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Abstract
We present a method for synthesizing recursive functions
that provably satisfy a given specification in the form of a
polymorphic refinement type. We observe that such speci-
fications are particularly suitable for program synthesis for
two reasons. First, they offer a unique combination of ex-
pressive power and decidability, which enables automatic
verification—and hence synthesis—of nontrivial programs.
Second, a type-based specification for a program can often
be effectively decomposed into independent specifications
for its components, causing the synthesizer to consider fewer
component combinations and leading to a combinatorial re-
duction in the size of the search space. At the core of our
synthesis procedure is a new algorithm for refinement type
checking, which supports specification decomposition.

We have evaluated our prototype implementation on a
large set of synthesis problems and found that it exceeds
the state of the art in terms of both scalability and usability.
The tool was able to synthesize more complex programs than
those reported in prior work (several sorting algorithms and
operations on balanced search trees), as well as most of the
benchmarks tackled by existing synthesizers, often starting
from a more concise and intuitive user input.

Keywords Program Synthesis, Functional Programming,
Refinement Types, Predicate Abstraction

1. Introduction
The key to scalable program synthesis is modular verifica-
tion. Modularity enables the synthesizer to prune candidates
for different subprograms independently, whereby combina-
torially reducing the size of the search space it has to consider.
This explains the recent success of type-directed approaches
to synthesis of functional programs [12, 14, 15, 27]: not only
do ill-typed programs vastly outnumber well-typed ones, but
more importantly, a type error can be detected long before the
whole program is put together.

Simple, coarse-grained types alone are, however, rarely
sufficient to precisely describe a synthesis goal. Therefore,
existing approaches supplement type information with other
kinds of specifications, such as input-output examples [1, 12,
27], or pre- and post-conditions [20, 21]. Alas, the corre-

replicate :: n: Nat → x:α → {List α | len ν = n}

replicate = λ n . λ x . if n ≤ 0

then Nil

else Cons x (replicate (dec n) x)

Figure 1. Refinement type signature of replicate and the
code synthesized from this signature.

sponding verification procedures rarely enjoy the same level
of modularity as type checking, thus fundamentally limiting
the scalability of these techniques.

In this work we present a novel system that pushes the
idea of type-directed synthesis one step further by taking
advantage of refinement types [13, 32]: types decorated with
predicates from a decidable logic. For example, imagine that
a user intends to synthesize the function replicate, which,
given a natural number n and a value x, produces a list that
contains n copies of x. In our system, the user can express
this intent by providing the following signature:

replicate :: n : Nat → x : α→ {ν : List α | len ν = n}

Here, the return type is refined with the predicate len ν = n,
which restricts the length of the output list to be equal to the
argument n; Nat is a shortcut for {ν : Int | ν ≥ 0}, the
type of integers that are greater or equal to zero1. Given this
signature, together with the definition of List and a standard
set of integer components (which include zero, decrement
function, and inequalities), our system produces a provably
correct implementation of replicate, shown in Fig. 1, within
fractions of a second.

We argue that refinement types offer the user a conve-
nient interface to a program synthesizer: the signature above
is only marginally more complex than a conventional ML
or Haskell type. Contrast that with example-based synthesis,
which would require a conventional type together with mul-
tiple input-output pairs, and in return provide much weaker
correctness guarantees.

The replicate example is a perfect illustration of the
power of parametric polymorphism for specifying program

1 Hereafter the bound variable of the refinement is always called ν and the
binding is omitted.
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behavior. Even though the signature in Fig. 1 never says ex-
plicitly that each element of the output list must equal x, it
nevertheless captures the semantics of replicate completely:
since the function knows nothing about the type parameterα,
it has no way of constructing any values of this type other
than x. This surprising expressiveness of polymorphic types
had been long known [39], but combined with refinements,
it enables full-fledged higher-order reasoning within the type
system: a caller of replicate can instantiate α with any re-
finement type, obtaining the fact that whenever x has a cer-
tain property, every element of the output list shares that same
property.

Perhaps surprisingly, prior work on liquid types [19, 32,
35, 36] has shown that this type of higher-order reasoning
can be fully automated for a large class of programs and
properties. The liquid type inference algorithm [32] uses a
combination of Hindley-Milner unification and least-fixpoint
Horn clause solver based on predicate abstraction to discover
refined instantiations for polymorphic types and ultimately
reduce verification to proving quantifier-free formulas over
simple refinement predicates, efficiently decidable by SMT
solvers. The unique combination of expressive power and
decidability offered by polymorphic refinement types makes
them ideal for program synthesis.

Technical Challenges. Unfortunately, liquid type infer-
ence cannot be applied out of the box to the context of syn-
thesis. Designed for the setting where, given a program, the
goal is to construct its type, the inference algorithm starts
from the leaves of the program, whose types are known, and
propagates type information bottom-up, constructing types of
terms from the types of their subterms. In program synthe-
sis, however, the setting is different: here the top-level type is
given, and the goal is to construct the program. One way to do
so is to exhaustively explore program candidates, performing
liquid type inference on each one, and then checking if the
inferred type matches the given specification. While this ap-
proach does rule out many ill-typed partial programs, it fails
to take advantage of the specification for guiding the search. A
more promising approach would propagate type information
top-down from the specification, using it to filter out irrelevant
partial solutions.

Some program terms naturally support decomposing a
specification into independent requirements for their sub-
terms. For example, given a goal type T and assuming that
the top-level construct of the program is a conditional with a
known guard, we can pass T on to the two branches of the
conditional, together with the appropriate path conditions de-
rived from the guard, and proceed to check (or synthesize)
them completely independently. Unfortunately, for other pro-
gram terms there might be infinitely many ways to precisely
decompose a specification. Take a function application, f x:
the specification f x :: Nat can be satisfied by requiring
that f subtract one and x be positive, or that f add one, and x
be greater than negative one, and so on. The challenge in this

case is to find an over-approximate decomposition: that is,
construct requirements on f and x that are necessary but gen-
erally not sufficient for the correctness of fx, yet are strong
enough to filter out many incorrect subterms.

To address this challenge, we propose a new type checking
mechanism for refinement types, which we dub local liquid
type checking. At the heart of the new mechanism is a type
system inspired by bidirectional type checking [30]. Bidirec-
tional systems interleave top-down and bottom-up propaga-
tion of type information depending on the syntactic structure
of the program; in this work we extend the bottom-up phase
of bidirectional checking with top-down propagation of over-
approximate type information, resulting in a round-trip type
checking mechanism, which promotes modular checking of
function applications. Additionally, we equip the type system
with a novel liquid abduction rule, which enables modular
checking of branching terms.

Refinement type checking involves solving subtyping
constraints over unknown refinement types. The modular-
ity requirement precludes our system from using the two
techniques employed to this end by liquid type inference—
Hindley-Milner unification and the least-fixpoint Horn solver—
since both techniques are designed to work on complete pro-
grams and propagate type information bottom-up. Instead, lo-
cal liquid type checking incorporates an algorithm for solving
subtyping constraints incrementally, as it analyzes different
parts of the program. Most notably, top-down propagation
requires finding the greatest fixpoint solution to unknown
refinements instead of the least, which is known to be funda-
mentally more expensive; we propose a practical implemen-
tation for this fixpoint computation, which we call MUSFIX,
inspired by an existing algorithm for enumerating minimal
unsatisfiable subsets (MUSes) [22].

Results. We have combined local liquid type checking
and exhaustive enumeration of program terms in a prototype
program synthesizer called SYNQUID (for “SYNthesis with
liQUID types”), which we evaluated on 64 synthesis problems
from a variety of sources. The implementation, the bench-
marks, and a web interface for SYNQUID are available from
the tool repository [31].

Our evaluation indicates that the techniques described
above work well for synthesizing programs that manipulate
lists and trees, as well as data structures with complex invari-
ants and custom user-defined data structures. SYNQUID was
able to synthesize programs that are more complex than those
previously reported in the literature, including five different
sorting algorithms, and manipulations of binary search trees,
AVL trees, and Red-Black trees. The evaluation also shows
that the modularity features of local liquid type checking and
the MUSFIX solver are crucial for the performance of the
system.

We compare our system with the existing synthesizers
based on input-output examples [1, 12, 14, 27], and Hoare-
style verification [20, 21], and demonstrate that SYNQUID
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can handle the majority of its competitors’ most challenging
benchmarks, taking a similar or shorter amount of time. In ad-
dition, compared with the example-based tools, SYNQUID’s
specifications are usually more concise and the generated so-
lutions are provably correct; compared with the tools based on
Hoare-style reasoning, SYNQUID can verify (and thus synthe-
size) more complex programs thanks to automatic refinement
inference.

2. Overview
SYNQUID operates within a core ML-like language featuring
conditionals, algebraic datatypes, pattern matching, paramet-
ric polymorphism, and fixpoints. We equip the language with
general decidable refinement types, closely following the liq-
uid types framework [19, 32, 35]. The type system includes
refined base types of the form {B | ψ}, where ψ is a refine-
ment predicate over the program variables and a special value
variable ν, which does not appear in the program. Base types
can be combined into dependent function types of the form
x : Tx → T2, where x may appear in the refinement pred-
icates of T2. Our framework is agnostic to the exact logic of
refinement predicates as long as validity of their boolean com-
binations is decidable; our prototype implementation uses the
quantifier-free logic of arrays2, uninterpreted functions, and
linear integer arithmetic, which is sufficient for all the exam-
ples and benchmarks in this paper.

A synthesis problem is defined by (1) a goal refinement
typeT (2) a typing environment Γ and (3) a set of logical qual-
ifiersQ. A solution to the synthesis problem is a program term
t that has the type T in the environment Γ. The environment
contains type signatures of components available to the syn-
thesizer (which may include datatype constructors, “library”
functions, and local variables) as well as any path conditions
that can be assumed when synthesizing t. Qualifiers are pred-
icates from the refinement logic used as building blocks for
unknown refinements and branch guards. Our system extracts
an initial set of such predicates automatically from the goal
type and the types of components; for all our experiments,
the automatically extracted qualifiers were sufficient to syn-
thesize all the necessary refinements, but in general the user
might have to provide additional predicates.

Given a synthesis problem, SYNQUID constructs a candi-
date solution, by either by either picking a component in Γ
or decomposing the problem into simpler subproblems and
recursively obtaining a solution ti to each one. Since the de-
composition is generally incomplete, a candidate obtained by
combining ti’s is not guaranteed to have the desired type T ;
to check if the candidate is indeed a solution, the system gen-
erates a subtyping constraint. If the constraint cannot be sat-
isfied, the system backtracks to pick a different combination
of solutions to subproblems (or a different decomposition al-
together); the stronger the sub-goals produced during decom-
position, the less SYNQUID has to backtrack. The rest of the

2 Arrays are used to model sets.

section illustrates the details of this procedure and showcases
various features of the specification language on a number of
examples.

Example 1: Recursive Programs and Condition Abduc-
tion. We first revisit the replicate example from the introduc-
tion. We assume that the set of available components includes
functions 0, inc and dec on integers, as well as a list datatype
whose constructors are refined with length information, ex-
pressed by means of an uninterpreted function (or measure)
len.

0 :: {Int | ν = 0}

inc :: x: Int → {Int | ν = x + 1}

dec :: x: Int → {Int | ν = x - 1}

termination measure len :: List β → Nat

data List β where

Nil :: {List β | len ν = 0}

Cons :: β → xs: List β →
{List β | len ν = len xs + 1}

Measure len also serves as the termination metric on lists
(denoted with the termination keyword above): it maps lists
to a type that has a predefined well-founded order in our
language and thus enables termination checks for recursion
on lists.

For the rest of the section, let us fix the set of logical
qualifiers Q to {? ≤ ?, ? 6= ?}, where ? is a placeholder
that can be instantiated with any program variable or ν.

