.7 1.7

BlogCatalog-dataset 165.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

email-Enron 223.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

email-EuAll 242.4 1.9 1.8 1.5 1.5 1.4 1.3 1.3 1.3 1.3

soc-Epinions 195.3 1.4 1.3 1.2 1.2 1.2 1.2 1.1 1.1 1.1

wiki-Vote 45.9 1.0 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0

Average 162.4 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
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Ap.1.4 Table of Notations

Notations for social networks

Symbol Explanation Section

VP Set of vertex predicate symbols, also called properties 2.1

EP Set of edge predicate symbols 2.1

S Social Network (SN), which is a tuple (V,E,VL, ω) 2.1

V Set of vertices 2.1

E Set of (labeled) edges; E ⊆ V × V × EP 2.1

VL(v) Set of properties of vertex v; VL(v) ⊆ VP 2.1

ω(e) Weight of edge e 2.1

Notations for generalized annotated programs

Symbol Explanation Section

A : µ Annotated atom, where A is an atom and µ is an annotation term 2.1

Π Generalized annotated program (GAP) 2.1

ΠS GAP representing SN S 2.1

grd(r) Set of ground instances of rule r 2.1

grd(Π) Set of all ground instances of all rules in GAP Π 2.1

TΠ Operator mapping an interpretation of GAP Π to another interpretation of Π 2.1

lfp(Π) Least fixed point of TΠ 2.1

Notations for diffusion centrality

Symbol Explanation Section

dc(v) Diffusion centrality of vertex v 2.1

p Diffusive property 2.1

S ⊕ p(v) Insertion of p(v) into SN S 2.1

S 	 p(v) Removal of p(v) from SN S 2.1

DCP Problem of finding the DC of all vertices 2.1

kDCP Problem of finding a set of k vertices having the highest DC 2.1

HyperLFP Algorithm to compute the least fixed point of a GAP 2.1

HyperDC Algorithm to solve DCP 2.1

CBAF Algorithm to approximately solve kDCP 3.2

Notations for optimizations

Symbol Explanation Section

dep(Π) Dependency graph of GAP Π 2.1

RΠ,p Set of predicate symbols that can reach property p in dep(Π) 2.1

MΠ,p Set of predicate symbols that are mutually recursive with property p in dep(Π) 2.1

IΠ,p p-interfered predicate set 2.1

Πp {r ∈ Π | the head predicate symbol of r belongs to RΠ,p} 2.1

Π∗p {r ∈ Πp | every predicate symbol q in the body of r is s.t. q /∈ IΠ,p} 2.1
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Notations for the HyperLFP and HyperDC algorithms

Symbol Explanation Section

h Hyperedge, i.e., a pair 〈S, t〉 where S is the source set of vertices and t is the target vertex 2.1

H Set of hyperedges 2.1

S(h) Source set of hyperedge h 2.1

t(h) Target vertex of hyperedge h 2.1

H(S,Π, p) Diffusion hypergraph for SN S, GAP Π, and property p 2.1

Notations for the CBAF algorithm

Symbol Explanation Section

SC Coarsened network 3.2

TC Top-k vertices in SC having highest DC 3.2

SIM Vertex similarity function in network coarsening 3.2

mergeVP Vertex properties merging function in network coarsening 3.2

weight Edge weight function in network coarsening 3.2

π Mapping from vertices of S to vertices of SC 3.2

θ ∈ (0, 1] Contraction factor in network coarsening 3.2

ρ ∈ (0, 1] Neighbors threshold in network coarsening 3.2

mvw Merged vertex weight function for SC 3.2

dC Neighbors distance for extending TC 3.2

dI Neighbors distance for extending π−1(TC) 3.2

Notations for the experimental evaluation

Symbol Explanation Section

δp % of vertices having property p 2.1

δq % of vertices having property q 2.1

seeds Top-k vertices to which the diffusive property p is assigned 2.1

ratiotime Ratio of the runtime of CBAF to the runtime of HyperDC 2.1

ratiospread Ratio of the spread of CBAF to the spread of HyperDC 2.1

Tab. Ap.5: Notations

233



Ap.2 Systematic Banking Crises prediction

Ap.2.1 Network Indicator Definitions

This appendix provides formal definitions for the network indicators employed in the analysis.

Consider a weighted directed network G = (V,E,w) where:

– V is a finite set of nodes (countries)

– E ⊆ V × V is a finite set of directed edges

– w : E → [0, 1] assigns a weight to each edge.

Edge weights represent log-transformed real cross-border banking exposures (scaled by

the log-product GDP of the two nodes in the baseline network; and unscaled in the alternative

network). In what follows, adjacent nodes of a node v are given by Nv = N in
v ∪ Nout

v where

N in
v = {v′|w(v′, v) > 0} and Nout

v = {v′|w(v, v′) > 0} and bv,v′ = 1 if w(v, v′) > 0 and 0

otherwise. We compute the following network indicators:

1. In-degree and Out-degree. The in-degree of a node v is denoted dinv and represents the total

number of a node’s creditors. The out-degree of a node v is denoted doutv and represents the

total number of a node’s debtors.

dinv =
∑
v′∈V

bv′,v

doutv =
∑
v′∈V

bv,v′

2. In-strength and Out-strength. The in-strength of a node v is denoted strin(v) and refers

to the total weight of in-coming edges (a node’s liabilities). The out-strength of a node v

is denoted strout(v) and represents the total weight of out-going edges (a node’s assets or
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exposures).

strin(v) =
∑

(v′,v)∈E

w(v′, v)

strout(v) =
∑

(v,v′)∈E

w(v, v′)

3. Ain and Aout. These are measures of in-strength and out-strength that are normalized by

the total strength of each nodes’ neighbors.

