39,227 research outputs found

    Elliptic flow of thermal photons and dileptons

    Full text link
    In this talk we describe the recently discovered rich phenomenology of elliptic flow of electromagnetic probes of the hot matter created in relativistic heavy-ion collisions. Using a hydrodynamic model for the space-time dynamics of the collision fireball created in Au+Au collisions at RHIC, we compute the transverse momentum spectra and elliptic flow of thermal photons and dileptons. These observables are shown to provide differential windows into various stages of the fireball expansion.Comment: 8 pages, including 9 figures. Invited talk at the Hard Probes 2006 Conference (Asilomar, June 9-16, 2006), to appear in the Proceedings (Elsevier

    HBT: A (mostly) experimental overview

    Full text link
    I will present a review of the field of Hanbury Brown-Twiss interferometry in relativistic heavy-ion collisions. The "HBT puzzle" is explored in detail, emphasizing recent theoretical attempts to understand the persisting puzzle. I also present recent experimental results on azimuthally sensitive HBT, HBT of direct photons, and some surprises in the comparison of HBT results from p+p and Au+Au collisions at RHIC.Comment: 8 pages, 3 figures. Proceedings of the Quark Matter 2004 conference (Oalkland, CA, USA, January 2004

    Photon HBT interferometry for non-central heavy-ion collisions

    Get PDF
    Currently, the only known way to obtain experimental information about the space-time structure of a heavy-ion collision is through 2-particle momentum correlations. Azimuthally sensitive HBT interferometry (Hanbury Brown-Twiss intensity interferometry) can complement elliptic flow measurements by constraining the spatial deformation of the source and its time evolution. Performing these measurements on photons allows us to access the fireball evolution at earlier times than with hadrons. Using ideal hydrodynamics to model the space-time evolution of the collision fireball, we explore theoretically various aspects of 2-photon intensity interferometry with transverse momenta up to 2 GeV, in particular the azimuthal angle dependence of the HBT radii in non-central collisions. We highlight the dual nature of thermal photon emission, in both central and non-central collisions, resulting from the superposition of QGP and hadron resonance gas photon production. This signature is present in both the thermal photon source function and the HBT radii extracted from Gaussian fits of the 2-photon correlation function.Comment: 18 pages, 12 figure

    Family Ties: Multigenerational Family Foundation Board Engagement

    Get PDF
    Based on interviews with CEOs and family board chairs at seven large, multigenerational family foundations, this publication spotlights the governance practices and structures that these family foundations have created to maintain family involvement; select, orient, and engage family members across generations; and keep the board and foundation focused on impact

    Exciton Trapping Is Responsible for the Long Apparent Lifetime in Acid-Treated MoS2

    Full text link
    Here, we show that deep trapped "dark" exciton states are responsible for the surprisingly long lifetime of band-edge photoluminescence in acid-treated single-layer MoS2. Temperature-dependent transient photoluminescence spectroscopy reveals an exponential tail of long-lived states extending hundreds of meV into the band gap. These sub-band states, which are characterized by a 4 microsecond radiative lifetime, quickly capture and store photogenerated excitons before subsequent thermalization up to the band edge where fast radiative recombination occurs. By intentionally saturating these trap states, we are able to measure the "true" 150 ps radiative lifetime of the band-edge exciton at 77 K, which extrapolates to ~600 ps at room temperature. These experiments reveal the dominant role of dark exciton states in acid-treated MoS2, and suggest that excitons spend > 95% of their lifetime at room temperature in trap states below the band edge. We hypothesize that these states are associated with native structural defects, which are not introduced by the superacid treatment; rather, the superacid treatment dramatically reduces non-radiative recombination through these states, extending the exciton lifetime and increasing the likelihood of eventual radiative recombination

    Ultrafast Charge Transfer at a Quantum Dot/2D Materials Interface Probed by Second Harmonic Generation

    Full text link
    Hybrid quantum dot (QD) / transition metal dichalcogenide (TMD) heterostructures are attractive components of next generation optoelectronic devices, which take advantage of the spectral tunability of QDs and the charge and exciton transport properties of TMDs. Here, we demonstrate tunable electronic coupling between CdSe QDs and monolayer WS2_2 using variable length alkanethiol ligands on the QD surface. Using femtosecond time-resolved second harmonic generation (SHG) microscopy, we show that electron transfer from photoexcited CdSe QDs to single-layer WS2_2 occurs on ultrafast (50 fs - 1 ps) timescales. Moreover, in the samples exhibiting the fastest charge transfer rates (≤\leq 50 fs) we observed oscillations in the time-domain signal corresponding to an acoustic phonon mode of the donor QD, which coherently modulates the SHG response of the underlying WS2_2 layer. These results reveal surprisingly strong electronic coupling at the QD/TMD interface and demonstrate the usefulness of time-resolved SHG for exploring ultrafast electronic-vibrational dynamics in TMD heterostructures
    • …
    corecore