Given the specification

n : Nat→ x : α→ {List α | len ν = n}

SYNQUID picks λ-abstraction as the top-level construct, and
creates a synthesis subproblem for its body with a simpler
goal type {List α | len ν = n}. The system need not
consider other choices of the top-level construct, since every
terminating program has an equivalentβ-normalη-long form,
where all functions are fully applied and the head of each
application is a variable; moreover, the above decomposition
is precise, since any solution to the subproblem will satisfy
the top-level goal.

As part of the decomposition, the arguments n : Nat and
x : α are added to the environment, together with the function
replicate itself, to account for the possibility that it may be
recursive. In order to ensure termination of recursive calls, the
system weakens the type of replicate in the environment to

n′ : {Int | 0 ≤ ν < n} → x′ : α→ {List α | len ν = n′}

demanding that the first argument be strictly decreasing.
SYNQUID picksn as the termination metric in this case, since
it is the only argument whose type has an associated well-
founded order.

In the body of the function, the top-level construct might
be a branching term. Rather than exploring this possibility
explicitly, SYNQUID adds a fresh predicate unknown P0 as
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a path condition to the environment, and then searches for
a branch-free program term that satisfies the specification
assuming P0. Each candidate branch-free term t is validated
by solving a subtyping constraint; as part of this process,
SYNQUID discovers the weakest P0 that makes t satisfy the
specification. In case t is valid unconditionally, the weakest
such P0 is True, and no branch is generated.

Suppose the first branch-free term that SYNQUID consid-
ers is Nil; this choice results in a subtyping constraint

n : Nat;x : α;P0 `
{List β′ | len ν = 0} <: {List α | len ν = n}

where β′ is a free type variable. The constraint imposes two
requirements: (i) the shapes of the two types (i.e. their under-
lying unrefined types) must have a unifier [29] and (ii) the re-
finements of the subtype must subsume those of the supertype
under the assumptions encoded in the environment. The con-
straint above gives rise to a unifier [β′ 7→ {α | P1}] (where
P1 is a fresh predicate unknown) and two Horn constraints:
P0 ∧ P1 ⇒ > and 0 ≤ n ∧ P0 ∧ len ν = 0 ⇒ len ν = n.
SYNQUID uses the MUSFIX Horn solver (Sec. 3.6) to find the
weakest assignment of liquid formulas to P0 and P1 that sat-
isfies both Horn constraints. A liquid formula is a conjunction
of atomic formulas, obtained by replacing ?-placeholders in
each qualifier in Q with appropriate variables. If for some Pi
no valid assignment exists, or the weakest valid assignment is
a contradiction, the candidate program is discarded.

In our example, MUSFIX discovers the weakest assign-
ment L = [P0 7→ n ≤ 0, P1 7→ >], effectively abducing
the necessary branching condition. Since the condition is not
trivially true, the system proceeds to synthesize the remaining
branch under the path condition¬(n ≤ 0). A similar strategy
for generating branching programs has been successfully em-
ployed in several existing synthesis tools [1, 4, 20, 21] and is
commonly referred to as condition abduction. Each condi-
tion abduction technique faces the challenge of searching a
large space of potential conditions efficiently; our approach,
which we dub liquid abduction, addressed this challenge by
restricting conditions to liquid formulas and using MUSFIX
to explore the space of liquid formulas efficiently.

The remaining branch has to deal with the harder case
of n > 0. When enumerating candidates for this branch,
SYNQUID eventually decides to apply the replicate com-
ponent (that is, make a recursive call), and searches for the
parameters via recursive application of the synthesis proce-
dure. At this point, the strong precondition on the argument
m, 0 ≤ ν < n, which arises from the termination require-
ment, enables filtering candidate arguments locally, before
synthesizing the rest of the branch. In particular, the system
will discard the candidates n and inc n right away, since they
fail to produce a value strictly less than n.

Example 2: Complex Data Structures and Invariant In-
ference. Assuming comparison operators in our logic are

generic, we can define the type of binary search trees as fol-
lows:

termination measure size :: BST α → Int

measure keys :: BST α → Set α
data BST α where

Empty :: {BST α | keys ν = []}

Node :: x:α → l: BST{α | ν < x} → r: BST{α | x < ν}
→ {BST α | keys ν = keys l + keys r + [x]}

According to this definition, one can obtain a BST either by
taking an empty tree, or by composing a node with key x and
two BSTs, l and r, in which all keys are, respectively, strictly
less and strictly greater thanx. The type is additionally refined
by the measure keys, which denotes the set of all keys in the
tree, and a termination measure size (size-related refinements
are omitted in the interest of space).

The following type specifies insertion into a BST:

insert :: x:α → t: BST α →
{BST α | keys ν = keys t + [x]}

From this specification, SYNQUID generates the following
implementation within two seconds:

insert = λ x . λ t . match t with

| Empty → Node x Empty Empty

| Node y l r → if x ≤ y ∧ y ≤ x

then t

else if y ≤ x

then Node y l (insert x r)

else Node y (insert x l) r

Pattern matching in this example is synthesized using
a special case of liquid abduction: type-checking the term
Node x Empty Empty against the goal type {BST α | keys ν =
keys t + [x]}, causes the system to abduce the condition
keys t = [], which implies a match on t.

The challenging aspect of this example is reasoning about
sortedness. For example, for the term Node y l (insert x r)
to be type-correct, the recursive call must return the type
BST {α | y < ν}. This type does not appear explicitly in
the user-provided signature for insert; in fact, verifying this
program requires discovering a nontrivial inductive invariant
of insert (that adding a key greater than some value z into
a tree with keys greater than z again produces a tree with
keys greater than z), which puts this and similar examples
beyond reach of existing synthesizers based on Hoare-style
reasoning [20, 21].

In our framework, this property is easily inferred by the
Horn constraint solver in combination with polymorphic re-
cursion. When insert is added to the environment, its type is
generalized to ∀β.x : β → u : {BST β | size u < size t} →
{BST β | keys ν = keys t + {x}}. At the site of the recur-
sive call, the precondition of Node y l imposes a constraint
that simplifies to BST β <: BST {α | y < ν}, which leads to
instantiating [β 7→ {α | P0}] and [P0 7→ y < ν].
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Importantly, due to round-trip type checking (Sec. 3.2),
this assignment is discovered before the two arguments to
insert are synthesized, which has the effect of propagating
the requirement imposed by Node top-down through the ap-
plication of insert onto its arguments. In particular, using the
goal type {α | y < ν} for the first argument of insert, the
system can immediately discard the candidate y, while trying
x succeeds and leads to the abduction of the branch condition
y ≤ x. As our evaluation shows, disabling this type of early
filtering increases the synthesis time for this example from
less than two seconds to over two minutes.

Example 3: Abstract Refinements. Using refinement
types as an interface to synthesis raises the question of their
expressiveness. Restricting refinements to decidable logics
fundamentally limits the class of programs they can fully
specify, and for other programs writing a refinement type
might be possible but cumbersome compared to providing a
set of input-output examples or a specification in a richer lan-
guage. The previous examples suggest that refinement types
are effective for specifying programs that manipulate data
structures with nontrivial universal and inductive invariants.
In this example we demonstrate how extending the type sys-
tem with abstract refinements allows us to express a wider
class of properties, for example, talk about the order of list
elements.

Abstract refinements, proposed in [35], enable explicit
quantification over refinements of datatypes and function
types. For example, a list datatype can be parameterized by a
binary relation r that must hold between any in-order pair of
elements in the list:

data RList α <r ::α → α → Bool> where

Nil :: RList α <r>

Cons :: x:α → RList {α | r x ν} <r> → RList α <r>

On the one hand this enables concise definitions of lists
with various inductive properties as instantiations of RList:

IList α = RList α <λ xλ y . x ≤ y> -- Increasing list

UList α = RList α <λ xλ y . x 6= y> -- Unique list

List α = RList α <λ xλ y . True> -- Unrestricted list

On the other hand, making list-manipulating functions
polymorphic in this relation, provides an elegant way to spec-
ify order-related properties. Consider the following type for
list reversal:

reverse :: <r ::α → α → Bool> . xs: RList α <r> →
{RList α <λ xλ y . r y x> | len ν = len xs}

It says that whatever relation holds between every in-order
pair of elements of the input list, also has to hold between ev-
ery out-of-order pair of elements of the output list. This type
does not restrict the applicability of reverse, since at the call
site r can always be instantiated with True; the implementa-
tion of reverse, however, has to be correct to any value of r,
which leaves the synthesizer no choice but reverse the order

of list elements. Given the above specification and a compo-
nent that appends an element to the end of the list (specified
in a similar fashion), SYNQUID synthesizes the standard im-
plementation of list reversal.

Example 4: Higher-Order Combinators and Auxiliary
Function Discovery. Complex programs might require recur-
sive auxiliary functions. Discovering specifications for such
functions automatically is a difficult task, akin to lemma dis-
covery in theorem proving [7, 16, 25], which largely remains
an open problem. SYNQUID expects users to provide the high-
level insight about a complex algorithm in the form of auxil-
iary function signatures. For example, if the goal is to synthe-
size a list sorting function with the following signature

sort :: xs: List α → {IList α | elems ν = elems xs}

(where elems denotes the set of list elements), the user can
express the insight behind different sorting algorithms by
providing different auxiliary functions: insertion into a sorted
list for insertion sort, splitting and merging for merge sort,
or partitioning and concatenation for quick sort. Naturally,
the implementation of the auxiliary functions can in turn be
synthesized, but coming up with their specification is the
creative step that generally requires user interaction, and can
be considered a major hurdle on the path to fully automatic
synthesis.

It turns out, however, that replacing general recursion
with higher-order combinators such as map and fold—a style
widely used and highly encouraged in functional programming—
makes it possible to infer requirements on the auxiliary func-
tion from the specification of the main program. This is one
of the main insights behind the synthesizer λ2 [12], which
relies on hard-coded rules for propagating input-output ex-
amples top-down through common combinators. SYNQUID
supports this top-down propagation of specifications out of
the box thanks to the combination of refinement types and
polymorphism.

Consider the following type for function foldr, which
folds a binary operation f over a list ys from right to left:

foldr ::<p :: List β → γ → Bool>.
f: (t: List β → h:β → acc: {γ | p t ν} →

{γ | p (Cons h t) ν}) →
seed: {γ | p Nil ν} →
ys: List β → {γ | p ys ν}

The shape of this type is slightly different from the usual sig-
nature of foldr: the operation f takes an extra ghost argu-
ment t, which denotes the part of the list that has already been
folded3. The type of is parametrized by a binary relation p

that foldr establishes between the input list ys and the out-
put; it requires that the relationship hold between the empty
list and the seed, and that applying f to a head element h and
the result of folding a tail list t yield a result that satisfies the

3 Extending SYNQUID with bounded refinement types [38] would enable a
more natural specification without the ghost argument.
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relationship with Cons h t (in other words, p plays the role of
a loop invariant). Note that folding a list left-to-right (foldl)
requires a more complex specification that cannot currently
be expressed within the SYNQUID type system.

What happens if we ask SYNQUID to synthesize sort,
while providing foldr as the only component? When trying
out an application of foldr, round-trip type checking handles
its higher-order argument, f, in a special way, since in our
type system, as in [32], f cannot appear in the result type of
foldr. Consequently, the exact value of f is not required to
determine the type of the application, which gives SYNQUID
the freedom to synthesize it independently from the rest of the
program.

The tool quickly figures out that foldr ?? Nil xs has the
required type {IList α | elems ν = elems xs}, given the fol-
lowing assignment to foldr’s type and predicate variables:
[β 7→ α, γ 7→ IList α, p 7→ λas.λbs.elems bs = elems as].
Now that SYNQUID comes back to the task of filling in the
first argument of foldr, its required type has been determined
entirely as

t: List α → h:α →
acc: {IList α | elems ν = elems t} →
{IList α | elems ν = elems (Cons h t)}

(where elems (Cons h t) is expanded into [h] + elems t us-
ing the definition of the elems measure in the type of Cons); in
other words, the auxiliary function must insert h into a sorted
list acc. Treating this inferred signature as an independent
synthesis goal, SYNQUID easily synthesizes a recursive pro-
gram for insertion into a sorted list, and thus completes the
following implementation of insertion sort without requir-
ing any hints from the user, apart from a general recursion
scheme:

sort = λ xs . foldr f Nil xs

where f = λ t . λ h . λ acc .
match acc with

Nil → Cons h Nil

Cons z zs → if h ≤ z

then Cons h (Cons z zs)

else Cons z (f zs h zs)

The next section gives a formal account of the SYNQUID
language and type system, and details its modular type check-
ing mechanism, which enables scalable synthesis.