Ain(v) =
strin(v)∑

(v′,v)∈E str
in(v′)

Aout(v) =
strout(v)∑

(v,v′)∈E str
in(v′)

4. AN in and ANout. These indicators denote the average Ain and Aout values normalized

across all nodes in the GBN.

AN in(v) =

∑
(v′,v)∈E A

in(v′)∑
v′′∈V A

in(v′′)

ANout(v) =

∑
(v,v′)∈E A

out(v′)∑
v′′∈V A

out(v′′)

5. Average nearest node degree (ANND). The ANND denotes the average in-degree (or out-

degree) of neighbor nodes connected toward (or from) a node v.

ANNDin,in(v) =

∑
(v′,v)∈E d

in
v′

dinv

ANNDout,in(v) =

∑
(v′,v)∈E d

out
v′

dinv

ANNDin,out(v) =

∑
(v,v′)∈E d

in
v′

doutv

ANNDout,out(v) =

∑
(v,v′)∈E d

out
v′

doutv
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6. Average nearest node strength (ANNS). The ANNS denotes the average in-strength (or out-

strength) of neighbor nodes connected to (or from) a node v.

ANNSin,in(v) =

∑
(v′,v)∈E str

in(v′)

dinv

ANNSout,in(v) =

∑
(v′,v)∈E str

out(v′)

dinv

ANNSin,out(v) =

∑
(v,v′)∈E str

in(v′)

doutv

ANNSout,out(v) =

∑
(v,v′)∈E str

out(v′)

doutv

7. Binary and weighted local clustering coefficients. We use two types of clustering coeffi-

cients for various types of triangle-type relationships respectively introduced in [148] and

[78].

BCC1(v) =

∑
v′,v′′∈Nv bv′,v′′

|Nv| × (|Nv| − 1)

WCC1(v) =

∑
v′,v′′∈Nv w(v′, v′′)

|Nv| × (|Nv| − 1)

as defined in [148], and:

BCC2
Cycle(v) =

∑
v′,v′′∈Nv

3
√
bv,v′bv′,v′′bv′′,v

dinv × doutv − d↔v

BCC2
Middleman(v) =

∑
v′,v′′∈Nv

3
√
bv,v′bv′′,v′bv′′,v

dinv × doutv − d↔v

BCC2
In(v) =

∑
v′,v′′∈Nv

3
√
bv′,vbv′,v′′bv′′,v

dinv × (dinv − 1)

BCC2
Out(v) =

∑
v′,v′′∈Nv

3
√
bv,v′bv′,v′′bv,v′′

doutv × (doutv − 1)

WCC2
Cycle(v) =

∑
v′,v′′∈Nv

3
√
w(v, v′)w(v′, v′′)w(v′′, v)

dinv × doutv − d↔v

WCC2
Middleman(v) =

∑
v′,v′′∈Nv

3
√
w(v, v′)w(v′′, v′)w(v′′, v)

dinv × doutv − d↔v
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WCC2
In(v) =

∑
v′,v′′∈Nv

3
√
w(v′, v)w(v′, v′′)w(v′′, v)

dinv × (dinv − 1)

WCC2
Out(v) =

∑
v′,v′′∈Nv

3
√
w(v, v′)w(v′, v′′)w(v, v′′)

doutv × (doutv − 1)

where d↔v = |N in
v ∩Nout

v | as defined in [78]. See online appendix for a graphical represen-

tation of the triangle taxonomies.

8. Herfindahl-Hirschmann index (HHI). This is the standard measure of competition or market

power concentration from the international organization literature and is not strictly a net-

work indicator. The HHI helps gauge the degree of diversification (or concentration) of a

node’s cross-border banking portfolios.

HHI(v) =
∑

v′∈N in
v

(

∑
(v′,v)∈E w(v′, v)∑
(v′′,v)∈E w(v′′, v)

)2
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Group of indicators List of indicators

1) Degree and strength

1-period lagged levels: din, dout

1st PC: 90.8 percent strin, strout

Ain, Aout

1-period lagged growth rates: AN in, ANout

1st PC: 43.5percent

2nd PC: 32.0 percent

2) Clustering

1-period lagged levels: BCC1, [148]

1st PC: 88.3 percent WCC1, [148]

2nd PC: 7.0 percent BCC2
Cycle, [78]

1-period lagged growth rates: BCC2
Middleman, [78]

1st PC: 69.0 percent BCC2
In, [78]

2nd PC: 14.1 percent BCC2
Out, [78]

WCC2
Cycle, [78]

WCC2
Middleman, [78]

WCC2
In, [78]

WCC2
Out, [78]

3) Neighbor connectedness

1-period lagged levels: ANNDin,in

1st PC: 89.7 percent ANNDout,in

ANNDin,out

1-period lagged growth rates: ANNDout,out

1st PC: 58.1 percent ANNSin,in

2nd PC: 36.8 percent ANNSout,in

ANNSin,out

ANNSout,out

Ap.2.2 Principal Component Analysis (PCA)

We group 26 network indicators into three groups – degree and strength, clustering, and neigh-

bor connectedness – and extract the first and second principal components (1st PC and 2nd PC)

through PCA. All indicators are computed on the baseline GBN. Each group include the following

indicators:
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