15,863 research outputs found

    Learning While Doing in the Human Services Sector: Becoming a Learning Organization Through Organizational Change

    Get PDF
    Outlines Casey Family Services' model for organizational learning and managing change; the process and outcomes of shifting focus to securing permanent, loving families for children and youth and their timely exit from foster care; and recommendations

    Two-echelon freight transport optimisation: unifying concepts via a systematic review

    Get PDF
    Multi-echelon distribution schemes are one of the most common strategies adopted by the transport companies in an aim of cost reduction, but their identification in scientific literature is not always easy due to a lack of unification. This paper presents the main concepts of two-echelon distribution via a systematic review, in the specific a meta-narrative analysis, in order to identify and unify the main concepts, issues and methods that can be helpful for scientists and transport practitioners. The problem of system cost optimisation in two-echelon freight transport systems is defined. Moreover, the main variants are synthetically presented and discussed. Finally, future research directions are proposed.location-routing problems, multi-echelon distribution, cross-docking, combinatorial optimisation, systematic review.

    Post-Apartheid National Spatial Development Planning in South Africa - A Brief History

    Get PDF
    Since coming to power in 1994 successive ANC-governments have engaged in a series of attempts at national spatial development planning in South Africa. These engagements have received scant treatment in the planning literature. In this paper a broad overview of these initiatives is provided, with an emphasis on the different instruments; the context in which they were developed; the institutions that were proposed and/or created in support of the instruments; and the extent to which the instruments were implemented and what their levels of success were. The paper concludes with a call for comparative research, including South Africa, in this arena

    Optimal task and motion planning and execution for human-robot multi-agent systems in dynamic environments

    Full text link
    Combining symbolic and geometric reasoning in multi-agent systems is a challenging task that involves planning, scheduling, and synchronization problems. Existing works overlooked the variability of task duration and geometric feasibility that is intrinsic to these systems because of the interaction between agents and the environment. We propose a combined task and motion planning approach to optimize sequencing, assignment, and execution of tasks under temporal and spatial variability. The framework relies on decoupling tasks and actions, where an action is one possible geometric realization of a symbolic task. At the task level, timeline-based planning deals with temporal constraints, duration variability, and synergic assignment of tasks. At the action level, online motion planning plans for the actual movements dealing with environmental changes. We demonstrate the approach effectiveness in a collaborative manufacturing scenario, in which a robotic arm and a human worker shall assemble a mosaic in the shortest time possible. Compared with existing works, our approach applies to a broader range of applications and reduces the execution time of the process.Comment: 12 pages, 6 figures, accepted for publication on IEEE Transactions on Cybernetics in March 202

    Using middle-out reasoning to guide inductive theorem proving

    Get PDF

    Refining 6-DoF Grasps with Context-Specific Classifiers

    Full text link
    In this work, we present GraspFlow, a refinement approach for generating context-specific grasps. We formulate the problem of grasp synthesis as a sampling problem: we seek to sample from a context-conditioned probability distribution of successful grasps. However, this target distribution is unknown. As a solution, we devise a discriminator gradient-flow method to evolve grasps obtained from a simpler distribution in a manner that mimics sampling from the desired target distribution. Unlike existing approaches, GraspFlow is modular, allowing grasps that satisfy multiple criteria to be obtained simply by incorporating the relevant discriminators. It is also simple to implement, requiring minimal code given existing auto-differentiation libraries and suitable discriminators. Experiments show that GraspFlow generates stable and executable grasps on a real-world Panda robot for a diverse range of objects. In particular, in 60 trials on 20 different household objects, the first attempted grasp was successful 94% of the time, and 100% grasp success was achieved by the second grasp. Moreover, incorporating a functional discriminator for robot-human handover improved the functional aspect of the grasp by up to 33%.Comment: IROS 2023, Code and Datasets are available at https://github.com/tasbolat1/graspflo
    corecore