3. The SYNQUID Language
The central goal of this section is to develop a type check-
ing algorithm for a core programming language with refine-
ment types that is geared towards candidate validation in the
context of synthesis. This context imposes two important re-
quirements on the type checking mechanism which are neces-
sary for the synthesis procedure to be automatic and scalable.
The first one has to do with the amount of type inference:
the mechanism can expect top-level type annotations—this is

how users specify synthesis goals—but cannot rely on any an-
notations beyond that; in particular, the types of all polymor-
phic instantiations and arguments of anonymous functions
must be inferred. The second requirement is to detect type
errors locally: intuitively, if a subterm of a program causes a
type error independently of its context, the algorithm should
be able to report that error without analyzing the context.

We build our type checking mechanism as an extension to
the the liquid types framework [19, 32], which uses a com-
bination of Hidley-Milner unification and a Horn solver to
infer refinement types. The original liquid type inference al-
gorithm is not designed for synthesis, and thus makes differ-
ent trade-offs: in particular it does not satisfy the locality re-
quirement. Our type checking mechanism achieves locality
based on three key ideas. First, we apply bidirectional type
checking [30] to refinement types and reinforce it with addi-
tional top-down propagation of type information, arriving at
round-trip type checking (Sec. 3.2); we then further improve
locality of rules for for function applications and branching
statements (Sec. 3.4). Second, we develop a new algorithm for
converting subtyping constraints into horn clauses, which is
able to do so incrementally as the constraints are issued before
analyzing the whole program (Sec. 3.5). Finally, we propose
a new, efficient implementation for a greatest-fixpoint Horn
solver (Sec. 3.6). In the interest of space we omit abstract re-
finements (see Sec. 2) from the formalization; [35] has shown
that integrating this mechanism into the type system that al-
ready supports parametric polymorphism is straightforward.

In Sec. 3.7 we derive synthesis rules from the modular type
checking rules; in doing so we follow previous work on type-
directed synthesis [17, 27], which has shown how to turn type
checking rules for a language into synthesis rules for the same
language.

3.1 Syntax and Types
Fig. 2 shows the syntax of the SYNQUID language.

Terms. Unlike previous work, we differentiate between the
languages of refinements and programs. The former consists
of refinement terms ψ, which have sorts ∆; the exact set of
interpreted symbols and sorts depends on the chosen refine-
ment logic. We refer to refinement terms of the Boolean sort
B as formulas.

The language of programs consists of program terms t,
which we split, following [27] into elimination and intro-
duction terms (E-terms and I-terms for short). Intuitively, E-
terms—variables and applications—propagate type informa-
tion bottom-up, composing a complex property from prop-
erties of their components; I-terms propagate type informa-
tion top-down, decomposing a complex requirement into sim-
pler requirements for their components. Note that conditional
guards, match scrutinees, and left-hand sides of applications
are restricted to E-terms. We further separate I-terms into
branching terms—conditionals and matches—and function
terms—abstractions and fixpoints—and disallow branching
terms on the right-hand side of application. This normal form
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ψ ::= Refinement term:
| > | ⊥ | 0 | + | . . . (varies) interpreted symbol
| x uninterpreted symbol
| ψ ψ application

∆ ::= Sort:
| B | Z | . . . (varies) interpreted
| δ uninterpreted

t ::= e | b | f Program term
e ::= E-term:

| x variable
| e e | e f application

b ::= Branching term:
| if e then t else t conditional
| match e with |i Ci〈xji 〉 7→ ti match

f ::= Function term:
| λx.t abstraction
| fix x.t fixpoint

B ::= Base type:
| Bool | Int primitive
| D Ti datatype
| α type variable

T ::= Type:
| {B | ψ} scalar
| x : T → T function

S ::= ∀αi.T Type schema
C ::= · | x : T ;C Context
T̂ ::= letC in T Contextual Type

Figure 2. Terms and types.

is required to enable precise and efficient local type checking,
as explained below. It does not fundamentally restrict the ex-
pressiveness of the language: every terminating program in
lambda calculus can be translated to SYNQUID by first ap-
plying a standard β-normal η-long form [15, 27] and then
pushing branching terms outside of applications, guards, and
scrutinees.

Types and Schemas. A SYNQUID type is either a scalar—
base type refined with a formula—or a dependent func-
tion type. Base types include primitives, type variables, and
user-defined datatypes with zero or more type parameters.
Datatype constructors are represented simply as functions
that must have the type ∀α1 . . . αm.T1 → . . . → Tk →
D α1 . . . αm. A contextual type is a pair of a sequence of
variable bindings and a type that can mention those variables;
contextual types are useful for precise type checking of appli-
cations, as explained in Sec. 3.2.

SYNQUID features ML-style polymorphism, where type
variables are universally quantified at the outermost level to
yield type schemas. Unlike ML, we restrict type variables to
range only over scalars, which gives us the ability to deter-
mine whether a type is a scalar, even if it contains free type
variables. We found this restriction not to be too limiting in
practice.

Well-Formed Types Γ ` T̂

WF-SC
Γ; ν : B ` ψ
Γ ` {B | ψ}

WF-CTX
Γ;C ` T

Γ ` letC in T

WF-FO
Γ ` {B | ψ} Γ;x : {B | ψ} ` T

Γ ` x : {B | ψ} → T

WF-HO
Tx non-scalar Γ ` Tx Γ ` T

Γ ` Tx → T

Subtyping Γ ` T <: T ′

<:-SC
Γ ` B <: B′ Valid(JΓKψ⇒ψ′ ∧ ψ ⇒ ψ′)

Γ ` {B | ψ} <: {B′ | ψ′}

<:-FUN
Γ ` Ty <: Tx Γ; y : Ty ` [y/x]T <: T ′

Γ ` x : Tx → T <: y : Ty → T ′

<:-DT
Γ ` Ti <: T ′i

Γ ` D Ti <: D T ′i
<:-REFL

Γ ` B <: B

Figure 3. Well-formedness and subtyping.

Environments, Well-Formedness, and Subtyping. A typ-
ing environment Γ is a sequence of variable bindings x : T
and path conditions ψ; we denote conjunction of all path
conditions in an environment as P(Γ). A formula ψ is well-
formed in the environment Γ, written Γ ` ψ, if it is of a
Boolean sort and each of its free variables is bound in Γ to a
type that is consistent with its sort in ψ. Well-formedness ex-
tends to types as shown in Fig. 3. Note the two different rules
for first-order and higher-order function types: in a function
type x : T1 → T2, T2 may reference the formal argument x
only if T1 is a scalar type (that is, only first-order function
types are dependent).

The subtyping relation Γ ` T <: T ′ is relatively standard
(Fig. 3). For simplicity, we consider all datatypes covariant
in their type parameters (rule <:-DT); if need be, variance
can be selected per type parameter depending on whether it
appears positively or negatively in the constructors. The cru-
cial part is the rule<:-SC, which reduces subtyping between
scalar types to implication between their refinements, under
the assumptions extracted from the environment. Since the re-
finements are drawn from a decidable logic, this implication
is decidable. The function that extracts assumptions from the
environment is parametrized by a formula ψ and returns a
conjunction of all path conditions and refinements of all vari-
ables mentioned in ψ or the path conditions:

JΓKψ = P(Γ) ∧ BFV(P(Γ))∪FV(ψ)(Γ)

where

Bv(Γ;x : {B | ψ}) =

{
[x/ν]ψ ∧ Bv\{x}∪FV(ψ)(Γ) (x ∈ v)

Bv(Γ) (otherwise)

Bv(Γ;x : T ) = Bv(Γ) (T non-scalar)

Bv(·) = >
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This definition limits the effect of an environment variable
with an inconsistent refinement to only those subtyping judg-
ments that (transitively) mention that variable.

3.2 Round-Trip Type Checking
This section describes the core of SYNQUID’s type system.
It is inspired by bidirectional type checking [30], which in-
terleaves top-down and bottom-up propagation of type infor-
mation depending on the syntactic structure of the program,
with the goal of making type checks more local. Bidirectional
typing rules use two kinds of typing judgments: an inference
judgment, written Γ ` e ↑ T , states that the term t gen-
erates type T in the environment Γ; a checking judgment,
Γ ` t ↓ T , states that the term t checks against a known
type T in the environment Γ. Accordingly, all typing rules
can be split into inference and checking rules, depending on
the judgment they derive. Bidirectional type checking rules
for SYNQUID are given in Appendix A.

In a bidirectional system, analyzing a program starts with
propagating its top-level type annotation top-down using
checking rules, until the system encounters a term t to which
no checking rule applies. At this point the system switches
to bottom-up mode, infers the type T ′ of t, and checks if T ′

is a subtype of the goal type; if the check fails, t is rejected.
Bidirectional type propagation is “all-or-nothing”: once a
checking problem for a term cannot be decomposed perfectly
into checking problems for its subterms, the system abandons
all information about the goal type and switches to purely
bottom-up inference. Our insight is that some information
from the goal type can be retained in the bottom-up phase,
leading to more local error detection. To this end, we mod-
ify the bidirectional inference judgment into a strengthening
judgment Γ ` t ↓ T ↑ T ′, which reads as follows: in
the environment Γ, term t checks against a known type T and
generates a stronger typeT ′. We call the resulting type system
round-trip, since it propagates types top-down and then back
up.

Derivation rules for round-trip type checking are presented
in Fig. 4. All judgments are parametrized by the set of quali-
fiers Q, used to construct unknown refinements as explained
below. Checking rules encode the way a checking judgment
for an I-term t is decomposed into simpler checking judg-
ments for its components. Strengthening rules encode the
way a goal type for an E-term e is decomposed into over-
approximate goal types for its subterms, which are necessary
but in general not sufficient for correctness, while the precise
type of e is constructed from the inferred types of its subterms.
A round-trip type checker starts with a top-down phase, just
as a bidirectional one would; when it encounters an E-term,
it applies the corresponding strengthening rule and discards
the inferred type (see rule IE). Thus, instead of detecting type
errors at the boundary between I- and E-terms, the round-trip
system performs local checks for each variable and function
application.

Type Strengthening Γ `Q e ↓ T ↑ T̂ ′

VARSC
Γ(x) = {B | ψ} Γ ` {B | ψ} <: T

Γ `Q x ↓ T ↑ {B | ν = x}

VAR∀
Γ(x) = ∀αi.T ′ Γ `Q Ti Γ ` [Ti/α]T ′ <: T

Γ `Q x ↓ T ↑ [Ti/α]T ′

APPFO

Γ `Q e1 ↓ {B | ⊥} → T ↑ letC1 in (x : {B | ψ} → T ′)
Γ;C1 `Q e2 ↓ {B | ψ} ↑ letC2 in Tx

Γ;C1;C2;x : Tx ` T ′ <: T

Γ `Q e1 e2 ↓ T ↑ letC1;C2;x : Tx in T ′

APPHO

Γ `Q e ↓ bot→ T ↑ letC in (T ′x → T ′)
Γ;C `Q f ↓ T ′x

Γ `Q e f ↓ T ↑ letC in T ′

Type Checking Γ `Q t ↓ S

IE
Γ `Q e ↓ T ↑ T̂ ′

Γ `Q e ↓ T

ABS
Γ; y : Tx `Q t ↓ [y/x]T

Γ `Q λy.t ↓ (x : Tx → T )

IF

Γ `Q e ↓ Bool ↑ letC in {Bool | ψ}
Γ;C; [>/ν]ψ `Q t1 ↓ T Γ;C; [⊥/ν]ψ `Q t2 ↓ T

Γ `Q if e then t1 else t2 ↓ T

MATCH

Γ `Q e ↓ top ↑ letC in {D Tk | ψ}
Ci = T ji → {D Tk | ψ′i} Γi = {xji : T ji }; [x′/ν]ψ′i

Γ;C; [x′/ν]ψ; Γi `Q ti ↓ T
Γ `Q match e with |i Ci〈xji 〉 7→ ti ↓ T

TABS
Γ `Q t ↓ T αi not free in Γ

Γ `Q t ↓ ∀αi.T

FIX
Γ;x : S≺ `Q t ↓ S
Γ `Q fix x.t ↓ S

Figure 4. Rules of round-trip type checking.

