3,184 research outputs found

    Refinement Type Inference via Horn Constraint Optimization

    Full text link
    We propose a novel method for inferring refinement types of higher-order functional programs. The main advantage of the proposed method is that it can infer maximally preferred (i.e., Pareto optimal) refinement types with respect to a user-specified preference order. The flexible optimization of refinement types enabled by the proposed method paves the way for interesting applications, such as inferring most-general characterization of inputs for which a given program satisfies (or violates) a given safety (or termination) property. Our method reduces such a type optimization problem to a Horn constraint optimization problem by using a new refinement type system that can flexibly reason about non-determinism in programs. Our method then solves the constraint optimization problem by repeatedly improving a current solution until convergence via template-based invariant generation. We have implemented a prototype inference system based on our method, and obtained promising results in preliminary experiments.Comment: 19 page

    Gradual Liquid Type Inference

    Full text link
    Liquid typing provides a decidable refinement inference mechanism that is convenient but subject to two major issues: (1) inference is global and requires top-level annotations, making it unsuitable for inference of modular code components and prohibiting its applicability to library code, and (2) inference failure results in obscure error messages. These difficulties seriously hamper the migration of existing code to use refinements. This paper shows that gradual liquid type inference---a novel combination of liquid inference and gradual refinement types---addresses both issues. Gradual refinement types, which support imprecise predicates that are optimistically interpreted, can be used in argument positions to constrain liquid inference so that the global inference process e effectively infers modular specifications usable for library components. Dually, when gradual refinements appear as the result of inference, they signal an inconsistency in the use of static refinements. Because liquid refinements are drawn from a nite set of predicates, in gradual liquid type inference we can enumerate the safe concretizations of each imprecise refinement, i.e. the static refinements that justify why a program is gradually well-typed. This enumeration is useful for static liquid type error explanation, since the safe concretizations exhibit all the potential inconsistencies that lead to static type errors. We develop the theory of gradual liquid type inference and explore its pragmatics in the setting of Liquid Haskell.Comment: To appear at OOPSLA 201

    On abstraction refinement for program analyses in Datalog

    Get PDF
    A central task for a program analysis concerns how to efficiently find a program abstraction that keeps only information relevant for proving properties of interest. We present a new approach for finding such abstractions for program analyses written in Datalog. Our approach is based on counterexample-guided abstraction refinement: when a Datalog analysis run fails using an abstraction, it seeks to generalize the cause of the failure to other abstractions, and pick a new abstraction that avoids a similar failure. Our solution uses a boolean satisfiability formulation that is general, complete, and optimal: it is independent of the Datalog solver, it generalizes the failure of an abstraction to as many other abstractions as possible, and it identifies the cheapest refined abstraction to try next. We show the performance of our approach on a pointer analysis and a typestate analysis, on eight real-world Java benchmark programs

    Program synthesis from polymorphic refinement types

    Get PDF
    We present a method for synthesizing recursive functions that provably satisfy a given specification in the form of a polymorphic refinement type. We observe that such specifications are particularly suitable for program synthesis for two reasons. First, they offer a unique combination of expressive power and decidability, which enables automatic verification—and hence synthesis—of nontrivial programs. Second, a type-based specification for a program can often be effectively decomposed into independent specifications for its components, causing the synthesizer to consider fewer component combinations and leading to a combinatorial reduction in the size of the search space. At the core of our synthesis procedure is a newalgorithm for refinement type checking, which supports specification decomposition. We have evaluated our prototype implementation on a large set of synthesis problems and found that it exceeds the state of the art in terms of both scalability and usability. The tool was able to synthesize more complex programs than those reported in prior work (several sorting algorithms and operations on balanced search trees), as well as most of the benchmarks tackled by existing synthesizers, often starting from a more concise and intuitive user input.National Science Foundation (U.S.) (Grant CCF-1438969)National Science Foundation (U.S.) (Grant CCF-1139056)United States. Defense Advanced Research Projects Agency (Grant FA8750-14-2-0242
    • …
    corecore