In order to support goals types with an underspecified
shape (as required for match scrutinees and higher-order ap-
plications), we augment SYNQUID with top and bot types,
which are, respectively, a supertype and a subtype of every
type. Note that these types are ignored when computing the
logical representation of the environment JΓKψ , since they are
not considered scalar. Also note that the precision of round-
trip type checking crucially relies on the fact that only E-
terms appear in strengthening judgments; this is why SYN-
QUID bans branching terms from function arguments, condi-
tional guards, and match scrutinees.

Polymorphic instantiations. The rule VAR∀, which han-
dles polymorphic instantiations, replaces type variables αi
with types Ti chosen nondeterministically to satisfy all sub-
typing checks4. In order to tame this nondeterminism, follow-
ing [32], we restrict Tis to liquid types. A formula ψ is liquid
in Γ with qualifiers Q, written Γ `Q ψ, if it is a conjunction

4 The same rule handles monomorphic non-scalar variables, assuming zero
type variables.
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of well-formed formulas, each of which is obtained from a
qualifier in Q by substituting ?-placeholders with variables.
This notion extends to types, Γ `Q T , in a way analogous to
well-formedness (Fig. 3). Note that the set of all liquid for-
mulas in a given environment is finite, and so is the set of all
liquid types with a fixed shape. Sec. 3.5 and Sec. 3.6 present
a deterministic algorithm for finding the types Ti.

Applications. The application rules APPFO and AppHO
are the core of the round-trip type system: they are responsible
for propagating partial type information down to the left-hand
side of an application. The type system distinguishes between
first-order and higher-order applications, since in a function
typex : T1 → T2,T2 cannot mentionx ifT1 is a function type
(see Fig. 3). As a result, a higher-order application always
yields the type T2 independently of the argument. If instead
T1 is a scalar type, we have to replace x inside T2 with
the actual argument of the application. Unfortunately, we
cannot assign the application e1 e2 the type [e2/x]T2, since
e2 is a program term, which does not necessarily have a
corresponding refinement precisely capturing its semantics.
We address this problem by assigning e1 e2 a contextual type
let C in T2, where the context C binds the variable x to the
precise type of e2.

Example. We demonstrate the local error detection enabled
by rule APPFO on the following type-checking problem:

Γ `Q append xs xs ↓ {List Pos | len ν = 5}

where Pos is an abbreviation for {Int | ν > 0} and Γ contains
the following bindings:

xs : {List Nat | len ν = 2};
append : ∀α. l : {List α | len ν ≥ 0}

→ r : {List α | len ν ≥ 0}
→ {List α | len ν = len l + len r}

Intuitively, the constraint on the length of the output list is
hard to verify without analyzing the whole expression, while
the mismatch in the type of the list elements can be easily
found without considering the second argument of append.
Refinement types provide precise means to distinguish those
cases: the length-related refinement of append is dependent
on the arguments l and r, whereas the type of the list elements
cannot possibly mention l or r, since it has to be well-formed
in a scope where these variables are not defined.

Applying the APPFO rule twice to the judgment above
yields Γ `Q append ↓ {B0 | ⊥} → {B1 | ⊥} →
{List Pos | len ν = 2}, where the base types B0 and B1

are yet to be inferred. Applying VAR∀, and decomposing the
resulting subtyping check with<:-FUN, we get

Γ; l : {B0 | ⊥}; r : {B1 | ⊥} `
{List T0 | len ν = len l + len r} <: {List Pos | len ν = 2}

Using <:-SC, this judgment can be decomposed into an im-
plication on refinements—vacuous thanks to the types of l

and r—and subtyping on base types, List T0 <: List Pos,
which is not vacuous since here l and r are out of scope. The
first argument of append is checked against the type List T0

(in the second premise of APPFO), which imposes a subtyp-
ing check Γ ` List Nat <: List T0. Since no type T0 satis-
fies both subtyping relations, the type checker rejects the term
append xs.

Recursion. Another rule in Fig. 4 that deserves some dis-
cussion is FIX, which comes with a termination check. In the
context of synthesis, termination concerns are impossible to
ignore, since non-terminating recursive programs are always
simpler than terminating ones, and thus would be synthesized
first if considered correct. The FIX rule gives the “recursive
call” a termination-weakened type S≺, which intuitively de-
notes “S with strictly smaller arguments”. The exact defini-
tion of termination-weakening is a parameter to our system.
Our implementation provides a predefined well-founded or-
der on primitive base types, and allows the user to define one
on datatypes by mapping them to primitive types using termi-
nation metrics; thenS≺ is defined as a lexicographic order on
the tuple of all arguments of S that have an associated well-
founded order.

3.3 Soundness and Completeness
We show soundness and completeness of round-trip type
checking relative to purely bottom-up liquid type infer-
ence [32]. For detailed proofs see Appendix A.

Round-trip type checking is sound in the sense that when-
ever a SYNQUID term t type-checks against a schema S,
Γ `Q t ↓ S, there exist a set of qualifiers Q′ and a
schema S′, such that the bottom-up system infers S′ for t,
Γ `Q′ t :: S, and Γ ` S′ <: S. Note that bottom-up infer-
ence might require strictly more qualifiers than type check-
ing: in the bottom-up system, generating types for branch-
ing statements and abstractions imposes the requirement that
these types be liquid; the round-trip system obtains the types
of those terms by decomposing the goal type, thus the liq-
uid restriction does not apply. In practice the difference is ir-
relevant, since the type inference algorithm can extract the
missing qualifiers from the top-level goal type and the pre-
conditions of component functions. Thus, ifQ contains a suf-
ficient set of qualifiers such that the goals schema is liquid
(Γ `Q S) and the preconditions of component function are
liquid, which we denote as `Q Γ, then we can take Q′ = Q.

Theorem 1 (Soundness of round-trip type checking). If `Q
Γ, Γ `Q S, and Γ `Q t ↓ S, then Γ `Q t :: S′ and
Γ `Q S′ <: S.

Unlike liquid type inference, the round-trip system re-
quires a proof of termination for all fixpoints; thus if Γ `Q
t :: S, but t’s termination cannot be shown using the cho-
sen definition of termination weakening, the round-trip type
system will reject t. Thus we show completeness for a weak-
ened round-trip system, obtained from Fig. 4 by replacingS≺
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Consistency Γ ` T ∧ : T ′

∧ :-SC
Γ ` B ∧ : B′ Sat(JΓKψ∧ψ′ ∧ ψ ∧ ψ′)

Γ ` {B | ψ} ∧ : {B′ | ψ′}

∧ :-FUN
Γ;x : Tx ` T ∧ : [x/y]T ′

Γ ` x : Tx → T ∧ : y : Ty → T ′

∧ :-DT
Γ ` Ti ∧ : T ′i

Γ ` D Ti ∧ : D T ′i
∧ :-REFL

Γ ` B ∧ : B

Figure 5. Type consistency.

in the premise of the FIX rule by S. We denote the checking
judgment of the modified system as Γ `∗Q t ↓ S.

Theorem 2 (Completeness of round-trip type checking). If
Γ `Q t :: S, then Γ `∗Q t ↓ S.

3.4 Type System Extensions
In this section we further improve the locality of type check-
ing for function applications and branching terms.

Type Consistency. Recall the type checking problem

Γ `Q append xs xs ↓ {List Pos | len ν = 5}

from Sec. 3.2, and let us change the type of xs to {List Pos |
len ν = 6}. In this case, xs has the right element type, Pos,
but intuitively the partial application append xs can still be
safely rejected, since no second argument with a non-negative
length can fulfill the goal type.

To formalize this intuition we introduce the notion of type
consistency, defined in Fig. 5. Two scalar types are consistent
if they have a common inhabitant for some valid valuation of
environment variables. For function types, the relation is not
symmetric: a type x : Tx → T is consistent with a goal type
if their return types are consistent for some value of x of type
Tx.

We add a premise Γ ` T ∧ : T ′ to every rule in Fig. 4
that already has the premise of the form Γ ` T <: T ′. The
additional premise has no effect on full applications, since
for scalar types consistency is subsumed by subtyping. The
consistency check can, however, reject a partial application
e allowed by subtyping, due to goals generated by the rule
APPFO, which have a vacuous argument type {B | ⊥}. It is
easy to show that in the absence of consistency checks, any
application of such e would always be rejected by the sub-
typing check in APPFO; thus introducing consistency checks
does not affect completeness of type checking. With consis-
tency checks in place, the term append xs in the example
above is rejected since the formula len xs = 6 ∧ len r ≥
0 ∧ len ν = len xs+ len r ∧ len ν = 5 is unsatisfiable.

Liquid Abduction. Consider the IF rule in Fig. 4: the
type checker can analyze the two branches of the conditional
independently of each other, but can only proceed with either
branch once the precise type of the guard has been inferred.
In the context of synthesis this amount to blindly enumerating

type-correct boolean expressions as guards and then checking
if any of them enables synthesis of a correct branch. The goal
of this section is to improve the locality of the IF rule in order
to avoid such blind enumeration.

The idea comes from condition abduction [4, 20, 21]:
instead of starting with the guard, for which no information
can be extracted from the goal type, start by analyzing one of
the branches and use logical abduction to infer the weakest
assumption under which the branch fulfills the goal type.
If such a condition does not exist or is a contradiction, the
branch candidate is deemed ill-typed; otherwise the abduced
condition can be used as a specification for the guard.

This strategy relies on the availability of a sufficiently fast
mechanism to perform logical abduction, which is generally
challenging. In SYNQUID, we treat unknown path conditions
the same way as unknown refinements in polymorphic instan-
tiations: we restrict their valuations to liquid formulas over
environment variables, and use the greatest-fixpoint Horn
solver (described in Sec. 3.6) to discover the weakest such
valuation. We refer to the modified rule for conditionals as
the liquid abduction rule:

IFAB

Γ `Q ψ Sat(JΓKψ ∧ ψ)
Γ `Q e ↓ {Bool | ν = ψ}

Γ;ψ `Q t1 ↓ T Γ;¬ψ `Q t2 ↓ T
Γ `Q if e then t1 else t2 ↓ T

This rule limits completeness of round-trip type checking by
restricting valid guard types to the form above. Most notably,
it excludes guards that contain function composition, and thus
users have to provide wrapper components to encapsulate
complex guard predicates; in all our experiments, the set of
required guard components was quite intuitive, thus we con-
clude that the trade-off between expressiveness and efficiency
offered by liquid abduction is reasonable in the context syn-
thesis.

Match Abduction. A similar technique can be used to
propose pattern matching, assuming the types of potential
scrutinees are restricted to liquid types. In this case, however,
the liquid restriction imposes more substantial limitations on
the structure of the program: abduction only works if the
scrutinee is a variable and its datatype has at least one scalar
constructor (such as Nil in List). Thus, SYNQUID employs
a combined approach: it first tries an abduction-based rule,
but if that fails, the system reverts to the original MATCH rule
of Fig. 4. As a result, type checking (and synthesis) enjoys
the efficiency benefits of abduction without compromising
completeness.

3.5 The Local Liquid Type Checking Algorithm
Starting from the round-trip typing rules presented above, this
section develops local liquid type checking: a deterministic
algorithm that takes as input a SYNQUID program t, an envi-
ronment Γ, a goal schema S, and a set of qualifiers Q, and
either produces a derivation of Γ `Q t ↓ S or rejects
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the program. The main challenge is to find suitable instan-
tiations for polymorphic components, as required by the rule
VAR∀; to this end, the algorithm replaces the type variables
αi in the component schema with fresh free type variables
α′i

5, extracts subtyping constraints on α′i from the subtyping
premises of the derivation, and then solves the subtyping con-
straints to either discover a valid type assignment mapping
free type variables to liquid types, or conclude that such an
assignment does not exist.

For the purpose of constraint solving, we extend the syntax
of refinement terms with predicate unknownsPi. Local liquid
type checking maintains a set of subtyping constraints C =
{Γi ` Ti <: T ′i}, a set of Horn constraints H = {ψi}, a
type assignment T = [α′i 7→ Ti], and a liquid assignment
L = [Pi → {ψ}i]. We denote with JψKL the formula ψ
with all predicate unknowns substituted with conjunctions of
their valuations in L. The type checking process alternates
between the following two steps: it either extends the type
derivation by applying one of the rules of Fig. 4, adding any
of its subtyping premises to C, or it picks a constraint c from C
and solves it; constraint solving is formalized in the procedure
Solve in Fig. 6.

Solvedoes one of the following, depending on the operands
of a subtyping constraint: it either substitutes a type variable
for which an assignment already exists (Eq. 1, Eq. 2), uni-
fies a type variable with a type (Eq. 4, Eq. 5), decomposes
subtyping over compound types (Eq. 6, Eq. 7), or translates
subtyping over scalar types into a Horn constraint and uses
the procedure Horn, described in the next section, to find an
L that satisfies all Horn constraints (Eq. 8). Local liquid type
checking terminates when the entire type derivation has been
built, and all constraints in C are between free type variables
(only Eq. 3 applies).

During unification of α′ and T , procedure Fresh inserts
fresh predicate unknowns in place of all refinements in T ;
note that due to the incremental nature of our algorithm, T
might itself contain free type variables, which are simply re-
placed with fresh free type variables to be unified later as more
subtyping constraints arise. This novel feature of local liquid
type checking, which we call incremental unification, is cru-
cial for early error detection. Existing refinement type check-
ers [13, 32] cannot interleave shape and refinement discov-
ery, since they rely on the global Hindley-Milner inference
algorithm to fully reconstruct the shapes of all types in the
program before discovering their refinements.

Example. Starting from empty T and L, Solve(` α′ <:
List β′ | len ν > 0) instantiates α′ by Eq. 4 leading to
T = [α′ 7→ {List γ′ | P0}], L = [P0 7→ ∅] and recycles the
subtyping constraint; next by Eq. 1 and Eq. 7, the constraint is
decomposed into ` {List | P0} <: {List | len ν > 0}
and ` γ′ <: β′. The former produces a Horn constraint
P0 ⇒ len ν > 0, which leads to strengthening L[P0], while

5 We prime the names of free type variables to differentiate them from the
bound type variables of the top-level goal schema.

Solve(Γ ` c) = match c with

| {α′ | ψ} <: T, α′ ∈ dom(T ) −→
C ← C ∪ {Γ ` Refine(T (α′), ψ) <: T} (1)

| T <: {α′ | ψ}, α′ ∈ dom(T ) −→ (symmetrical) (2)

| {α′ | ψ1} <: {β′ | ψ2} −→
C ← C ∪ {α′ | ψ1} <: {β′ | ψ2} (3)

| {α′ | ψ} <: T, α′ /∈ T −→
T ← T [α′ 7→ Fresh(T )];

C := C ∪ {Γ ` {α′ | ψ} <: T} (4)

| T <: {α′ | ψ} −→ (symmetrical) (5)

| (x : Tx → T1) <: (y : Ty → T2) −→
C ← C ∪ {Γ ` Ty <: Tx,Γ; y : Ty ` [y/x]T1 <: T2}

(6)

| {D T i1 | ψ1} <: {D T i2 | ψ2} −→

C ← C ∪ {Γ ` {D | ψ1} <: {D | ψ2},Γ ` T i1 <: T i2}
(7)

| {B | ψ1} <: {B | ψ2} −→
H ← H∪ {JΓKψ1⇒ψ2 ∧ ψ1 ⇒ ψ2}; (8)

L ← Horn(L,H)

| otherwise −→ fail (9)

Refine({B | ψ}, ψ′) = {B | ψ ∧ ψ′}
Fresh(T ) = match T with

| {α′ | ψ} −→ β′

| {D T i | ψ} −→ {D Fresh(T i) | P}, L ← L[P 7→ ∅]
| {B | ψ} −→ {B | P}, L ← L[P 7→ ∅]

Horn(L,H) = if ∀h ∈ H.Valid(JhKL) thenL else

let h← {H | ¬Valid(JhKL)} in
letL′ ← Strengthen(L, h) in Horn(L′,H)

Figure 6. Solving subtyping constraints.

the latter is retained in C. If further type checking produces a
subtyping constraint on β′, say Nat <: β′, T will be extended
with an assignment [β′ → {Int | P1}], which in turn will lead
to transforming the constraint on γ′ into ` γ′ <: {Int | P1}
and instantiating [γ′ → {Int | P2}], at which point all free
type variables have been eliminated.

3.6 Solving Horn Clauses
The set of Horn constraints H produced by Solve in Fig. 6
consists of implications of the formψ ⇒ ψ′, where each side
is a conjunction of a known formula and zero or more pred-
icate unknowns P . The goal of the procedure Horn is to find
a liquid assignment to P that validates all constraints inH or
determine thatH is unsatisfiable. The space of possible valu-
ations of each P is 2QP , where QP is a set of atomic formu-
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las obtained by instantiating qualifiers Q in the environment
where P was created.

Local liquid type checking invokes Horn after every new
Horn constraint is issued, and expects to detect an unsatis-
fiable set of constraints—and thus a type error—as early as
possible. Round-trip typing rules—in particular, APPFO and
IF-ABD—produce constraints in a specific order, such that
for each unknown P , implications where P appears nega-
tively (on the left) are issued before the ones where it appears
positively (on the right). To enable early error detection in
this setting, procedure Horn looks for the weakest valuation
of eachP that validates all Horn constraints issued so far, and
deems H unsatisfiable if for some P such a valuation does
not exist or is inconsistent (an inconsistent valuation can be
safely discarded since it is guaranteed to violate some future
constraint where P appears positively).

As an optimization,Horn always starts form the current as-
signment L and possibly makes it stronger, since all weaker
assignments are known to be too weak to satisfy the previ-
ously issued constraints (for a fresh P , L[P ] is initialized
with ∅). Horn uses an iterative greatest-fixpoint computation,
outlined in Fig. 6; in every iteration, Strengthen(L, ψ ⇒
ψ′) produces the weakest consistent assignment L′ strictly
stronger than L, such that JψKL′ ⇒ Jψ′KL is valid (or fails
if this is not possible). In general, L′ is not unique; in this
case our algorithm simply explores all alternatives indepen-
dently, which happens rarely enough in the context of refine-
ment type checking and synthesis.

Implementing Strengthen efficiently is challenging: for
every unknown P in ψ, the algorithm has to find the small-
est subset of atomic predicates fromQP \L[P ] that validates
the implication. Existing greatest-fixpoint Horn solvers [33]
use breadth-first search, which is exponential in the cumula-
tive size ofQP and does not scale sufficiently well to practical
cases of condition abduction (see Sec. 4). Instead, we observe
that this task is similar to the problem of finding minimal un-
satisfiable subsets (MUSs) of a a set of formulas; based on this
observation, we build a practical algorithm for Strengthen
which we dub MUSFIX.

The task ofStrengthen amounts to finding all MUSs of the
set

⋃
κ∈ψ(Qκ\L[κ])∪{¬Jψ′KL} under the assumption JψKL.

MUSFIX borrows the main insight of the MARCO algo-
rithm [22] for MUS enumeration, which relies on the ability
of the SMT solver to produce unsatisfiable cores from proofs.
We modify MARCO to only produce MUSs that contain the
negated right-hand side of the Horn constraint,¬Jψ′KL, since
Horn should only produce consistent solutions. For each re-
sulting MUS (stripped of ¬Jψ′KL), MUSFIX finds all pos-
sible partitions into valuations of individual predicate un-
knowns. Since MUSes are normally much smaller than the
original set of formulas, a straightforward partitioning algo-
rithm works well and rarely yield more than one valid par-
tition. As an important optimization, when MUS enumera-
tion returns multiple syntactically minimal subsets, MUSFIX

prunes out semantically redundant subsets, i.e. it removes a
subsetmi if

∧
mi ⇒

∧
mj for some j 6= i.

3.7 Synthesis from Refinement Types
From the rules of round-trip type checking we can obtain syn-
thesis rules, following the approach of [27] and reinterpreting
the checking and strengthening judgments in such a way that
the term t is considered unknown. This interpretation yields
a synthesis procedure, which, given a goal schema S, picks
a rule where the goal schema in the conclusion matches S,
and constructs the term t from subterms obtained from the
rule’s premises. More concretely, starting from the top-level
goal schema S, the algorithm always starts by applying rule
FIX (if S≺ is defined) followed by TABS (if the schema is
polymorphic), and finally ABS (if the goal type is a function
type). Given a scalar goal, the procedure performs exhaustive
enumeration of well-typed E-terms up to a given bound on
their depth, solving subtyping constraints at every node and
simultaneously abducing a path condition as per the IF-ABD
rule. If the resulting conditionψ is trivially true, the algorithm
has found a solution; if ψ is inconsistent, the E-term is dis-
carded; otherwise, the algorithm generates a conditional and
proceeds to synthesize its remaining branch under the fixed
assumption ¬ψ, as well a term of type {Bool | ν = ψ} to be
used as the branch guard. Once all possible E-terms are ex-
hausted, the algorithm attempts to synthesize a pattern match
using an arbitrary E-term as a scrutinee, unless the maximal
nesting depth of matches has been reached.

Soundness and Completeness. Soundness of synthesis
follows straightforwardly from soundness of round-trip type
checking, since each program candidate is constructed to-
gether with a typing derivation in the round-trip system. Com-
pleteness is less obvious: due to condition abduction, the
synthesis procedure only explores programs where the left
branch of each conditional is an E-term. We can show that
every SYNQUID program can be rewritten to have this form
(by flattening nested conditionals and pushing conditionals
inside matches). Thus the synthesis procedure is complete in
the following sense: for each schema S, if there exists a term
t, such that the depth of applications and pattern matches in
t are within the given bounds, the procedure is guarantees to
find some term t′ that also type-checks against S; if such a
term t does not exist, the procedure will terminate with a fail-
ure. Note that the algorithm imposes no a-priori bound on
the nesting depth of conditionals (which is crucial for com-
pleteness as stated above); this does not preclude termination,
since in any given environment, liquid formulas partition the
input space into finitely many parts, and every condition ab-
duction is guaranteed to cover a nonempty subset of these
parts.

4. Evaluation
We performed an extensive experimental evaluation of SYN-
QUID with the goal of assessing usability and scalability of the
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Group Description #G Components #M Spec Code T-all T-def T-nrt T-ncc T-nmus

List

is empty 1 true, false 1 6 6 0.02 0.02 0.02 0.02 0.01
is member 1 true, false, =, 6= 2 6 18 0.11 0.11 0.13 0.10 -

duplicate each element 1 1 7 16 0.05 0.05 - 0.08 0.04
replicate 1 0, inc, dec,≤, 6= 1 4 21 0.05 0.05 9.63 0.05 -

append two lists 1 1 8 15 0.15 0.09 - 0.13 0.10
concatenate list of lists 1 append 3 5 12 0.05 0.05 0.22 0.04 0.04
take firstn elements 1 0, inc, dec,≤, 6= 1 8 27 0.12 0.12 55.82 0.12 -
drop firstn elements 1 0, inc, dec,≤, 6= 1 11 20 0.10 0.10 7.87 0.09 -

delete value 1 =, 6= 2 8 26 0.10 0.10 0.17 0.12 -
map 1 1 5 22 0.03 0.03 0.06 0.03 0.02
zip 1 1 10 22 0.08 0.08 - 0.10 0.07

zip with function 1 1 10 33 0.07 0.07 - 0.17 0.06
cartesian product 1 append, map 3 8 26 0.30 0.29 5.83 0.25 0.23
i-th element 1 0, inc, dec,≤, 6= 1 12 20 0.05 0.05 0.38 0.05 -

index of element 1 0, inc, dec, =, 6= 2 8 20 0.08 0.08 0.14 0.07 -
insert at end 1 2 21 19 0.10 0.10 0.24 0.11 0.12

reverse 1 insert at end 2 15 12 0.09 0.10 0.29 0.12 0.09
foldr 1 2 14 32 0.10 0.10 - 0.10 0.44

length using fold 1 0, inc, dec 2 4 17 0.03 0.07 0.03 0.03 0.02
append using fold 1 2 8 20 0.04 2.19 0.05 0.04 0.03

Unique
list

insert 1 =, 6= 2 8 26 0.27 0.22 0.85 0.20 -
delete 1 =, 6= 2 8 22 0.18 0.19 1.07 0.26 -

remove duplicates 2 is member 2 13 47 0.36 0.87 0.72 0.33 -
remove adjacent dupl. 1 =, 6= 3 5 32 1.33 1.32 - 1.31 -

integer range 1 0, inc, dec,≤, 6= 2 13 23 2.36 2.33 22.27 2.33 -

Strictly
sorted list

insert 1 < 2 8 41 0.18 0.17 0.43 0.16 -
delete 1 < 2 8 29 0.10 0.09 0.21 0.10 -

intersect 1 < 2 8 40 0.33 0.32 0.68 0.34 -

Sorting

insert (sorted) 1 ≤, 6= 2 8 34 0.25 0.24 0.68 0.23 -
insertion sort 1 insert (sorted) 4 5 12 0.06 0.06 0.20 0.06 0.05

sort by folding 1 foldr,≤, 6= 2 11 47 2.14 - - 2.21 -
extract minimum 1 ≤, 6= 4 23 40 4.28 4.35 - 7.58 -

selection sort 1 extract minimum 6 5 16 0.49 0.44 - 0.42 0.38
balanced split 1 4 31 33 0.96 0.51 - 1.40 0.80

merge 1 ≤, 6= 2 17 41 2.19 14.61 - 6.85 -
merge sort 1 split, merge 6 11 25 2.10 2.10 - 2.52 1.69
partition 1 ≤ 4 27 40 2.84 7.89 - 3.42 -

append with pivot 1 2 28 22 0.22 0.15 0.58 0.22 0.19
quick sort 1 partition, append w/pivot 6 11 22 2.71 18.45 - 2.49 4.94

Tree

is member 1 false, not, or, = 2 6 28 0.29 0.29 7.90 0.28 -
node count 1 0, 1, + 1 4 18 0.20 0.20 - 0.91 0.14
preorder 1 append 2 5 18 0.21 0.20 - 0.91 0.15

create balanced 1 0, inc, dec,≤, 6= 2 7 29 0.14 0.15 - 0.21 -

BST

is member 1 true, false,≤, 6= 2 6 37 0.09 0.08 0.10 0.08 -
insert 1 ≤, 6= 2 8 55 0.91 0.88 - 0.82 -
delete 1 ≤, 6= 2 8 68 5.68 5.62 - 10.74 -

BST sort 5 ≤, 6= 6 51 115 1.38 1.35 - 1.25 -

Binary
Heap

is member 1 false, not, or,≤, 6= 2 6 43 0.38 0.38 9.63 0.35 -
insert 1 ≤, 6= 2 8 55 0.51 0.50 8.83 0.48 -

1-element constructor 1 ≤, 6= 2 5 8 0.02 0.02 0.02 0.02 0.02
2-element constructor 1 ≤, 6= 2 6 55 0.08 0.08 0.25 0.07 -
3-element constructor 1 ≤, 6= 2 7 246 2.10 2.12 - 1.98 -

AVL

rotate left 3 inc 3 104 91 11.08 12.43 - 17.06 10.08
rotate right 3 inc 3 107 91 19.23 18.34 - 36.35 17.87

balance 1 rotate, nodeHeight, isSkewed, isLHeavy, isRHeavy 4 31 119 1.56 - - 1.76 -
insert 1 balance,< 3 22 47 1.84 1.81 - 1.64 -

extract minimum 1 < 5 11 25 1.92 1.87 - 1.72 -
delete 2 extract minimum, balance,< 5 37 63 15.67 - - 13.79 -

RBT
balance left 2 9 143 137 5.62 5.53 - 48.47 -

balance right 2 9 144 137 7.63 7.72 - 45.32 -
insert 3 balance left, right,≤, 6= 9 49 112 8.95 8.53 - 7.93 -

User
desugar AST 1 0, 1, 2 4 5 46 1.17 1.10 - 1.23 0.78

make address book 1 is private 3 5 35 0.62 3.67 - 0.94 0.55
merge address books 1 append 3 8 19 0.35 5.85 - 0.31 0.24

Table 1. Benchmarks and SYNQUID results. For each benchmark, we report the number of synthesis goals #G; the set of
provided Components; the number of defined measures #M; cumulative size of Specification and synthesized Code (in AST
nodes) for all goals; as well as SYNQUID running times (in seconds) with minimal bounds (T-all), with default bounds (T-def ),
without round-trip checking (T-nrt), without type consistency checking (T-ncc), and without MUSFIX (T-nmus). “-” denotes
timeout of 2 minutes or out of memory.
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proposed synthesis technique compared to existing alterna-
tives. This goal materializes into the following research ques-
tions:

(1) Are refinement types supported by SYNQUID expressive
enough to specify interesting programs, including bench-
marks proposed in prior work?

(2) How concise are SYNQUID’s input specifications com-
pared both to the synthesized solutions and to inputs re-
quired by existing techniques?

(3) Are SYNQUID’s inputs intuitive: in particular, is the algo-
rithm applicable to specifications not tailored for synthe-
sis?

(4) How scalable is SYNQUID: can it handle benchmarks
tackled by existing synthesizers? Can it scale to more
complex programs than those previously reported in the
literature?

(5) How is synthesis performance impacted by various fea-
tures of SYNQUID and its type system?

4.1 Benchmarks
In order to answer the research questions stated above, we
arranged a benchmark suite that consists of 64 synthesis chal-
lenges from various sources, representing a range of problem
domains. In the interest of direct comparison with existing
synthesis tools, our suite includes benchmarks that had been
used in the evaluation of those tools [1, 4, 12, 14, 20, 21, 24,
27]. From each of these papers, we picked top three most com-
plex challenges (judging by the reported synthesis times) that
were expressible in SYNQUID’s refinement logic, plus several
easier problems that were common or particularly interesting.

Our second source of benchmarks are verification case
studies from the LiquidHaskell tutorial [18]. The purpose
of this second category is two-fold: first, these problems are
larger and more complex than existing synthesis benchmarks,
and thus can show whether SYNQUID goes beyond the state of
the art in synthesis; second, the specifications for these prob-
lems have been written by independent researchers and for a
different purpose, and thus can serve as evidence that input ac-
cepted by SYNQUID is sufficiently general and intuitive. Out
of the total of 14 case studies, we picked 5 that came with suf-
ficiently strong functional specifications (list sorting, binary-
search trees, content-aware lists, unique lists, and AVL trees),
erased all implementations, and made relatively straightfor-
ward syntactic changes in order to obtain valid SYNQUID in-
put.

Tab. 1 lists the 64 benchmarks together with some met-
rics of our type-based specifications: the number of synthe-
sis goals including auxiliary functions, the set of components
provided, the number of measures used, and the cumulative
size of refinements. Note that the reported specification size
only includes refinements in the signatures of the synthesis
goals; refinements in component functions are excluded since
every such function (except trivial arithmetic operations and

helper functions) serves as a synthesis goal in another bench-
mark; refinements in datatype definitions are also excluded,
since those definitions are reusable between all benchmarks
in the same problem domain. Full specifications are available
from the SYNQUID repository [31].

The benchmarks are drawn from a variety of problem do-
mains with the goal of exercising different features in SYN-
QUID. List and tree benchmarks demonstrate pattern match-
ing, structural recursion, the ability to generate and use poly-
morphic and higher-order functions (such as map and fold),
as well as reasoning about nontrivial properties of data struc-
tures, both universal (e.g. all elements are non-negative) and
recursive (e.g. size and set of elements). Our most advanced
benchmarks include sorting and operations over data struc-
tures with complex representation invariants, such as binary
search trees, heaps, and balanced trees. These benchmarks
showcase expressiveness of refinement types, exercise SYN-
QUID’s ability to perform nontrivial reasoning through re-
finement discovery, and represent a scalability challenge be-
yond the current state of the art in synthesis. Finally, we in-
cluded several benchmarks operating on “custom” datatypes
(including the “address book” case study from [20]) in order
to demonstrate that SYNQUID’s applicability is not limited to
standard textbook examples.

4.2 Results
Evaluation results are summarized in Tab. 1. SYNQUID was
able to synthesize (and fully verify) solutions for all 64 bench-
marks; the table lists sizes of these solutions in AST nodes
(Code) as well as synthesis times in seconds (T-all).

The results demonstrate that SYNQUID is efficient in syn-
thesizing a variety of programs: all but 7 benchmarks are syn-
thesized within 5 seconds; it also scales to programs of non-
trivial size, including complex recursive (red-black tree in-
sertion of size 69) and non-recursive functions (3-value bi-
nary heap constructor of size 246). Even though specification
sizes for some benchmarks are comparable with the size of the
synthesized code, for many complex problems the benefits of
describing computations as refinement types are significant:
for example, the type-based specifications of the three main
operations on binary-search trees are over six times more con-
cise than their implementations.

The synthesis times discussed above were obtained for op-
timal exploration bounds, which could differ across bench-
marks. Tab. 1 also reports synthesis times T-def for a setting
where all benchmarks in the same category share the same ex-
ploration bounds. Although this inevitably slows down syn-
thesis, on most of the benchmarks the performance penalties
were not drastic: only three benchmarks failed to terminate
within the two-minute timeout.

In order to assess the impact on performance of vari-
ous aspects of our algorithm and implementation, Tab. 1
reports synthesis times using three variants of SYNQUID,
where certain features were disabled: the column T-nrt cor-
responds to replacing round-trip type checking with bidirec-
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Benchmark Spec SpecS Time TimeS

L
E

O
N strict sorted list delete 14 8 15.1 0.10

strict sorted list insert 14 8 14.1 0.18
merge sort 9 11 14.3 2.1

JE
N

BST find 51 6 64.8 0.09
bin. heap 1-element 80 5 61.6 0.02

bin. heap find 76 6 51.9 0.38

M
Y

T
H sorted list insert 12 8 0.12 0.25

list rm adjacent dupl. 13 5 0.07 1.33
BST insert 20 8 0.37 0.91

λ
2

list remove duplicates 7 13 231 0.36
list drop 6 11 316.4 0.1
tree find 12 6 4.7 0.29

E
S

C list rm adjacent dupl. n/a 5 1 1.33
tree create balanced n/a 7 0.24 0.14
list duplicate each n/a 7 0.16 0.05

M
Y

T
H

2 BST insert n/a 8 1.81 0.91
sorted list insert n/a 8 1.02 0.25
tree count nodes n/a 4 0.45 0.20

Table 2. Comparison to other synthesizers. For each benchmark
we report: Spec, specification size (or the number of input-output ex-
amples) for respective tool; SpecS, specification size for SYNQUID

(from Tab. 1); Time, reported running time for respective tool; TimeS,
running time for SYNQUID (from Tab. 1).

tional type checking (that is, disabling subtyping checks for
partial applications); T-ncc corresponds to disabling type con-
sistency checks; T-nmus corresponds to replacing MUSFIX
with naive breadth-first search. The results demonstrate that
the most significant contribution comes from using MUS-
FIX: without this feature 37 out of 64 benchmarks time out,
since breadth-first search cannot handle condition abduction
even with a moderate number of logical qualifiers. The sec-
ond most significant feature is round-trip type checking, with
33 benchmarks timing out when disabled, while consistency
checks only bring significant speedups for the most complex
examples.

4.3 Comparative Evaluation
We compared SYNQUID with state-of-the-art synthesis tools
that target recursive functional programs and offer a compara-
ble level of automation. The results are summarized in Tab. 2.
For each tool, we list the three most complex benchmarks re-
ported in the respective paper that were expressible in SYN-
QUID’s refinement logic; for each of the three benchmarks we
report the specification size (if available) and the synthesis
time; for ease of comparison, we repeat the same two met-
rics for SYNQUID (copied over from Tab. 1). Note that the
synthesis times are not directly comparable, since the results
for other tools are taken from respective papers and were ob-
tained on different hardware; however, the differences of an
order of magnitude or more are still significant, since they can

hardly be explained by improvements in single-core hardware
performance.

We split the tools into two categories according to the
specification and verification mechanism they rely on.

Formal Specifications with Deductive Verification. The
first category includes LEON [20] and JENNISYS [21]; both
tools use pre- and post-conditions (and data structure in-
variants) to describe computations, and rely on unbounded,
SMT-based verification to validate candidate programs (and
thus provide the same correctness guarantees as SYNQUID).
Unlike LEON and SYNQUID, JENNISYS targets imperative,
heap-based programs; the evaluation in [21], however, fo-
cuses on side-effect free benchmarks. Both tools use variants
of condition abduction, which makes their exploration strate-
gies similar to SYNQUID’s.

For both tools, translating their three most complex bench-
marks into SYNQUID proved to be straightforward. This sug-
gests that our decidable refinement logic is not too limiting
in practice, compared to other formal specification languages
used for synthesis. Our specifications are on average slightly
more concise than LEON’s and significantly more concise
than those in JENNISYS; the latter is largely due to the heap-
based language, but the results still indicate that embedding
predicates into types can help curb the verboseness of tradi-
tional Hoare-style specifications.

SYNQUID was able to synthesize solutions to all problems
tackled by the other two tools in this category. The converse is
not true: automatic verification of some of SYNQUID’s bench-
marks (such as the binary-search tree example in Sec. 2)
requires invariant discovery, which is not supported by the
other two tools. This suggests that SYNQUID qualitatively
differs from other state-of-the-art synthesizers in terms of the
class of programs for which a verified solution can be syn-
thesized. On the benchmarks where the other tools are appli-
cable, SYNQUID demonstrates considerably smaller running
times, which suggests that fast verification and early prun-
ing enabled by type-based specifications indeed improve the
scalability of synthesis.

Input/Output Examples. Our second category of tools in-
cludes MYTH [27], λ2 [12] and ESCHER [1], which synthe-
size programs from concrete input-output examples, as well
as MYTH2 [14], which uses generalized input-output exam-
ples. Using refinement types, we were able to express 3 out of
3, 10, 5, and 7 of their most complex benchmarks, receptively.
The functions we failed to specify either manipulate nested
structures in a representation-specific way (such as “insert
a tree under each leaf of another tree”), or perform filtering
(“list of nodes in a tree that match a predicate”).

At the same time, we found cases where refinement types
are concise and intuitive, while providing input-output ex-
amples is extremely tedious. One of those cases is insertion
into a binary search tree: MYTH requires 20 examples, each
of which contains two bulky tree instances and has to de-
fine the precise position where the new element is to be in-
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Figure 7. Evaluation on non-recursive benchmarks.

serted; the type-based specification for this problem, given
in Sec. 2, is straightforward and only defines the abstract ef-
fect of the operation relevant to the user. This suggests that in
general, logic-based specification techniques, including re-
finement types in SYNQUID, are a better fit for describing
operations that maintain a complex representation invariant
but have a simple abstract effect, while example-based ap-
proaches fare better when describing operations that inher-
ently expose the complex representation of a data structure.

Experiments with example-based tools only report the
number of examples required for synthesis and not their sizes;
however, we can safely assume that each example contains
multiple AST nodes, and thus conclude that type-based spec-
ifications for the benchmarks in Tab. 2 are more concise. By
imposing more constraints on the set of examples (such as
trace completeness [27]) and increasing its size, example-
based synthesizers can trade off user effort for synthesis time.
On the benchmarks under comparison, MYTH appears to
favor performance, while λ2 prefers smaller example sets.
SYNQUID tries to offer the best of both world and achieves
good performance with concise specifications.

4.4 Evaluation on Non-recursive Benchmarks
In order to asses the scalability of MUSFIX on larger search
spaces, we evaluated SYNQUID on two parametrized bench-
marks from the linear integer arithmetic track of the Sy-
GuS’14 competition [3]: maxn (find maximum of n integer
arguments) and array_searchn (find the position of a value
in a sorted array with n elements). Both benchmarks target
non-recursive programs that consist of a series of nested con-
ditionals; moreover, the search space for the branch guards
grows exponentially with n. This makes the two problems
ideal benchmarks for condition abduction techniques.

Fig. 7 shows SYNQUID synthesis times on the two bench-
marks for n = 2, 3, . . . , 6. For reference, we also plot the
results for the enumerative solver (the fastest of the Sy-
GuS baseline solvers), as well as the higher-order solver

ALLOY* [24], and PUFFIN [4], a specialized synthesizer
for conditional integer-arithmetic expressions6. The results
show that SYNQUID’s condition abduction scales relatively
well compared to general synthesizers, but loses to PUFFIN’s
theory-specific abduction engine.

5. Related Work
Our work is the first to leverage general decidable refinement
types for synthesis, but it builds on a number of ideas from
prior work as has been highlighted already throughout the
paper. Specifically, our work combines ideas from two areas:
synthesis of recursive functional programs and refinement
type inference.

Synthesis of Recursive Functional Programs. A num-
ber of recent systems target recursive functional programs
and use type information in some form to restrict the search
space. The most closely related to our work are MYTH [27],
MYTH2 [14], and LEON [20].

MYTH pioneered the idea of leveraging bidirectional type
checking for synthesis. However, MYTH does not support
polymorphism or refinement types. Instead, the system relies
on examples in order to specify the desired functionality. For
certain functions, providing examples is easy whereas writing
a refinement type is cumbersome or, due to the limitations of
decidable refinement logic, even impossible. That said, exam-
ples in general do not fully specify a program; thus program-
ming by example always involves a manual verification step.
Moreover, for some less intuitive problems, such as insertion
into a balanced tree or AST transformations, providing input-
output examples requires familiarity with all details and cor-
ner cases of the algorithm, whereas refinement types enable a
more abstract specification. Additionally, MYTH expects the
set of examples to be trace complete, which means that for
any example the user provides, there should also be examples

6 The results for these tools are taken from their respective papers; only
differences in the order of magnitude are significant.
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corresponding to any recursive calls made on that input. Other
systems that use a combination of types and input-output ex-
amples, and thus have similar advantages and disadvantages
relative to our system, include λ2 [12] and ESCHER [1].

MYTH2 generalizes example-based synthesis: it treats ex-
amples as singleton types, and extends the input language
with intersection and union types, as well as parametric poly-
morphism. This addresses some of the shortcomings of con-
crete input-output examples (in particular, their verboseness),
however, in the absence of dependent function types most in-
teresting programs still cannot be fully speficied. Combin-
ing SYNQUID’s dependent types with singletons, intersec-
tion, and unions found in MYTH2 is an interesting direction
for future work.

In LEON, synthesis problems are defined by first-order
specifications with recursive predicates, and verification is
based on a semi-decision procedure [34], implemented on
top of an SMT solver. LEON’s verification engine does not
support invariant inference, which prevents it from generat-
ing provably correct implementations for problems such as
insertion into a sorted list or a binary search tree. The general
synthesis strategy is similar to ours: first decompose the spec-
ification and then switch to generate-and-check mode, en-
hanced with condition abduction. Unlike our system, LEON
does not perform systematic specification decomposition in
the generate-and-check mode, and lacks support for polymor-
phism and high-order functions.

The use of type information has also proved extremely
useful for code completion [15, 23, 28], although none of
these systems rely on a type system as expressive as ours,
and they are designed for a very different set of tradeoffs
compared to SYNQUID. For example, because the problem
is highly under-constrained, these systems place significant
emphasis on the ranking of solutions.

Another important body of related work related is hole
driven development, as embodied in systems like Agda [26]
and Idris [6], which leverage a rich type system to aid devel-
opment, but are meant to be used interactively rather than to
perform complete synthesis. Djinn [5] serves a similar pur-
pose but uses the less expressive Haskell type system.

Refinement Type Checking. Our type checking algorithm
is based on liquid type inference [19, 32, 35–37], which pi-
oneered combining Hindley-Miler unification with predicate
abstraction. We integrate their ideas with bidirectional type
checking [30], which has been used before both for other
flavors of refinement types [9, 11, 40] and for unrestricted
dependent types [8], but not for general decidable refine-
ment types. Another difference with liquid types is that we
use greatest-fixpoint predicate abstraction procedure inspired
by [33], and improved using an algorithm for efficient MUS
enumeration [22].

Logical Abduction. The concept of abduction in logical
reasoning has found numerous applications in programming
languages, including specification inference [2, 10] and pro-

gram synthesis [4, 20, 21]. Abduction techniques based on
quantifier elimination [2, 10] and theory-specific unification
operators [4], are precise and efficient, but only applicable
to restricted domains. SYNQUID performs abduction using
predicate abstraction and MUS enumeration, which can be
applied to a wider range of specification logics, but its preci-
sion is limited to the given set of logical qualifiers.
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A. Soundness and Completeness of
Round-trip Type Checking

We show properties of round-trip type checking (Fig. 4) rel-
ative to the purely bottom-up liquid type inference (Fig. 8),
using a bidirectional type checking system (Fig. 9) as an in-
termediate step.

A.1 Soundness of round-trip type checking
Theorem 1 (Soundness of Round-Trip Type Checking). If
`Q Γ, Γ `Q S, and Γ `Q t ↓ S, then Γ `Q t :: S′ and
Γ ` S′ <: S.

We prove the theorem in two steps. In step 1, assuming
Γ `Q t ↓ S, we build a derivation of Γ `Q t ↓b S in
the bidirectional type system given in Fig. 9. The main differ-
ence between the two derivations is that the bidirectional sys-
tem performs a subtyping check on the boundary of the two
directions, while the round-trip system performs subtyping
checks more locally. To show that the latter subsumes the for-
mer, we prove that whenever the round-trip system concludes
Γ `Q t ↓ T ↑ let C in T ′, then Γ;C ` T ′ <: T . In step
2, we build a derivation of Γ `Q t :: S′ from Γ `Q t ↓b S.

Lemma 1 (Type Strengthening). If Γ `Q t ↓ T ↑
letC in T ′ then Γ;C ` T ′ <: T .

Proof. By induction on the structure of the derivation. Cases
VARSC, VAR∀, and APPFO are trivial, since the subtyping
check is one of the premises. For APPHO, from the first
premise by induction hypothesis we have Γ;C ` (T ′x →
T ′) <: (bot → T ); by definition of function subtyping (<:-
FUN in Fig. 3) we get Γ;C ` T ′ <: T .

Lemma 2 (Round-trip to Bidirectional). If Γ `Q t ↓ S
then Γ `Q t ↓b S; additionally, if t is an E-term and
Γ `Q t ↓ T ↑ T̂ ′, then Γ `Q t ↑b T̂ ′.

Note that there is a one-to-one correspondence between
the rules of the two systems (given by their names); our
construction always uses corresponding rules.

Proof. By induction on the structure of the derivation. Let us
first assume an E-term e and a derivation of Γ `Q e ↓ T ↑
T̂ ′; we will build a derivation of Γ `Q e ↑b T̂ ′. Cases VARSC
and VAR∀ are trivial since the bidirectional premises for these
rules are a subset of the round-trip premises. Rule APPHO
has the same structure in the two systems, thus we invoke the
induction hypothesis in a straightforward manner. Finally, in
the rule APPFO, we obtain the first two premises from the
induction hypothesis; the third premise, Γ;C1;C2 ` Tx <:
{B | ψ}, follows from the round-trip premise Γ;C1 `Q e2 ↓
{B | ψ} ↑ letC2 in Tx and Lemma 1.

We are left to deal with the checking rules. For all check-
ing rules except IE we can obtain the required bidirectional
premises in a straightforward manner from the induction hy-
pothesis. For IE, we obtain the first premise from the induc-
tion hypothesis; the second premise, Γ;C ` T ′ <: T , follows
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Type Inference (Contextual Types) Γ `Q e :: T̂

VARSC
Γ(x) = {B | ψ}

Γ `Q x :: {B | ν = x}

VAR∀
Γ(x) = ∀αi.T ′ Γ `Q Ti

Γ `Q x :: [Ti/α]T ′

APP

Γ `Q e :: letC1 in (x : Tx → T )
Γ;C1 `Q t :: letC2 in T ′x

Γ;C1;C2 ` T ′x <: Tx

Γ `Q e t :: letC1;C2;x : T ′x in T

Type Inference (Context-Free Types) Γ `Q t :: S

SUBT
Γ `Q e :: letC in T ′ Γ;C ` T ′ <: T

Γ `Q e :: T

ABS
Γ `Q (x : Tx → T ) Γ;x : Tx `Q t :: T

Γ `Q λx.t :: (x : Tx → T )

IF

Γ `Q e :: letC in {Bool | ψ} Γ `Q T
Γ;C; [>/ν]ψ `Q t1 :: T Γ;C; [⊥/ν]ψ `Q t2 :: T

Γ `Q if e then t1 else t2 :: T

MATCH

Γ `Q e :: letC in {D Tk | ψ}
Ci = T ji → {D Tk | ψ′i} Γi = {xji : T ji }; [x′/ν]ψ′i

Γ `Q T Γ;C; [x′/ν]ψ; Γi `Q ti :: T

Γ `Q match e with |i Ci〈xji 〉 7→ ti :: T

TABS
Γ `Q t :: T αi not free in Γ

Γ `Q t :: ∀αi.T

FIX
Γ `Q S Γ;x : S `Q t :: S

Γ `Q fix x.t :: S

Figure 8. Rules of liquid type inference.

from the round-trip premise Γ `Q e ↓ T ↑ let C in T ′

and Lemma 1.

Lemma 3 (Bidirectional to Bottom-up). If `Q Γ, Γ `Q S,
and Γ `Q t ↓b S, then Γ `Q t :: S′ and Γ ` S′ <: S;
additionally if t is an E-term and Γ `Q t ↑b T̂ then Γ `Q t ::

T̂ .

Proof. By induction on the structure of the derivation. Let us
first assume an E-term e and a derivation of Γ `Q e ↑b T̂ ; we
will build a derivation of Γ `Q e :: T̂ . Cases VARSC, VAR∀,
and APPFO are trivial (in the latter case, APPFO is replaced
by APP). For the APPHO case, we also construct a derivation
using APP as the root; from the second premise of APPHO,
Γ;C `Q f ↓b Tx, by induction hypothesis we obtain T ′x such
that Γ;C `Q f :: T ′x and Γ;C ` T ′x <: Tx. Thus, we obtain
the two missing premises of APP (with C2 empty). Note that
to apply the induction hypothesis, we need to show that the
argument type Tx is liquid (Γ `Q Tx); this follows from the
assumption `Q Γ (since Tx is a precondition of a function
from Γ).

For rule IE it is straightforward to obtain the inferred type
T ′ from the induction hypothesis. For rule ABS, from the

Type Inference Γ `Q e ↑b T̂

VARSC
Γ(x) = {B | ψ}

Γ `Q x ↑b {B | ν = x}

VAR∀
Γ(x) = ∀αi.T ′ Γ `Q Ti

Γ `Q x ↑b [Ti/α]T ′

APPFO

Γ `Q e1 ↑b letC1 in (x : {B | ψ} → T )
Γ;C1 `Q e2 ↑b letC2 in Tx
Γ;C1;C2 ` Tx <: {B | ψ}

Γ `Q e1 e2 ↑b letC1;C2;x : Tx in T

APPHO

Γ `Q e ↑b letC in (Tx → T )
Γ;C `Q f ↓b Tx

Γ `Q e f ↑b letC in T

Type Checking Γ `Q t ↓b S

IE
Γ `Q e ↑b letC in T ′ Γ;C ` T ′ <: T

Γ `Q e ↓b T

ABS
Γ; y : Tx `Q t ↓b [y/x]T

Γ `Q λy.t ↓b (x : Tx → T )

IF

Γ `Q e ↑b letC in {Bool | ψ}
Γ;C; [>/ν]ψ `Q t1 ↓b T Γ;C; [⊥/ν]ψ `Q t2 ↓b T

Γ `Q if e then t1 else t2 ↓b T

MATCH

Γ `Q e ↑b letC in {D Tk | ψ}
Ci = T ji → {D Tk | ψ′i} Γi = {xji : T ji }; [x′/ν]ψ′i

Γ;C; [x′/ν]ψ; Γi `Q ti ↓b T
Γ `Q match e with |i Ci〈xji 〉 7→ ti ↓b T

TABS
Γ `Q t ↓b T αi not free in Γ

Γ `Q t ↓b ∀αi.T

FIX
Γ;x : S≺ `Q t ↓b S
Γ `Q fix x.t ↓b S

Figure 9. Rules of bidirectional type checking.

derivation of Γ `Q λx.t ↓b (x : Tx → T ), we construct
the derivation of Γ `Q λx.t :: (x : Tx → T ) (i.e. we
pick the bidirectional goal type as the inferred type); this is
possible since by the assumptions of the lemma the type is
liquid: Γ `Q x : Tx → T , which satisfies the first premise
of the bottom-up rule. To satisfy the second premise, from
the induction hypothesis we infer Γ;x : Tx `Q t :: T ′,
where Γ;x : Tx ` T ′ <: T , and then using the SUBT
rule we get Γ;x : Tx `Q t :: T . To apply the induction
hypothesis, we need to show that T is liquid, which follows
from the assumption that x : Tx → T is liquid and the
definition of liquid function types. The cases IF, MATCH,
TABS are analogous to ABS. For FIX we additionally rely
on the fact that Γ ` S <: S≺; this follows from the definition
of termination weakening, which only adds refinements to
preconditions inside S.

Proof of Theorem 1. Straightforward by combining Lemma 2
and Lemma 3.
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A.2 Completeness of round-trip type checking
As noted in Sec. 3.3, we show completeness for a termination-
oblivious variant of the round-trip system, obtained from
Fig. 4 by replacing S≺ in the premise of the FIX rule by S.
We denote the checking judgment of the modified system as
Γ `∗Q t ↓ S.

Theorem 2 (Completeness of round-trip type checking). If
Γ `Q t :: S, then Γ `∗Q t ↓ S.

Like in the case of soundness, we do the proof in two
steps. We first go from a bottom-up derivation to a bidirec-
tional derivation, essentially by replacing all inference judg-
ments for I-terms with checking judgments. Going from a
bidirectional derivation to a round-trip one is more com-
plex: it amounts to proving that the “early” checks of the
round-trip system—that is, subtyping checks on incomplete
applications—only reject terms that would be later rejected
by the bidirectional IE rule.

Lemma 4 (Bottom-up to Bidirectional). If Γ `Q t :: S, then
Γ `∗Q t ↓b S; additionally if t is an E-term and Γ `Q t :: T̂ ,
then Γ `∗Q t ↑b T̂ .

Proof. By induction on the structure of the derivation. Let us
first assume an E-term e and a derivation of Γ `Q e :: T̂ ;
we will build a derivation of Γ `∗Q e ↑b T̂ . Cases VARSC
and VAR∀ are trivial. For APP, we have to consider two
cases, depending on whether the argument is an E-term or a
function term (remember, branching terms are disallowed on
right-hand sides of applications). In the former case, we can
build a derivation with APPFO in a straightforward manner.
In the latter case, note that the context C2 has to be empty,
because the only rule that could have inferred the type of t is
ABS, and that rule does not generate contextual types. With
that observation, we can build a derivation with APPHO: we
get Γ;C1 `Q t :: T ′x and Γ;C1 ` T ′x <: Tx, yielding
Γ;C1 `Q t :: Tx by SUBT, which gives us the required
second premise of APPHO by the induction hypothesis.

For all the context-free inference rules, it is straightfor-
ward to construct a bidirectional derivation using the corre-
sponding checking rule, since the premises of these rules are
a subset of the premises of their bottom-up counterparts.

Lemma 5 (Bidirectional to Round-Trip). If Γ `Q t ↓b S
then Γ `Q t ↓ S; additionally if t is an E-term and
Γ `Q t ↑b let C in T and there exists a type U such that
Γ ` U and Γ;C ` T <: U then Γ `Q t ↓ U ↑ letC in T .

Proof. By induction on the structure of the derivation. Let
us first assume an E-term e and a type U , such that Γ `Q

e ↑b let C in T , Γ ` U , and Γ;C ` T <: U ; we will build
a derivation of Γ `Q e ↓ U ↑ let C in T . Cases VARSC
and VAR∀ are trivial.

Consider the rule APPFO: to get the first premise of the
round-trip version, we apply the induction hypothesis, pick-
ing {B | ⊥} → U as the goal; it is easy to show that this type
is well-formed in Γ (since so is U ); the challenging part is to
show Γ;C1 ` (x : {B | ψ} → T ) <: (x : {B | ⊥} → U).
By the definition of function subtyping, this simplifies to
Γ;C1 ` {B | ⊥} <: {B | ψ} (trivial), and Γ;C1;x :
{B | ⊥} ` T <: U . We know by the assumption the lemma
makes about U that Γ;C1;C2;x : Tx ` T <: U , so the
only thing left to show is that JΓ;C1;x : {B | ⊥}KT<:U ⇒
JΓ;C1;C2;x : TxKT<:U (note thatC2 only contains bindings
for variables that appear insideTx and nowhere else). We con-
sider two cases: if x does not actually appear in T , then both
formulas above are equivalent to JΓ;C1KT<:U , and thus the
implication holds; otherwise, one of the conjuncts in the left-
hand side is⊥, and thus the implication also holds.

To get the second second premise of APPFO, we pick
{B | ψ} (the precondition from the inferred type of e1) as
the goal. It is easy to show that this type is well-formed in
Γ;C1; and moreover Γ;C1;C2 ` Tx <: {B | ψ} by the
third premise of the bidirectional rule. The third premise of
APPFO follows directly from the lemma’s assumption about
U .

Consider the rule APPHO. Obtaining its first premise is
similar to the case of APPFO, except it is easier to show
that Γ;C ` Tx → T <: bot → U , since these function
types are not dependent and thus the above is equivalent to
Γ;C ` T <: U (which we get directly from the lemma’s
assumption aboutU ). The second premise is obtained directly
from the induction hypothesis.

For the rule IE, we construct the required premise Γ `Q
e ↓ T ↑ let C in T ′ from the bidirectional derivation
for Γ `Q e ↑b let C in T ′, taking into account that Γ;C `
T ′ <: T is required by the bidirectional rule, and thus T is a
valid goal type for the round-trip derivation.

The rest of the rules are trivial, since they have the same
shape in both systems; the only two exceptions are the first
premises of IF and MATCH, which require a strengthening
judgment; in both cases it is straightforward to show that the
respective goal types (Bool and top) are supertypes of the type
inferred by the bidirectional system.

Proof of Theorem 2. Straightforward by combining Lemma 4
and Lemma 5.
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